qemu-e2k/hw/timer/npcm7xx_timer.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

718 lines
20 KiB
C
Raw Normal View History

/*
* Nuvoton NPCM7xx Timer Controller
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/timer/npcm7xx_timer.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/timer.h"
#include "qemu/units.h"
#include "trace.h"
/* 32-bit register indices. */
enum NPCM7xxTimerRegisters {
NPCM7XX_TIMER_TCSR0,
NPCM7XX_TIMER_TCSR1,
NPCM7XX_TIMER_TICR0,
NPCM7XX_TIMER_TICR1,
NPCM7XX_TIMER_TDR0,
NPCM7XX_TIMER_TDR1,
NPCM7XX_TIMER_TISR,
NPCM7XX_TIMER_WTCR,
NPCM7XX_TIMER_TCSR2,
NPCM7XX_TIMER_TCSR3,
NPCM7XX_TIMER_TICR2,
NPCM7XX_TIMER_TICR3,
NPCM7XX_TIMER_TDR2,
NPCM7XX_TIMER_TDR3,
NPCM7XX_TIMER_TCSR4 = 0x0040 / sizeof(uint32_t),
NPCM7XX_TIMER_TICR4 = 0x0048 / sizeof(uint32_t),
NPCM7XX_TIMER_TDR4 = 0x0050 / sizeof(uint32_t),
NPCM7XX_TIMER_REGS_END,
};
/* Register field definitions. */
#define NPCM7XX_TCSR_CEN BIT(30)
#define NPCM7XX_TCSR_IE BIT(29)
#define NPCM7XX_TCSR_PERIODIC BIT(27)
#define NPCM7XX_TCSR_CRST BIT(26)
#define NPCM7XX_TCSR_CACT BIT(25)
#define NPCM7XX_TCSR_RSVD 0x01ffff00
#define NPCM7XX_TCSR_PRESCALE_START 0
#define NPCM7XX_TCSR_PRESCALE_LEN 8
#define NPCM7XX_WTCR_WTCLK(rv) extract32(rv, 10, 2)
#define NPCM7XX_WTCR_FREEZE_EN BIT(9)
#define NPCM7XX_WTCR_WTE BIT(7)
#define NPCM7XX_WTCR_WTIE BIT(6)
#define NPCM7XX_WTCR_WTIS(rv) extract32(rv, 4, 2)
#define NPCM7XX_WTCR_WTIF BIT(3)
#define NPCM7XX_WTCR_WTRF BIT(2)
#define NPCM7XX_WTCR_WTRE BIT(1)
#define NPCM7XX_WTCR_WTR BIT(0)
/*
* The number of clock cycles between interrupt and reset in watchdog, used
* by the software to handle the interrupt before system is reset.
*/
#define NPCM7XX_WATCHDOG_INTERRUPT_TO_RESET_CYCLES 1024
/* Start or resume the timer. */
static void npcm7xx_timer_start(NPCM7xxBaseTimer *t)
{
int64_t now;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
t->expires_ns = now + t->remaining_ns;
timer_mod(&t->qtimer, t->expires_ns);
}
/* Stop counting. Record the time remaining so we can continue later. */
static void npcm7xx_timer_pause(NPCM7xxBaseTimer *t)
{
int64_t now;
timer_del(&t->qtimer);
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
t->remaining_ns = t->expires_ns - now;
}
/* Delete the timer and reset it to default state. */
static void npcm7xx_timer_clear(NPCM7xxBaseTimer *t)
{
timer_del(&t->qtimer);
t->expires_ns = 0;
t->remaining_ns = 0;
}
/*
* Returns the index of timer in the tc->timer array. This can be used to
* locate the registers that belong to this timer.
*/
static int npcm7xx_timer_index(NPCM7xxTimerCtrlState *tc, NPCM7xxTimer *timer)
{
int index = timer - tc->timer;
g_assert(index >= 0 && index < NPCM7XX_TIMERS_PER_CTRL);
return index;
}
/* Return the value by which to divide the reference clock rate. */
static uint32_t npcm7xx_tcsr_prescaler(uint32_t tcsr)
{
return extract32(tcsr, NPCM7XX_TCSR_PRESCALE_START,
NPCM7XX_TCSR_PRESCALE_LEN) + 1;
}
/* Convert a timer cycle count to a time interval in nanoseconds. */
static int64_t npcm7xx_timer_count_to_ns(NPCM7xxTimer *t, uint32_t count)
{
int64_t ticks = count;
ticks *= npcm7xx_tcsr_prescaler(t->tcsr);
return clock_ticks_to_ns(t->ctrl->clock, ticks);
}
/* Convert a time interval in nanoseconds to a timer cycle count. */
static uint32_t npcm7xx_timer_ns_to_count(NPCM7xxTimer *t, int64_t ns)
{
if (ns < 0) {
return 0;
}
return clock_ns_to_ticks(t->ctrl->clock, ns) /
npcm7xx_tcsr_prescaler(t->tcsr);
}
static uint32_t npcm7xx_watchdog_timer_prescaler(const NPCM7xxWatchdogTimer *t)
{
switch (NPCM7XX_WTCR_WTCLK(t->wtcr)) {
case 0:
return 1;
case 1:
return 256;
case 2:
return 2048;
case 3:
return 65536;
default:
g_assert_not_reached();
}
}
static void npcm7xx_watchdog_timer_reset_cycles(NPCM7xxWatchdogTimer *t,
int64_t cycles)
{
int64_t ticks = cycles * npcm7xx_watchdog_timer_prescaler(t);
int64_t ns = clock_ticks_to_ns(t->ctrl->clock, ticks);
/*
* The reset function always clears the current timer. The caller of the
* this needs to decide whether to start the watchdog timer based on
* specific flag in WTCR.
*/
npcm7xx_timer_clear(&t->base_timer);
t->base_timer.remaining_ns = ns;
}
static void npcm7xx_watchdog_timer_reset(NPCM7xxWatchdogTimer *t)
{
int64_t cycles = 1;
uint32_t s = NPCM7XX_WTCR_WTIS(t->wtcr);
g_assert(s <= 3);
cycles <<= NPCM7XX_WATCHDOG_BASETIME_SHIFT;
cycles <<= 2 * s;
npcm7xx_watchdog_timer_reset_cycles(t, cycles);
}
/*
* Raise the interrupt line if there's a pending interrupt and interrupts are
* enabled for this timer. If not, lower it.
*/
static void npcm7xx_timer_check_interrupt(NPCM7xxTimer *t)
{
NPCM7xxTimerCtrlState *tc = t->ctrl;
int index = npcm7xx_timer_index(tc, t);
bool pending = (t->tcsr & NPCM7XX_TCSR_IE) && (tc->tisr & BIT(index));
qemu_set_irq(t->irq, pending);
trace_npcm7xx_timer_irq(DEVICE(tc)->canonical_path, index, pending);
}
/*
* Called when the counter reaches zero. Sets the interrupt flag, and either
* restarts or disables the timer.
*/
static void npcm7xx_timer_reached_zero(NPCM7xxTimer *t)
{
NPCM7xxTimerCtrlState *tc = t->ctrl;
int index = npcm7xx_timer_index(tc, t);
tc->tisr |= BIT(index);
if (t->tcsr & NPCM7XX_TCSR_PERIODIC) {
t->base_timer.remaining_ns = npcm7xx_timer_count_to_ns(t, t->ticr);
if (t->tcsr & NPCM7XX_TCSR_CEN) {
npcm7xx_timer_start(&t->base_timer);
}
} else {
t->tcsr &= ~(NPCM7XX_TCSR_CEN | NPCM7XX_TCSR_CACT);
}
npcm7xx_timer_check_interrupt(t);
}
/*
* Restart the timer from its initial value. If the timer was enabled and stays
* enabled, adjust the QEMU timer according to the new count. If the timer is
* transitioning from disabled to enabled, the caller is expected to start the
* timer later.
*/
static void npcm7xx_timer_restart(NPCM7xxTimer *t, uint32_t old_tcsr)
{
t->base_timer.remaining_ns = npcm7xx_timer_count_to_ns(t, t->ticr);
if (old_tcsr & t->tcsr & NPCM7XX_TCSR_CEN) {
npcm7xx_timer_start(&t->base_timer);
}
}
/* Register read and write handlers */
static uint32_t npcm7xx_timer_read_tdr(NPCM7xxTimer *t)
{
if (t->tcsr & NPCM7XX_TCSR_CEN) {
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
return npcm7xx_timer_ns_to_count(t, t->base_timer.expires_ns - now);
}
return npcm7xx_timer_ns_to_count(t, t->base_timer.remaining_ns);
}
static void npcm7xx_timer_write_tcsr(NPCM7xxTimer *t, uint32_t new_tcsr)
{
uint32_t old_tcsr = t->tcsr;
uint32_t tdr;
if (new_tcsr & NPCM7XX_TCSR_RSVD) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: reserved bits in 0x%08x ignored\n",
__func__, new_tcsr);
new_tcsr &= ~NPCM7XX_TCSR_RSVD;
}
if (new_tcsr & NPCM7XX_TCSR_CACT) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: read-only bits in 0x%08x ignored\n",
__func__, new_tcsr);
new_tcsr &= ~NPCM7XX_TCSR_CACT;
}
if ((new_tcsr & NPCM7XX_TCSR_CRST) && (new_tcsr & NPCM7XX_TCSR_CEN)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: both CRST and CEN set; ignoring CEN.\n",
__func__);
new_tcsr &= ~NPCM7XX_TCSR_CEN;
}
/* Calculate the value of TDR before potentially changing the prescaler. */
tdr = npcm7xx_timer_read_tdr(t);
t->tcsr = (t->tcsr & NPCM7XX_TCSR_CACT) | new_tcsr;
if (npcm7xx_tcsr_prescaler(old_tcsr) != npcm7xx_tcsr_prescaler(new_tcsr)) {
/* Recalculate time remaining based on the current TDR value. */
t->base_timer.remaining_ns = npcm7xx_timer_count_to_ns(t, tdr);
if (old_tcsr & t->tcsr & NPCM7XX_TCSR_CEN) {
npcm7xx_timer_start(&t->base_timer);
}
}
if ((old_tcsr ^ new_tcsr) & NPCM7XX_TCSR_IE) {
npcm7xx_timer_check_interrupt(t);
}
if (new_tcsr & NPCM7XX_TCSR_CRST) {
npcm7xx_timer_restart(t, old_tcsr);
t->tcsr &= ~NPCM7XX_TCSR_CRST;
}
if ((old_tcsr ^ new_tcsr) & NPCM7XX_TCSR_CEN) {
if (new_tcsr & NPCM7XX_TCSR_CEN) {
t->tcsr |= NPCM7XX_TCSR_CACT;
npcm7xx_timer_start(&t->base_timer);
} else {
t->tcsr &= ~NPCM7XX_TCSR_CACT;
npcm7xx_timer_pause(&t->base_timer);
if (t->base_timer.remaining_ns <= 0) {
npcm7xx_timer_reached_zero(t);
}
}
}
}
static void npcm7xx_timer_write_ticr(NPCM7xxTimer *t, uint32_t new_ticr)
{
t->ticr = new_ticr;
npcm7xx_timer_restart(t, t->tcsr);
}
static void npcm7xx_timer_write_tisr(NPCM7xxTimerCtrlState *s, uint32_t value)
{
int i;
s->tisr &= ~value;
for (i = 0; i < ARRAY_SIZE(s->timer); i++) {
if (value & (1U << i)) {
npcm7xx_timer_check_interrupt(&s->timer[i]);
}
}
}
static void npcm7xx_timer_write_wtcr(NPCM7xxWatchdogTimer *t, uint32_t new_wtcr)
{
uint32_t old_wtcr = t->wtcr;
/*
* WTIF and WTRF are cleared by writing 1. Writing 0 makes these bits
* unchanged.
*/
if (new_wtcr & NPCM7XX_WTCR_WTIF) {
new_wtcr &= ~NPCM7XX_WTCR_WTIF;
} else if (old_wtcr & NPCM7XX_WTCR_WTIF) {
new_wtcr |= NPCM7XX_WTCR_WTIF;
}
if (new_wtcr & NPCM7XX_WTCR_WTRF) {
new_wtcr &= ~NPCM7XX_WTCR_WTRF;
} else if (old_wtcr & NPCM7XX_WTCR_WTRF) {
new_wtcr |= NPCM7XX_WTCR_WTRF;
}
t->wtcr = new_wtcr;
if (new_wtcr & NPCM7XX_WTCR_WTR) {
t->wtcr &= ~NPCM7XX_WTCR_WTR;
npcm7xx_watchdog_timer_reset(t);
if (new_wtcr & NPCM7XX_WTCR_WTE) {
npcm7xx_timer_start(&t->base_timer);
}
} else if ((old_wtcr ^ new_wtcr) & NPCM7XX_WTCR_WTE) {
if (new_wtcr & NPCM7XX_WTCR_WTE) {
npcm7xx_timer_start(&t->base_timer);
} else {
npcm7xx_timer_pause(&t->base_timer);
}
}
}
static hwaddr npcm7xx_tcsr_index(hwaddr reg)
{
switch (reg) {
case NPCM7XX_TIMER_TCSR0:
return 0;
case NPCM7XX_TIMER_TCSR1:
return 1;
case NPCM7XX_TIMER_TCSR2:
return 2;
case NPCM7XX_TIMER_TCSR3:
return 3;
case NPCM7XX_TIMER_TCSR4:
return 4;
default:
g_assert_not_reached();
}
}
static hwaddr npcm7xx_ticr_index(hwaddr reg)
{
switch (reg) {
case NPCM7XX_TIMER_TICR0:
return 0;
case NPCM7XX_TIMER_TICR1:
return 1;
case NPCM7XX_TIMER_TICR2:
return 2;
case NPCM7XX_TIMER_TICR3:
return 3;
case NPCM7XX_TIMER_TICR4:
return 4;
default:
g_assert_not_reached();
}
}
static hwaddr npcm7xx_tdr_index(hwaddr reg)
{
switch (reg) {
case NPCM7XX_TIMER_TDR0:
return 0;
case NPCM7XX_TIMER_TDR1:
return 1;
case NPCM7XX_TIMER_TDR2:
return 2;
case NPCM7XX_TIMER_TDR3:
return 3;
case NPCM7XX_TIMER_TDR4:
return 4;
default:
g_assert_not_reached();
}
}
static uint64_t npcm7xx_timer_read(void *opaque, hwaddr offset, unsigned size)
{
NPCM7xxTimerCtrlState *s = opaque;
uint64_t value = 0;
hwaddr reg;
reg = offset / sizeof(uint32_t);
switch (reg) {
case NPCM7XX_TIMER_TCSR0:
case NPCM7XX_TIMER_TCSR1:
case NPCM7XX_TIMER_TCSR2:
case NPCM7XX_TIMER_TCSR3:
case NPCM7XX_TIMER_TCSR4:
value = s->timer[npcm7xx_tcsr_index(reg)].tcsr;
break;
case NPCM7XX_TIMER_TICR0:
case NPCM7XX_TIMER_TICR1:
case NPCM7XX_TIMER_TICR2:
case NPCM7XX_TIMER_TICR3:
case NPCM7XX_TIMER_TICR4:
value = s->timer[npcm7xx_ticr_index(reg)].ticr;
break;
case NPCM7XX_TIMER_TDR0:
case NPCM7XX_TIMER_TDR1:
case NPCM7XX_TIMER_TDR2:
case NPCM7XX_TIMER_TDR3:
case NPCM7XX_TIMER_TDR4:
value = npcm7xx_timer_read_tdr(&s->timer[npcm7xx_tdr_index(reg)]);
break;
case NPCM7XX_TIMER_TISR:
value = s->tisr;
break;
case NPCM7XX_TIMER_WTCR:
value = s->watchdog_timer.wtcr;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid offset 0x%04" HWADDR_PRIx "\n",
__func__, offset);
break;
}
trace_npcm7xx_timer_read(DEVICE(s)->canonical_path, offset, value);
return value;
}
static void npcm7xx_timer_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
uint32_t reg = offset / sizeof(uint32_t);
NPCM7xxTimerCtrlState *s = opaque;
uint32_t value = v;
trace_npcm7xx_timer_write(DEVICE(s)->canonical_path, offset, value);
switch (reg) {
case NPCM7XX_TIMER_TCSR0:
case NPCM7XX_TIMER_TCSR1:
case NPCM7XX_TIMER_TCSR2:
case NPCM7XX_TIMER_TCSR3:
case NPCM7XX_TIMER_TCSR4:
npcm7xx_timer_write_tcsr(&s->timer[npcm7xx_tcsr_index(reg)], value);
return;
case NPCM7XX_TIMER_TICR0:
case NPCM7XX_TIMER_TICR1:
case NPCM7XX_TIMER_TICR2:
case NPCM7XX_TIMER_TICR3:
case NPCM7XX_TIMER_TICR4:
npcm7xx_timer_write_ticr(&s->timer[npcm7xx_ticr_index(reg)], value);
return;
case NPCM7XX_TIMER_TDR0:
case NPCM7XX_TIMER_TDR1:
case NPCM7XX_TIMER_TDR2:
case NPCM7XX_TIMER_TDR3:
case NPCM7XX_TIMER_TDR4:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: register @ 0x%04" HWADDR_PRIx " is read-only\n",
__func__, offset);
return;
case NPCM7XX_TIMER_TISR:
npcm7xx_timer_write_tisr(s, value);
return;
case NPCM7XX_TIMER_WTCR:
npcm7xx_timer_write_wtcr(&s->watchdog_timer, value);
return;
}
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid offset 0x%04" HWADDR_PRIx "\n",
__func__, offset);
}
static const struct MemoryRegionOps npcm7xx_timer_ops = {
.read = npcm7xx_timer_read,
.write = npcm7xx_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
/* Called when the QEMU timer expires. */
static void npcm7xx_timer_expired(void *opaque)
{
NPCM7xxTimer *t = opaque;
if (t->tcsr & NPCM7XX_TCSR_CEN) {
npcm7xx_timer_reached_zero(t);
}
}
static void npcm7xx_timer_enter_reset(Object *obj, ResetType type)
{
NPCM7xxTimerCtrlState *s = NPCM7XX_TIMER(obj);
int i;
for (i = 0; i < NPCM7XX_TIMERS_PER_CTRL; i++) {
NPCM7xxTimer *t = &s->timer[i];
npcm7xx_timer_clear(&t->base_timer);
t->tcsr = 0x00000005;
t->ticr = 0x00000000;
}
s->tisr = 0x00000000;
/*
* Set WTCLK to 1(default) and reset all flags except WTRF.
* WTRF is not reset during a core domain reset.
*/
s->watchdog_timer.wtcr = 0x00000400 | (s->watchdog_timer.wtcr &
NPCM7XX_WTCR_WTRF);
}
static void npcm7xx_watchdog_timer_expired(void *opaque)
{
NPCM7xxWatchdogTimer *t = opaque;
if (t->wtcr & NPCM7XX_WTCR_WTE) {
if (t->wtcr & NPCM7XX_WTCR_WTIF) {
if (t->wtcr & NPCM7XX_WTCR_WTRE) {
t->wtcr |= NPCM7XX_WTCR_WTRF;
/* send reset signal to CLK module*/
qemu_irq_raise(t->reset_signal);
}
} else {
t->wtcr |= NPCM7XX_WTCR_WTIF;
if (t->wtcr & NPCM7XX_WTCR_WTIE) {
/* send interrupt */
qemu_irq_raise(t->irq);
}
npcm7xx_watchdog_timer_reset_cycles(t,
NPCM7XX_WATCHDOG_INTERRUPT_TO_RESET_CYCLES);
npcm7xx_timer_start(&t->base_timer);
}
}
}
static void npcm7xx_timer_hold_reset(Object *obj)
{
NPCM7xxTimerCtrlState *s = NPCM7XX_TIMER(obj);
int i;
for (i = 0; i < NPCM7XX_TIMERS_PER_CTRL; i++) {
qemu_irq_lower(s->timer[i].irq);
}
qemu_irq_lower(s->watchdog_timer.irq);
}
static void npcm7xx_timer_init(Object *obj)
{
NPCM7xxTimerCtrlState *s = NPCM7XX_TIMER(obj);
DeviceState *dev = DEVICE(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
int i;
NPCM7xxWatchdogTimer *w;
for (i = 0; i < NPCM7XX_TIMERS_PER_CTRL; i++) {
NPCM7xxTimer *t = &s->timer[i];
t->ctrl = s;
timer_init_ns(&t->base_timer.qtimer, QEMU_CLOCK_VIRTUAL,
npcm7xx_timer_expired, t);
sysbus_init_irq(sbd, &t->irq);
}
w = &s->watchdog_timer;
w->ctrl = s;
timer_init_ns(&w->base_timer.qtimer, QEMU_CLOCK_VIRTUAL,
npcm7xx_watchdog_timer_expired, w);
sysbus_init_irq(sbd, &w->irq);
memory_region_init_io(&s->iomem, obj, &npcm7xx_timer_ops, s,
TYPE_NPCM7XX_TIMER, 4 * KiB);
sysbus_init_mmio(sbd, &s->iomem);
qdev_init_gpio_out_named(dev, &w->reset_signal,
NPCM7XX_WATCHDOG_RESET_GPIO_OUT, 1);
s->clock = qdev_init_clock_in(dev, "clock", NULL, NULL, 0);
}
static const VMStateDescription vmstate_npcm7xx_base_timer = {
.name = "npcm7xx-base-timer",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_TIMER(qtimer, NPCM7xxBaseTimer),
VMSTATE_INT64(expires_ns, NPCM7xxBaseTimer),
VMSTATE_INT64(remaining_ns, NPCM7xxBaseTimer),
VMSTATE_END_OF_LIST(),
},
};
static const VMStateDescription vmstate_npcm7xx_timer = {
.name = "npcm7xx-timer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(base_timer, NPCM7xxTimer,
0, vmstate_npcm7xx_base_timer,
NPCM7xxBaseTimer),
VMSTATE_UINT32(tcsr, NPCM7xxTimer),
VMSTATE_UINT32(ticr, NPCM7xxTimer),
VMSTATE_END_OF_LIST(),
},
};
static const VMStateDescription vmstate_npcm7xx_watchdog_timer = {
.name = "npcm7xx-watchdog-timer",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(base_timer, NPCM7xxWatchdogTimer,
0, vmstate_npcm7xx_base_timer,
NPCM7xxBaseTimer),
VMSTATE_UINT32(wtcr, NPCM7xxWatchdogTimer),
VMSTATE_END_OF_LIST(),
},
};
static const VMStateDescription vmstate_npcm7xx_timer_ctrl = {
.name = "npcm7xx-timer-ctrl",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(tisr, NPCM7xxTimerCtrlState),
VMSTATE_CLOCK(clock, NPCM7xxTimerCtrlState),
VMSTATE_STRUCT_ARRAY(timer, NPCM7xxTimerCtrlState,
NPCM7XX_TIMERS_PER_CTRL, 0, vmstate_npcm7xx_timer,
NPCM7xxTimer),
VMSTATE_STRUCT(watchdog_timer, NPCM7xxTimerCtrlState,
0, vmstate_npcm7xx_watchdog_timer,
NPCM7xxWatchdogTimer),
VMSTATE_END_OF_LIST(),
},
};
static void npcm7xx_timer_class_init(ObjectClass *klass, void *data)
{
ResettableClass *rc = RESETTABLE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
QEMU_BUILD_BUG_ON(NPCM7XX_TIMER_REGS_END > NPCM7XX_TIMER_NR_REGS);
dc->desc = "NPCM7xx Timer Controller";
dc->vmsd = &vmstate_npcm7xx_timer_ctrl;
rc->phases.enter = npcm7xx_timer_enter_reset;
rc->phases.hold = npcm7xx_timer_hold_reset;
}
static const TypeInfo npcm7xx_timer_info = {
.name = TYPE_NPCM7XX_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NPCM7xxTimerCtrlState),
.class_init = npcm7xx_timer_class_init,
.instance_init = npcm7xx_timer_init,
};
static void npcm7xx_timer_register_type(void)
{
type_register_static(&npcm7xx_timer_info);
}
type_init(npcm7xx_timer_register_type);