qemu-e2k/bsd-user/main.c

1126 lines
35 KiB
C
Raw Normal View History

/*
* qemu user main
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-version.h"
#include <machine/trap.h>
#include "qapi/error.h"
#include "qemu.h"
#include "qemu/config-file.h"
#include "qemu/path.h"
#include "qemu/help_option.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg.h"
#include "qemu/timer.h"
#include "qemu/envlist.h"
#include "exec/log.h"
#include "trace/control.h"
int singlestep;
unsigned long mmap_min_addr;
unsigned long guest_base;
int have_guest_base;
unsigned long reserved_va;
static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
const char *qemu_uname_release;
extern char **environ;
enum BSDType bsd_type;
/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
we allocate a bigger stack. Need a better solution, for example
by remapping the process stack directly at the right place */
unsigned long x86_stack_size = 512 * 1024;
void gemu_log(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
}
#if defined(TARGET_I386)
int cpu_get_pic_interrupt(CPUX86State *env)
{
return -1;
}
#endif
void fork_start(void)
{
}
void fork_end(int child)
{
if (child) {
gdbserver_fork(thread_cpu);
}
}
#ifdef TARGET_I386
/***********************************************************/
/* CPUX86 core interface */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_host_ticks();
}
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
int flags)
{
unsigned int e1, e2;
uint32_t *p;
e1 = (addr << 16) | (limit & 0xffff);
e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
e2 |= flags;
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
static uint64_t *idt_table;
#ifdef TARGET_X86_64
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
uint64_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
p[2] = tswap32(addr >> 32);
p[3] = 0;
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
}
#else
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
uint32_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate(idt_table + n, 0, dpl, 0, 0);
}
#endif
void cpu_loop(CPUX86State *env)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
int trapnr;
abi_ulong pc;
//target_siginfo_t info;
for(;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch(trapnr) {
case 0x80:
/* syscall from int $0x80 */
if (bsd_type == target_freebsd) {
abi_ulong params = (abi_ulong) env->regs[R_ESP] +
sizeof(int32_t);
int32_t syscall_nr = env->regs[R_EAX];
int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
get_user_s32(syscall_nr, params);
params += sizeof(int32_t);
} else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
get_user_s32(syscall_nr, params);
params += sizeof(int64_t);
}
get_user_s32(arg1, params);
params += sizeof(int32_t);
get_user_s32(arg2, params);
params += sizeof(int32_t);
get_user_s32(arg3, params);
params += sizeof(int32_t);
get_user_s32(arg4, params);
params += sizeof(int32_t);
get_user_s32(arg5, params);
params += sizeof(int32_t);
get_user_s32(arg6, params);
params += sizeof(int32_t);
get_user_s32(arg7, params);
params += sizeof(int32_t);
get_user_s32(arg8, params);
env->regs[R_EAX] = do_freebsd_syscall(env,
syscall_nr,
arg1,
arg2,
arg3,
arg4,
arg5,
arg6,
arg7,
arg8);
} else { //if (bsd_type == target_openbsd)
env->regs[R_EAX] = do_openbsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP]);
}
if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
env->regs[R_EAX] = -env->regs[R_EAX];
env->eflags |= CC_C;
} else {
env->eflags &= ~CC_C;
}
break;
#ifndef TARGET_ABI32
case EXCP_SYSCALL:
/* syscall from syscall instruction */
if (bsd_type == target_freebsd)
env->regs[R_EAX] = do_freebsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[R_ECX],
env->regs[8],
env->regs[9], 0, 0);
else { //if (bsd_type == target_openbsd)
env->regs[R_EAX] = do_openbsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[10],
env->regs[8],
env->regs[9]);
}
env->eip = env->exception_next_eip;
if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
env->regs[R_EAX] = -env->regs[R_EAX];
env->eflags |= CC_C;
} else {
env->eflags &= ~CC_C;
}
break;
#endif
#if 0
case EXCP0B_NOSEG:
case EXCP0C_STACK:
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
break;
case EXCP0D_GPF:
/* XXX: potential problem if ABI32 */
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_fault(env);
} else
#endif
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP0E_PAGE:
info.si_signo = SIGSEGV;
info.si_errno = 0;
if (!(env->error_code & 1))
info.si_code = TARGET_SEGV_MAPERR;
else
info.si_code = TARGET_SEGV_ACCERR;
info._sifields._sigfault._addr = env->cr[2];
queue_signal(env, info.si_signo, &info);
break;
case EXCP00_DIVZ:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
/* division by zero */
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = TARGET_FPE_INTDIV;
info._sifields._sigfault._addr = env->eip;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP01_DB:
case EXCP03_INT3:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
info.si_signo = SIGTRAP;
info.si_errno = 0;
if (trapnr == EXCP01_DB) {
info.si_code = TARGET_TRAP_BRKPT;
info._sifields._sigfault._addr = env->eip;
} else {
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
}
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP04_INTO:
case EXCP05_BOUND:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP06_ILLOP:
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPN;
info._sifields._sigfault._addr = env->eip;
queue_signal(env, info.si_signo, &info);
break;
#endif
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
#if 0
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig (env, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
#endif
default:
pc = env->segs[R_CS].base + env->eip;
fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
(long)pc, trapnr);
abort();
}
process_pending_signals(env);
}
}
#endif
#ifdef TARGET_SPARC
#define SPARC64_STACK_BIAS 2047
//#define DEBUG_WIN
/* WARNING: dealing with register windows _is_ complicated. More info
can be found at http://www.sics.se/~psm/sparcstack.html */
static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
{
index = (index + cwp * 16) % (16 * env->nwindows);
/* wrap handling : if cwp is on the last window, then we use the
registers 'after' the end */
if (index < 8 && env->cwp == env->nwindows - 1)
index += 16 * env->nwindows;
return index;
}
/* save the register window 'cwp1' */
static inline void save_window_offset(CPUSPARCState *env, int cwp1)
{
unsigned int i;
abi_ulong sp_ptr;
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if put_user() fails? */
put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
}
static void save_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->wim = new_wim;
#else
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->cansave++;
env->canrestore--;
#endif
}
static void restore_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
#endif
unsigned int i, cwp1;
abi_ulong sp_ptr;
#ifndef TARGET_SPARC64
new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
#endif
/* restore the invalid window */
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if get_user() fails? */
get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
#ifdef TARGET_SPARC64
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
env->cleanwin++;
env->cansave--;
#else
env->wim = new_wim;
#endif
}
static void flush_windows(CPUSPARCState *env)
{
int offset, cwp1;
offset = 1;
for(;;) {
/* if restore would invoke restore_window(), then we can stop */
cwp1 = cpu_cwp_inc(env, env->cwp + offset);
#ifndef TARGET_SPARC64
if (env->wim & (1 << cwp1))
break;
#else
if (env->canrestore == 0)
break;
env->cansave++;
env->canrestore--;
#endif
save_window_offset(env, cwp1);
offset++;
}
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
#ifndef TARGET_SPARC64
/* set wim so that restore will reload the registers */
env->wim = 1 << cwp1;
#endif
#if defined(DEBUG_WIN)
printf("flush_windows: nb=%d\n", offset - 1);
#endif
}
void cpu_loop(CPUSPARCState *env)
{
CPUState *cs = CPU(sparc_env_get_cpu(env));
int trapnr, ret, syscall_nr;
//target_siginfo_t info;
while (1) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch (trapnr) {
#ifndef TARGET_SPARC64
case 0x80:
#else
/* FreeBSD uses 0x141 for syscalls too */
case 0x141:
if (bsd_type != target_freebsd)
goto badtrap;
case 0x100:
#endif
syscall_nr = env->gregs[1];
if (bsd_type == target_freebsd)
ret = do_freebsd_syscall(env, syscall_nr,
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5], 0, 0);
else if (bsd_type == target_netbsd)
ret = do_netbsd_syscall(env, syscall_nr,
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5]);
else { //if (bsd_type == target_openbsd)
#if defined(TARGET_SPARC64)
syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
TARGET_OPENBSD_SYSCALL_G2RFLAG);
#endif
ret = do_openbsd_syscall(env, syscall_nr,
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5]);
}
if ((unsigned int)ret >= (unsigned int)(-515)) {
ret = -ret;
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc |= PSR_CARRY;
#else
env->psr |= PSR_CARRY;
#endif
} else {
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc &= ~PSR_CARRY;
#else
env->psr &= ~PSR_CARRY;
#endif
}
env->regwptr[0] = ret;
/* next instruction */
#if defined(TARGET_SPARC64)
if (bsd_type == target_openbsd &&
env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
env->pc = env->gregs[2];
env->npc = env->pc + 4;
} else if (bsd_type == target_openbsd &&
env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
env->pc = env->gregs[7];
env->npc = env->pc + 4;
} else {
env->pc = env->npc;
env->npc = env->npc + 4;
}
#else
env->pc = env->npc;
env->npc = env->npc + 4;
#endif
break;
case 0x83: /* flush windows */
#ifdef TARGET_ABI32
case 0x103:
#endif
flush_windows(env);
/* next instruction */
env->pc = env->npc;
env->npc = env->npc + 4;
break;
#ifndef TARGET_SPARC64
case TT_WIN_OVF: /* window overflow */
save_window(env);
break;
case TT_WIN_UNF: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
#if 0
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->mmuregs[4];
queue_signal(env, info.si_signo, &info);
}
#endif
break;
#else
case TT_SPILL: /* window overflow */
save_window(env);
break;
case TT_FILL: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
#if 0
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
if (trapnr == TT_DFAULT)
info._sifields._sigfault._addr = env->dmmuregs[4];
else
info._sifields._sigfault._addr = env->tsptr->tpc;
//queue_signal(env, info.si_signo, &info);
}
#endif
break;
#endif
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
{
#if 0
int sig =
#endif
gdb_handlesig(cs, TARGET_SIGTRAP);
#if 0
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
//queue_signal(env, info.si_signo, &info);
}
#endif
}
break;
default:
#ifdef TARGET_SPARC64
badtrap:
#endif
printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
exit (1);
}
process_pending_signals (env);
}
}
#endif
static void usage(void)
{
printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
"\n" QEMU_COPYRIGHT "\n"
"usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
"BSD CPU emulator (compiled for %s emulation)\n"
"\n"
"Standard options:\n"
"-h print this help\n"
"-g port wait gdb connection to port\n"
"-L path set the elf interpreter prefix (default=%s)\n"
"-s size set the stack size in bytes (default=%ld)\n"
"-cpu model select CPU (-cpu help for list)\n"
"-drop-ld-preload drop LD_PRELOAD for target process\n"
"-E var=value sets/modifies targets environment variable(s)\n"
"-U var unsets targets environment variable(s)\n"
"-B address set guest_base address to address\n"
"-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
"\n"
"Debug options:\n"
"-d item1[,...] enable logging of specified items\n"
" (use '-d help' for a list of log items)\n"
"-D logfile write logs to 'logfile' (default stderr)\n"
"-p pagesize set the host page size to 'pagesize'\n"
"-singlestep always run in singlestep mode\n"
"-strace log system calls\n"
"-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
" specify tracing options\n"
"\n"
"Environment variables:\n"
"QEMU_STRACE Print system calls and arguments similar to the\n"
" 'strace' program. Enable by setting to any value.\n"
"You can use -E and -U options to set/unset environment variables\n"
"for target process. It is possible to provide several variables\n"
"by repeating the option. For example:\n"
" -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
"Note that if you provide several changes to single variable\n"
"last change will stay in effect.\n"
"\n"
QEMU_HELP_BOTTOM "\n"
,
TARGET_NAME,
interp_prefix,
x86_stack_size);
exit(1);
}
THREAD CPUState *thread_cpu;
bool qemu_cpu_is_self(CPUState *cpu)
{
return thread_cpu == cpu;
}
void qemu_cpu_kick(CPUState *cpu)
{
cpu_exit(cpu);
}
/* Assumes contents are already zeroed. */
void init_task_state(TaskState *ts)
{
int i;
ts->used = 1;
ts->first_free = ts->sigqueue_table;
for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
}
ts->sigqueue_table[i].next = NULL;
}
int main(int argc, char **argv)
{
const char *filename;
const char *cpu_model;
const char *log_file = NULL;
const char *log_mask = NULL;
struct target_pt_regs regs1, *regs = &regs1;
struct image_info info1, *info = &info1;
TaskState ts1, *ts = &ts1;
CPUArchState *env;
CPUState *cpu;
int optind;
const char *r;
int gdbstub_port = 0;
char **target_environ, **wrk;
envlist_t *envlist = NULL;
char *trace_file = NULL;
bsd_type = target_openbsd;
if (argc <= 1)
usage();
module_call_init(MODULE_INIT_TRACE);
qemu_init_cpu_list();
module_call_init(MODULE_INIT_QOM);
envlist = envlist_create();
/* add current environment into the list */
for (wrk = environ; *wrk != NULL; wrk++) {
(void) envlist_setenv(envlist, *wrk);
}
cpu_model = NULL;
qemu_add_opts(&qemu_trace_opts);
optind = 1;
for (;;) {
if (optind >= argc)
break;
r = argv[optind];
if (r[0] != '-')
break;
optind++;
r++;
if (!strcmp(r, "-")) {
break;
} else if (!strcmp(r, "d")) {
if (optind >= argc) {
break;
}
log_mask = argv[optind++];
} else if (!strcmp(r, "D")) {
if (optind >= argc) {
break;
}
log_file = argv[optind++];
} else if (!strcmp(r, "E")) {
r = argv[optind++];
if (envlist_setenv(envlist, r) != 0)
usage();
} else if (!strcmp(r, "ignore-environment")) {
envlist_free(envlist);
envlist = envlist_create();
} else if (!strcmp(r, "U")) {
r = argv[optind++];
if (envlist_unsetenv(envlist, r) != 0)
usage();
} else if (!strcmp(r, "s")) {
r = argv[optind++];
x86_stack_size = strtol(r, (char **)&r, 0);
if (x86_stack_size <= 0)
usage();
if (*r == 'M')
x86_stack_size *= 1024 * 1024;
else if (*r == 'k' || *r == 'K')
x86_stack_size *= 1024;
} else if (!strcmp(r, "L")) {
interp_prefix = argv[optind++];
} else if (!strcmp(r, "p")) {
qemu_host_page_size = atoi(argv[optind++]);
if (qemu_host_page_size == 0 ||
(qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
fprintf(stderr, "page size must be a power of two\n");
exit(1);
}
} else if (!strcmp(r, "g")) {
gdbstub_port = atoi(argv[optind++]);
} else if (!strcmp(r, "r")) {
qemu_uname_release = argv[optind++];
} else if (!strcmp(r, "cpu")) {
cpu_model = argv[optind++];
if (is_help_option(cpu_model)) {
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
cpu_list(stdout, &fprintf);
#endif
exit(1);
}
} else if (!strcmp(r, "B")) {
guest_base = strtol(argv[optind++], NULL, 0);
have_guest_base = 1;
} else if (!strcmp(r, "drop-ld-preload")) {
(void) envlist_unsetenv(envlist, "LD_PRELOAD");
} else if (!strcmp(r, "bsd")) {
if (!strcasecmp(argv[optind], "freebsd")) {
bsd_type = target_freebsd;
} else if (!strcasecmp(argv[optind], "netbsd")) {
bsd_type = target_netbsd;
} else if (!strcasecmp(argv[optind], "openbsd")) {
bsd_type = target_openbsd;
} else {
usage();
}
optind++;
} else if (!strcmp(r, "singlestep")) {
singlestep = 1;
} else if (!strcmp(r, "strace")) {
do_strace = 1;
} else if (!strcmp(r, "trace")) {
g_free(trace_file);
trace_file = trace_opt_parse(optarg);
} else {
usage();
}
}
/* init debug */
qemu_log_needs_buffers();
qemu_set_log_filename(log_file, &error_fatal);
if (log_mask) {
int mask;
mask = qemu_str_to_log_mask(log_mask);
if (!mask) {
qemu_print_log_usage(stdout);
exit(1);
}
qemu_set_log(mask);
}
if (optind >= argc) {
usage();
}
filename = argv[optind];
if (!trace_init_backends()) {
exit(1);
}
trace_init_file(trace_file);
/* Zero out regs */
memset(regs, 0, sizeof(struct target_pt_regs));
/* Zero out image_info */
memset(info, 0, sizeof(struct image_info));
/* Scan interp_prefix dir for replacement files. */
init_paths(interp_prefix);
if (cpu_model == NULL) {
#if defined(TARGET_I386)
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
#elif defined(TARGET_SPARC)
#ifdef TARGET_SPARC64
cpu_model = "TI UltraSparc II";
#else
cpu_model = "Fujitsu MB86904";
#endif
#else
cpu_model = "any";
#endif
}
tcg_exec_init(0);
/* NOTE: we need to init the CPU at this stage to get
qemu_host_page_size */
cpu: Make cpu_init() return QOM CPUState object Instead of making cpu_init() return CPUArchState, return CPUState. Changes were made using the Coccinelle semantic patch below. @@ typedef CPUState; identifier e; expression args; type CPUArchState; @@ - e = + cpu = cpu_init(args); - if (!e) { + if (!cpu) { ... } - cpu = ENV_GET_CPU(env); + e = cpu->env_ptr; @@ identifier new_env, new_cpu, env, cpu; type CPUArchState; expression args; @@ -{ - CPUState *cpu = ENV_GET_CPU(env); - CPUArchState *new_env = cpu_init(args); - CPUState *new_cpu = ENV_GET_CPU(new_env); +{ + CPUState *cpu = ENV_GET_CPU(env); + CPUState *new_cpu = cpu_init(args); + CPUArchState *new_env = new_cpu->env_ptr; ... } @@ identifier c, cpu_init_func, cpu_model; type StateType, CPUType; @@ -static inline StateType* cpu_init(const char *cpu_model) -{ - CPUType *c = cpu_init_func(cpu_model); ( - if (c == NULL) { - return NULL; - } - return &c->env; | - if (c) { - return &c->env; - } - return NULL; ) -} +#define cpu_init(cpu_model) CPU(cpu_init_func(cpu_model)) @@ identifier cpu_init_func; identifier model; @@ -#define cpu_init(model) (&cpu_init_func(model)->env) +#define cpu_init(model) CPU(cpu_init_func(model)) Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Cc: Blue Swirl <blauwirbel@gmail.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Riku Voipio <riku.voipio@iki.fi> Cc: Richard Henderson <rth@twiddle.net> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: "Edgar E. Iglesias" <edgar.iglesias@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Michael Walle <michael@walle.cc> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Leon Alrae <leon.alrae@imgtec.com> Cc: Anthony Green <green@moxielogic.com> Cc: Jia Liu <proljc@gmail.com> Cc: Alexander Graf <agraf@suse.de> Cc: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> Cc: Max Filippov <jcmvbkbc@gmail.com> [AF: Fixed up cpu_copy() manually] Signed-off-by: Andreas Färber <afaerber@suse.de>
2015-02-26 21:37:49 +01:00
cpu = cpu_init(cpu_model);
env = cpu->env_ptr;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
cpu_reset(cpu);
#endif
thread_cpu = cpu;
if (getenv("QEMU_STRACE")) {
do_strace = 1;
}
target_environ = envlist_to_environ(envlist, NULL);
envlist_free(envlist);
/*
* Now that page sizes are configured in cpu_init() we can do
* proper page alignment for guest_base.
*/
guest_base = HOST_PAGE_ALIGN(guest_base);
/*
* Read in mmap_min_addr kernel parameter. This value is used
* When loading the ELF image to determine whether guest_base
* is needed.
*
* When user has explicitly set the quest base, we skip this
* test.
*/
if (!have_guest_base) {
FILE *fp;
if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
unsigned long tmp;
if (fscanf(fp, "%lu", &tmp) == 1) {
mmap_min_addr = tmp;
qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
}
fclose(fp);
}
}
if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
printf("Error loading %s\n", filename);
_exit(1);
}
for (wrk = target_environ; *wrk; wrk++) {
g_free(*wrk);
}
g_free(target_environ);
if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
qemu_log("guest_base 0x%lx\n", guest_base);
log_page_dump();
qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
info->start_code);
qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
info->start_data);
qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
info->start_stack);
qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
}
target_set_brk(info->brk);
syscall_init();
signal_init();
/* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
generating the prologue until now so that the prologue can take
the real value of GUEST_BASE into account. */
tcg_prologue_init(tcg_ctx);
tcg: introduce regions to split code_gen_buffer This is groundwork for supporting multiple TCG contexts. The naive solution here is to split code_gen_buffer statically among the TCG threads; this however results in poor utilization if translation needs are different across TCG threads. What we do here is to add an extra layer of indirection, assigning regions that act just like pages do in virtual memory allocation. (BTW if you are wondering about the chosen naming, I did not want to use blocks or pages because those are already heavily used in QEMU). We use a global lock to serialize allocations as well as statistics reporting (we now export the size of the used code_gen_buffer with tcg_code_size()). Note that for the allocator we could just use a counter and atomic_inc; however, that would complicate the gathering of tcg_code_size()-like stats. So given that the region operations are not a fast path, a lock seems the most reasonable choice. The effectiveness of this approach is clear after seeing some numbers. I used the bootup+shutdown of debian-arm with '-tb-size 80' as a benchmark. Note that I'm evaluating this after enabling per-thread TCG (which is done by a subsequent commit). * -smp 1, 1 region (entire buffer): qemu: flush code_size=83885014 nb_tbs=154739 avg_tb_size=357 qemu: flush code_size=83884902 nb_tbs=153136 avg_tb_size=363 qemu: flush code_size=83885014 nb_tbs=152777 avg_tb_size=364 qemu: flush code_size=83884950 nb_tbs=150057 avg_tb_size=373 qemu: flush code_size=83884998 nb_tbs=150234 avg_tb_size=373 qemu: flush code_size=83885014 nb_tbs=154009 avg_tb_size=360 qemu: flush code_size=83885014 nb_tbs=151007 avg_tb_size=370 qemu: flush code_size=83885014 nb_tbs=151816 avg_tb_size=367 That is, 8 flushes. * -smp 8, 32 regions (80/32 MB per region) [i.e. this patch]: qemu: flush code_size=76328008 nb_tbs=141040 avg_tb_size=356 qemu: flush code_size=75366534 nb_tbs=138000 avg_tb_size=361 qemu: flush code_size=76864546 nb_tbs=140653 avg_tb_size=361 qemu: flush code_size=76309084 nb_tbs=135945 avg_tb_size=375 qemu: flush code_size=74581856 nb_tbs=132909 avg_tb_size=375 qemu: flush code_size=73927256 nb_tbs=135616 avg_tb_size=360 qemu: flush code_size=78629426 nb_tbs=142896 avg_tb_size=365 qemu: flush code_size=76667052 nb_tbs=138508 avg_tb_size=368 Again, 8 flushes. Note how buffer utilization is not 100%, but it is close. Smaller region sizes would yield higher utilization, but we want region allocation to be rare (it acquires a lock), so we do not want to go too small. * -smp 8, static partitioning of 8 regions (10 MB per region): qemu: flush code_size=21936504 nb_tbs=40570 avg_tb_size=354 qemu: flush code_size=11472174 nb_tbs=20633 avg_tb_size=370 qemu: flush code_size=11603976 nb_tbs=21059 avg_tb_size=365 qemu: flush code_size=23254872 nb_tbs=41243 avg_tb_size=377 qemu: flush code_size=28289496 nb_tbs=52057 avg_tb_size=358 qemu: flush code_size=43605160 nb_tbs=78896 avg_tb_size=367 qemu: flush code_size=45166552 nb_tbs=82158 avg_tb_size=364 qemu: flush code_size=63289640 nb_tbs=116494 avg_tb_size=358 qemu: flush code_size=51389960 nb_tbs=93937 avg_tb_size=362 qemu: flush code_size=59665928 nb_tbs=107063 avg_tb_size=372 qemu: flush code_size=38380824 nb_tbs=68597 avg_tb_size=374 qemu: flush code_size=44884568 nb_tbs=79901 avg_tb_size=376 qemu: flush code_size=50782632 nb_tbs=90681 avg_tb_size=374 qemu: flush code_size=39848888 nb_tbs=71433 avg_tb_size=372 qemu: flush code_size=64708840 nb_tbs=119052 avg_tb_size=359 qemu: flush code_size=49830008 nb_tbs=90992 avg_tb_size=362 qemu: flush code_size=68372408 nb_tbs=123442 avg_tb_size=368 qemu: flush code_size=33555560 nb_tbs=59514 avg_tb_size=378 qemu: flush code_size=44748344 nb_tbs=80974 avg_tb_size=367 qemu: flush code_size=37104248 nb_tbs=67609 avg_tb_size=364 That is, 20 flushes. Note how a static partitioning approach uses the code buffer poorly, leading to many unnecessary flushes. Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Emilio G. Cota <cota@braap.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-07-08 01:24:20 +02:00
tcg_region_init();
/* build Task State */
memset(ts, 0, sizeof(TaskState));
init_task_state(ts);
ts->info = info;
cpu->opaque = ts;
#if defined(TARGET_I386)
env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
env->hflags |= HF_PE_MASK | HF_CPL_MASK;
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
env->cr[4] |= CR4_OSFXSR_MASK;
env->hflags |= HF_OSFXSR_MASK;
}
#ifndef TARGET_ABI32
/* enable 64 bit mode if possible */
if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
exit(1);
}
env->cr[4] |= CR4_PAE_MASK;
env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
env->hflags |= HF_LMA_MASK;
#endif
/* flags setup : we activate the IRQs by default as in user mode */
env->eflags |= IF_MASK;
/* linux register setup */
#ifndef TARGET_ABI32
env->regs[R_EAX] = regs->rax;
env->regs[R_EBX] = regs->rbx;
env->regs[R_ECX] = regs->rcx;
env->regs[R_EDX] = regs->rdx;
env->regs[R_ESI] = regs->rsi;
env->regs[R_EDI] = regs->rdi;
env->regs[R_EBP] = regs->rbp;
env->regs[R_ESP] = regs->rsp;
env->eip = regs->rip;
#else
env->regs[R_EAX] = regs->eax;
env->regs[R_EBX] = regs->ebx;
env->regs[R_ECX] = regs->ecx;
env->regs[R_EDX] = regs->edx;
env->regs[R_ESI] = regs->esi;
env->regs[R_EDI] = regs->edi;
env->regs[R_EBP] = regs->ebp;
env->regs[R_ESP] = regs->esp;
env->eip = regs->eip;
#endif
/* linux interrupt setup */
#ifndef TARGET_ABI32
env->idt.limit = 511;
#else
env->idt.limit = 255;
#endif
env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
idt_table = g2h(env->idt.base);
set_idt(0, 0);
set_idt(1, 0);
set_idt(2, 0);
set_idt(3, 3);
set_idt(4, 3);
set_idt(5, 0);
set_idt(6, 0);
set_idt(7, 0);
set_idt(8, 0);
set_idt(9, 0);
set_idt(10, 0);
set_idt(11, 0);
set_idt(12, 0);
set_idt(13, 0);
set_idt(14, 0);
set_idt(15, 0);
set_idt(16, 0);
set_idt(17, 0);
set_idt(18, 0);
set_idt(19, 0);
set_idt(0x80, 3);
/* linux segment setup */
{
uint64_t *gdt_table;
env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
gdt_table = g2h(env->gdt.base);
#ifdef TARGET_ABI32
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#else
/* 64 bit code segment */
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
DESC_L_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#endif
write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
}
cpu_x86_load_seg(env, R_CS, __USER_CS);
cpu_x86_load_seg(env, R_SS, __USER_DS);
#ifdef TARGET_ABI32
cpu_x86_load_seg(env, R_DS, __USER_DS);
cpu_x86_load_seg(env, R_ES, __USER_DS);
cpu_x86_load_seg(env, R_FS, __USER_DS);
cpu_x86_load_seg(env, R_GS, __USER_DS);
/* This hack makes Wine work... */
env->segs[R_FS].selector = 0;
#else
cpu_x86_load_seg(env, R_DS, 0);
cpu_x86_load_seg(env, R_ES, 0);
cpu_x86_load_seg(env, R_FS, 0);
cpu_x86_load_seg(env, R_GS, 0);
#endif
#elif defined(TARGET_SPARC)
{
int i;
env->pc = regs->pc;
env->npc = regs->npc;
env->y = regs->y;
for(i = 0; i < 8; i++)
env->gregs[i] = regs->u_regs[i];
for(i = 0; i < 8; i++)
env->regwptr[i] = regs->u_regs[i + 8];
}
#else
#error unsupported target CPU
#endif
if (gdbstub_port) {
gdbserver_start (gdbstub_port);
gdb_handlesig(cpu, 0);
}
cpu_loop(env);
/* never exits */
return 0;
}