qemu-e2k/block/backup.c

664 lines
21 KiB
C
Raw Normal View History

block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
/*
* QEMU backup
*
* Copyright (C) 2013 Proxmox Server Solutions
*
* Authors:
* Dietmar Maurer (dietmar@proxmox.com)
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
#include "trace.h"
#include "block/block.h"
#include "block/block_int.h"
#include "block/blockjob.h"
#include "block/block_backup.h"
2016-03-14 09:01:28 +01:00
#include "qapi/error.h"
#include "qapi/qmp/qerror.h"
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
#include "qemu/ratelimit.h"
#include "qemu/cutils.h"
#include "sysemu/block-backend.h"
#include "qemu/bitmap.h"
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
#define BACKUP_CLUSTER_SIZE_DEFAULT (1 << 16)
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
#define SLICE_TIME 100000000ULL /* ns */
typedef struct BackupBlockJob {
BlockJob common;
BlockBackend *target;
/* bitmap for sync=incremental */
BdrvDirtyBitmap *sync_bitmap;
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
MirrorSyncMode sync_mode;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
RateLimit limit;
BlockdevOnError on_source_error;
BlockdevOnError on_target_error;
CoRwlock flush_rwlock;
uint64_t sectors_read;
unsigned long *done_bitmap;
int64_t cluster_size;
bool compress;
NotifierWithReturn before_write;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
QLIST_HEAD(, CowRequest) inflight_reqs;
} BackupBlockJob;
/* Size of a cluster in sectors, instead of bytes. */
static inline int64_t cluster_size_sectors(BackupBlockJob *job)
{
return job->cluster_size / BDRV_SECTOR_SIZE;
}
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
/* See if in-flight requests overlap and wait for them to complete */
static void coroutine_fn wait_for_overlapping_requests(BackupBlockJob *job,
int64_t start,
int64_t end)
{
CowRequest *req;
bool retry;
do {
retry = false;
QLIST_FOREACH(req, &job->inflight_reqs, list) {
if (end > req->start && start < req->end) {
qemu_co_queue_wait(&req->wait_queue);
retry = true;
break;
}
}
} while (retry);
}
/* Keep track of an in-flight request */
static void cow_request_begin(CowRequest *req, BackupBlockJob *job,
int64_t start, int64_t end)
{
req->start = start;
req->end = end;
qemu_co_queue_init(&req->wait_queue);
QLIST_INSERT_HEAD(&job->inflight_reqs, req, list);
}
/* Forget about a completed request */
static void cow_request_end(CowRequest *req)
{
QLIST_REMOVE(req, list);
qemu_co_queue_restart_all(&req->wait_queue);
}
static int coroutine_fn backup_do_cow(BackupBlockJob *job,
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
int64_t sector_num, int nb_sectors,
bool *error_is_read,
bool is_write_notifier)
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
{
BlockBackend *blk = job->common.blk;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
CowRequest cow_request;
struct iovec iov;
QEMUIOVector bounce_qiov;
void *bounce_buffer = NULL;
int ret = 0;
int64_t sectors_per_cluster = cluster_size_sectors(job);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
int64_t start, end;
int n;
qemu_co_rwlock_rdlock(&job->flush_rwlock);
start = sector_num / sectors_per_cluster;
end = DIV_ROUND_UP(sector_num + nb_sectors, sectors_per_cluster);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
trace_backup_do_cow_enter(job, start, sector_num, nb_sectors);
wait_for_overlapping_requests(job, start, end);
cow_request_begin(&cow_request, job, start, end);
for (; start < end; start++) {
if (test_bit(start, job->done_bitmap)) {
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
trace_backup_do_cow_skip(job, start);
continue; /* already copied */
}
trace_backup_do_cow_process(job, start);
n = MIN(sectors_per_cluster,
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
job->common.len / BDRV_SECTOR_SIZE -
start * sectors_per_cluster);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
if (!bounce_buffer) {
bounce_buffer = blk_blockalign(blk, job->cluster_size);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
iov.iov_base = bounce_buffer;
iov.iov_len = n * BDRV_SECTOR_SIZE;
qemu_iovec_init_external(&bounce_qiov, &iov, 1);
ret = blk_co_preadv(blk, start * job->cluster_size,
bounce_qiov.size, &bounce_qiov,
is_write_notifier ? BDRV_REQ_NO_SERIALISING : 0);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
if (ret < 0) {
trace_backup_do_cow_read_fail(job, start, ret);
if (error_is_read) {
*error_is_read = true;
}
goto out;
}
if (buffer_is_zero(iov.iov_base, iov.iov_len)) {
ret = blk_co_pwrite_zeroes(job->target, start * job->cluster_size,
bounce_qiov.size, BDRV_REQ_MAY_UNMAP);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
} else {
ret = blk_co_pwritev(job->target, start * job->cluster_size,
bounce_qiov.size, &bounce_qiov,
job->compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
if (ret < 0) {
trace_backup_do_cow_write_fail(job, start, ret);
if (error_is_read) {
*error_is_read = false;
}
goto out;
}
set_bit(start, job->done_bitmap);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
/* Publish progress, guest I/O counts as progress too. Note that the
* offset field is an opaque progress value, it is not a disk offset.
*/
job->sectors_read += n;
job->common.offset += n * BDRV_SECTOR_SIZE;
}
out:
if (bounce_buffer) {
qemu_vfree(bounce_buffer);
}
cow_request_end(&cow_request);
trace_backup_do_cow_return(job, sector_num, nb_sectors, ret);
qemu_co_rwlock_unlock(&job->flush_rwlock);
return ret;
}
static int coroutine_fn backup_before_write_notify(
NotifierWithReturn *notifier,
void *opaque)
{
BackupBlockJob *job = container_of(notifier, BackupBlockJob, before_write);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
BdrvTrackedRequest *req = opaque;
int64_t sector_num = req->offset >> BDRV_SECTOR_BITS;
int nb_sectors = req->bytes >> BDRV_SECTOR_BITS;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
assert(req->bs == blk_bs(job->common.blk));
assert((req->offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((req->bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
return backup_do_cow(job, sector_num, nb_sectors, NULL, true);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
static void backup_set_speed(BlockJob *job, int64_t speed, Error **errp)
{
BackupBlockJob *s = container_of(job, BackupBlockJob, common);
if (speed < 0) {
error_setg(errp, QERR_INVALID_PARAMETER, "speed");
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
return;
}
ratelimit_set_speed(&s->limit, speed / BDRV_SECTOR_SIZE, SLICE_TIME);
}
static void backup_cleanup_sync_bitmap(BackupBlockJob *job, int ret)
{
BdrvDirtyBitmap *bm;
BlockDriverState *bs = blk_bs(job->common.blk);
if (ret < 0 || block_job_is_cancelled(&job->common)) {
/* Merge the successor back into the parent, delete nothing. */
bm = bdrv_reclaim_dirty_bitmap(bs, job->sync_bitmap, NULL);
assert(bm);
} else {
/* Everything is fine, delete this bitmap and install the backup. */
bm = bdrv_dirty_bitmap_abdicate(bs, job->sync_bitmap, NULL);
assert(bm);
}
}
static void backup_commit(BlockJob *job)
{
BackupBlockJob *s = container_of(job, BackupBlockJob, common);
if (s->sync_bitmap) {
backup_cleanup_sync_bitmap(s, 0);
}
}
static void backup_abort(BlockJob *job)
{
BackupBlockJob *s = container_of(job, BackupBlockJob, common);
if (s->sync_bitmap) {
backup_cleanup_sync_bitmap(s, -1);
}
}
static void backup_attached_aio_context(BlockJob *job, AioContext *aio_context)
{
BackupBlockJob *s = container_of(job, BackupBlockJob, common);
blk_set_aio_context(s->target, aio_context);
}
void backup_do_checkpoint(BlockJob *job, Error **errp)
{
BackupBlockJob *backup_job = container_of(job, BackupBlockJob, common);
int64_t len;
assert(job->driver->job_type == BLOCK_JOB_TYPE_BACKUP);
if (backup_job->sync_mode != MIRROR_SYNC_MODE_NONE) {
error_setg(errp, "The backup job only supports block checkpoint in"
" sync=none mode");
return;
}
len = DIV_ROUND_UP(backup_job->common.len, backup_job->cluster_size);
bitmap_zero(backup_job->done_bitmap, len);
}
Backup: export interfaces for extra serialization Normal backup(sync='none') workflow: step 1. NBD peformance I/O write from client to server qcow2_co_writev bdrv_co_writev ... bdrv_aligned_pwritev notifier_with_return_list_notify -> backup_do_cow bdrv_driver_pwritev // write new contents step 2. drive-backup sync=none backup_do_cow { wait_for_overlapping_requests cow_request_begin for(; start < end; start++) { bdrv_co_readv_no_serialising //read old contents from Secondary disk bdrv_co_writev // write old contents to hidden-disk } cow_request_end } step 3. Then roll back to "step 1" to write new contents to Secondary disk. And for replication, we must make sure that we only read the old contents from Secondary disk in order to keep contents consistent. 1) Replication workflow of Secondary virtio-blk ^ -------> 1 NBD | || server 3 replication || ^ ^ || | backing backing | || Secondary disk 6<-------- hidden-disk 5 <-------- active-disk 4 || | ^ || '-------------------------' || drive-backup sync=none 2 Hence, we need these interfaces to implement coarse-grained serialization between COW of Secondary disk and the read operation of replication. Example codes about how to use them: *#include "block/block_backup.h" static coroutine_fn int xxx_co_readv() { CowRequest req; BlockJob *job = secondary_disk->bs->job; if (job) { backup_wait_for_overlapping_requests(job, start, end); backup_cow_request_begin(&req, job, start, end); ret = bdrv_co_readv(); backup_cow_request_end(&req); goto out; } ret = bdrv_co_readv(); out: return ret; } Signed-off-by: Changlong Xie <xiecl.fnst@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Wang WeiWei <wangww.fnst@cn.fujitsu.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Message-id: 1469602913-20979-4-git-send-email-xiecl.fnst@cn.fujitsu.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-07-27 09:01:44 +02:00
void backup_wait_for_overlapping_requests(BlockJob *job, int64_t sector_num,
int nb_sectors)
{
BackupBlockJob *backup_job = container_of(job, BackupBlockJob, common);
int64_t sectors_per_cluster = cluster_size_sectors(backup_job);
int64_t start, end;
assert(job->driver->job_type == BLOCK_JOB_TYPE_BACKUP);
start = sector_num / sectors_per_cluster;
end = DIV_ROUND_UP(sector_num + nb_sectors, sectors_per_cluster);
wait_for_overlapping_requests(backup_job, start, end);
}
void backup_cow_request_begin(CowRequest *req, BlockJob *job,
int64_t sector_num,
int nb_sectors)
{
BackupBlockJob *backup_job = container_of(job, BackupBlockJob, common);
int64_t sectors_per_cluster = cluster_size_sectors(backup_job);
int64_t start, end;
assert(job->driver->job_type == BLOCK_JOB_TYPE_BACKUP);
start = sector_num / sectors_per_cluster;
end = DIV_ROUND_UP(sector_num + nb_sectors, sectors_per_cluster);
cow_request_begin(req, backup_job, start, end);
}
void backup_cow_request_end(CowRequest *req)
{
cow_request_end(req);
}
static void backup_drain(BlockJob *job)
{
BackupBlockJob *s = container_of(job, BackupBlockJob, common);
/* Need to keep a reference in case blk_drain triggers execution
* of backup_complete...
*/
if (s->target) {
BlockBackend *target = s->target;
blk_ref(target);
blk_drain(target);
blk_unref(target);
}
}
static const BlockJobDriver backup_job_driver = {
.instance_size = sizeof(BackupBlockJob),
.job_type = BLOCK_JOB_TYPE_BACKUP,
.set_speed = backup_set_speed,
.commit = backup_commit,
.abort = backup_abort,
.attached_aio_context = backup_attached_aio_context,
.drain = backup_drain,
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
};
static BlockErrorAction backup_error_action(BackupBlockJob *job,
bool read, int error)
{
if (read) {
return block_job_error_action(&job->common, job->on_source_error,
true, error);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
} else {
return block_job_error_action(&job->common, job->on_target_error,
false, error);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
}
typedef struct {
int ret;
} BackupCompleteData;
static void backup_complete(BlockJob *job, void *opaque)
{
BackupBlockJob *s = container_of(job, BackupBlockJob, common);
BackupCompleteData *data = opaque;
blk_unref(s->target);
s->target = NULL;
block_job_completed(job, data->ret);
g_free(data);
}
static bool coroutine_fn yield_and_check(BackupBlockJob *job)
{
if (block_job_is_cancelled(&job->common)) {
return true;
}
/* we need to yield so that bdrv_drain_all() returns.
* (without, VM does not reboot)
*/
if (job->common.speed) {
uint64_t delay_ns = ratelimit_calculate_delay(&job->limit,
job->sectors_read);
job->sectors_read = 0;
block_job_sleep_ns(&job->common, QEMU_CLOCK_REALTIME, delay_ns);
} else {
block_job_sleep_ns(&job->common, QEMU_CLOCK_REALTIME, 0);
}
if (block_job_is_cancelled(&job->common)) {
return true;
}
return false;
}
static int coroutine_fn backup_run_incremental(BackupBlockJob *job)
{
bool error_is_read;
int ret = 0;
int clusters_per_iter;
uint32_t granularity;
int64_t sector;
int64_t cluster;
int64_t end;
int64_t last_cluster = -1;
int64_t sectors_per_cluster = cluster_size_sectors(job);
BdrvDirtyBitmapIter *dbi;
granularity = bdrv_dirty_bitmap_granularity(job->sync_bitmap);
clusters_per_iter = MAX((granularity / job->cluster_size), 1);
dbi = bdrv_dirty_iter_new(job->sync_bitmap, 0);
/* Find the next dirty sector(s) */
while ((sector = bdrv_dirty_iter_next(dbi)) != -1) {
cluster = sector / sectors_per_cluster;
/* Fake progress updates for any clusters we skipped */
if (cluster != last_cluster + 1) {
job->common.offset += ((cluster - last_cluster - 1) *
job->cluster_size);
}
for (end = cluster + clusters_per_iter; cluster < end; cluster++) {
do {
if (yield_and_check(job)) {
goto out;
}
ret = backup_do_cow(job, cluster * sectors_per_cluster,
sectors_per_cluster, &error_is_read,
false);
if ((ret < 0) &&
backup_error_action(job, error_is_read, -ret) ==
BLOCK_ERROR_ACTION_REPORT) {
goto out;
}
} while (ret < 0);
}
/* If the bitmap granularity is smaller than the backup granularity,
* we need to advance the iterator pointer to the next cluster. */
if (granularity < job->cluster_size) {
bdrv_set_dirty_iter(dbi, cluster * sectors_per_cluster);
}
last_cluster = cluster - 1;
}
/* Play some final catchup with the progress meter */
end = DIV_ROUND_UP(job->common.len, job->cluster_size);
if (last_cluster + 1 < end) {
job->common.offset += ((end - last_cluster - 1) * job->cluster_size);
}
out:
bdrv_dirty_iter_free(dbi);
return ret;
}
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
static void coroutine_fn backup_run(void *opaque)
{
BackupBlockJob *job = opaque;
BackupCompleteData *data;
BlockDriverState *bs = blk_bs(job->common.blk);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
int64_t start, end;
int64_t sectors_per_cluster = cluster_size_sectors(job);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
int ret = 0;
QLIST_INIT(&job->inflight_reqs);
qemu_co_rwlock_init(&job->flush_rwlock);
start = 0;
end = DIV_ROUND_UP(job->common.len, job->cluster_size);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
job->done_bitmap = bitmap_new(end);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
job->before_write.notify = backup_before_write_notify;
bdrv_add_before_write_notifier(bs, &job->before_write);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
if (job->sync_mode == MIRROR_SYNC_MODE_NONE) {
while (!block_job_is_cancelled(&job->common)) {
/* Yield until the job is cancelled. We just let our before_write
* notify callback service CoW requests. */
block_job_yield(&job->common);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
} else if (job->sync_mode == MIRROR_SYNC_MODE_INCREMENTAL) {
ret = backup_run_incremental(job);
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
} else {
/* Both FULL and TOP SYNC_MODE's require copying.. */
for (; start < end; start++) {
bool error_is_read;
if (yield_and_check(job)) {
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
break;
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
}
if (job->sync_mode == MIRROR_SYNC_MODE_TOP) {
int i, n;
int alloced = 0;
/* Check to see if these blocks are already in the
* backing file. */
for (i = 0; i < sectors_per_cluster;) {
/* bdrv_is_allocated() only returns true/false based
* on the first set of sectors it comes across that
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
* are are all in the same state.
* For that reason we must verify each sector in the
* backup cluster length. We end up copying more than
* needed but at some point that is always the case. */
alloced =
bdrv_is_allocated(bs,
start * sectors_per_cluster + i,
sectors_per_cluster - i, &n);
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
i += n;
if (alloced == 1 || n == 0) {
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
break;
}
}
/* If the above loop never found any sectors that are in
* the topmost image, skip this backup. */
if (alloced == 0) {
continue;
}
}
/* FULL sync mode we copy the whole drive. */
ret = backup_do_cow(job, start * sectors_per_cluster,
sectors_per_cluster, &error_is_read, false);
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
if (ret < 0) {
/* Depending on error action, fail now or retry cluster */
BlockErrorAction action =
backup_error_action(job, error_is_read, -ret);
if (action == BLOCK_ERROR_ACTION_REPORT) {
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
break;
} else {
start--;
continue;
}
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
}
}
notifier_with_return_remove(&job->before_write);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
/* wait until pending backup_do_cow() calls have completed */
qemu_co_rwlock_wrlock(&job->flush_rwlock);
qemu_co_rwlock_unlock(&job->flush_rwlock);
g_free(job->done_bitmap);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
data = g_malloc(sizeof(*data));
data->ret = ret;
block_job_defer_to_main_loop(&job->common, backup_complete, data);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
void backup_start(const char *job_id, BlockDriverState *bs,
BlockDriverState *target, int64_t speed,
MirrorSyncMode sync_mode, BdrvDirtyBitmap *sync_bitmap,
bool compress,
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
BlockdevOnError on_source_error,
BlockdevOnError on_target_error,
BlockCompletionFunc *cb, void *opaque,
BlockJobTxn *txn, Error **errp)
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
{
int64_t len;
block/backup: avoid copying less than full target clusters During incremental backups, if the target has a cluster size that is larger than the backup cluster size and we are backing up to a target that cannot (for whichever reason) pull clusters up from a backing image, we may inadvertantly create unusable incremental backup images. For example: If the bitmap tracks changes at a 64KB granularity and we transmit 64KB of data at a time but the target uses a 128KB cluster size, it is possible that only half of a target cluster will be recognized as dirty by the backup block job. When the cluster is allocated on the target image but only half populated with data, we lose the ability to distinguish between zero padding and uninitialized data. This does not happen if the target image has a backing file that points to the last known good backup. Even if we have a backing file, though, it's likely going to be faster to just buffer the redundant data ourselves from the live image than fetching it from the backing file, so let's just always round up to the target granularity. The same logic applies to backup modes top, none, and full. Copying fractional clusters without the guarantee of COW is dangerous, but even if we can rely on COW, it's likely better to just re-copy the data. Reported-by: Fam Zheng <famz@redhat.com> Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 1456433911-24718-3-git-send-email-jsnow@redhat.com Signed-off-by: Jeff Cody <jcody@redhat.com>
2016-02-25 21:58:30 +01:00
BlockDriverInfo bdi;
BackupBlockJob *job = NULL;
block/backup: avoid copying less than full target clusters During incremental backups, if the target has a cluster size that is larger than the backup cluster size and we are backing up to a target that cannot (for whichever reason) pull clusters up from a backing image, we may inadvertantly create unusable incremental backup images. For example: If the bitmap tracks changes at a 64KB granularity and we transmit 64KB of data at a time but the target uses a 128KB cluster size, it is possible that only half of a target cluster will be recognized as dirty by the backup block job. When the cluster is allocated on the target image but only half populated with data, we lose the ability to distinguish between zero padding and uninitialized data. This does not happen if the target image has a backing file that points to the last known good backup. Even if we have a backing file, though, it's likely going to be faster to just buffer the redundant data ourselves from the live image than fetching it from the backing file, so let's just always round up to the target granularity. The same logic applies to backup modes top, none, and full. Copying fractional clusters without the guarantee of COW is dangerous, but even if we can rely on COW, it's likely better to just re-copy the data. Reported-by: Fam Zheng <famz@redhat.com> Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 1456433911-24718-3-git-send-email-jsnow@redhat.com Signed-off-by: Jeff Cody <jcody@redhat.com>
2016-02-25 21:58:30 +01:00
int ret;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
assert(bs);
assert(target);
if (bs == target) {
error_setg(errp, "Source and target cannot be the same");
return;
}
if (!bdrv_is_inserted(bs)) {
error_setg(errp, "Device is not inserted: %s",
bdrv_get_device_name(bs));
return;
}
if (!bdrv_is_inserted(target)) {
error_setg(errp, "Device is not inserted: %s",
bdrv_get_device_name(target));
return;
}
if (compress && target->drv->bdrv_co_pwritev_compressed == NULL) {
error_setg(errp, "Compression is not supported for this drive %s",
bdrv_get_device_name(target));
return;
}
if (bdrv_op_is_blocked(bs, BLOCK_OP_TYPE_BACKUP_SOURCE, errp)) {
return;
}
if (bdrv_op_is_blocked(target, BLOCK_OP_TYPE_BACKUP_TARGET, errp)) {
return;
}
if (sync_mode == MIRROR_SYNC_MODE_INCREMENTAL) {
if (!sync_bitmap) {
error_setg(errp, "must provide a valid bitmap name for "
"\"incremental\" sync mode");
return;
}
/* Create a new bitmap, and freeze/disable this one. */
if (bdrv_dirty_bitmap_create_successor(bs, sync_bitmap, errp) < 0) {
return;
}
} else if (sync_bitmap) {
error_setg(errp,
"a sync_bitmap was provided to backup_run, "
"but received an incompatible sync_mode (%s)",
MirrorSyncMode_lookup[sync_mode]);
return;
}
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
len = bdrv_getlength(bs);
if (len < 0) {
error_setg_errno(errp, -len, "unable to get length for '%s'",
bdrv_get_device_name(bs));
goto error;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
job = block_job_create(job_id, &backup_job_driver, bs, speed,
BLOCK_JOB_DEFAULT, cb, opaque, errp);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
if (!job) {
goto error;
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}
job->target = blk_new();
blk_insert_bs(job->target, target);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
job->on_source_error = on_source_error;
job->on_target_error = on_target_error;
Implement sync modes for drive-backup. This patch adds sync-modes to the drive-backup interface and implements the FULL, NONE and TOP modes of synchronization. FULL performs as before copying the entire contents of the drive while preserving the point-in-time using CoW. NONE only copies new writes to the target drive. TOP copies changes to the topmost drive image and preserves the point-in-time using CoW. For sync mode TOP are creating a new target image using the same backing file as the original disk image. Then any new data that has been laid on top of it since creation is copied in the main backup_run() loop. There is an extra check in the 'TOP' case so that we don't bother to copy all the data of the backing file as it already exists in the target. This is where the bdrv_co_is_allocated() is used to determine if the data exists in the topmost layer or below. Also any new data being written is intercepted via the write_notifier hook which ends up calling backup_do_cow() to copy old data out before it gets overwritten. For mode 'NONE' we create the new target image and only copy in the original data from the disk image starting from the time the call was made. This preserves the point in time data by only copying the parts that are *going to change* to the target image. This way we can reconstruct the final image by checking to see if the given block exists in the new target image first, and if it does not, you can get it from the original image. This is basically an optimization allowing you to do point-in-time snapshots with low overhead vs the 'FULL' version. Since there is no old data to copy out the loop in backup_run() for the NONE case just calls qemu_coroutine_yield() which only wakes up after an event (usually cancel in this case). The rest is handled by the before_write notifier which again calls backup_do_cow() to write out the old data so it can be preserved. Signed-off-by: Ian Main <imain@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-07-26 20:39:04 +02:00
job->sync_mode = sync_mode;
job->sync_bitmap = sync_mode == MIRROR_SYNC_MODE_INCREMENTAL ?
sync_bitmap : NULL;
job->compress = compress;
block/backup: avoid copying less than full target clusters During incremental backups, if the target has a cluster size that is larger than the backup cluster size and we are backing up to a target that cannot (for whichever reason) pull clusters up from a backing image, we may inadvertantly create unusable incremental backup images. For example: If the bitmap tracks changes at a 64KB granularity and we transmit 64KB of data at a time but the target uses a 128KB cluster size, it is possible that only half of a target cluster will be recognized as dirty by the backup block job. When the cluster is allocated on the target image but only half populated with data, we lose the ability to distinguish between zero padding and uninitialized data. This does not happen if the target image has a backing file that points to the last known good backup. Even if we have a backing file, though, it's likely going to be faster to just buffer the redundant data ourselves from the live image than fetching it from the backing file, so let's just always round up to the target granularity. The same logic applies to backup modes top, none, and full. Copying fractional clusters without the guarantee of COW is dangerous, but even if we can rely on COW, it's likely better to just re-copy the data. Reported-by: Fam Zheng <famz@redhat.com> Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 1456433911-24718-3-git-send-email-jsnow@redhat.com Signed-off-by: Jeff Cody <jcody@redhat.com>
2016-02-25 21:58:30 +01:00
/* If there is no backing file on the target, we cannot rely on COW if our
* backup cluster size is smaller than the target cluster size. Even for
* targets with a backing file, try to avoid COW if possible. */
ret = bdrv_get_info(target, &bdi);
block/backup: avoid copying less than full target clusters During incremental backups, if the target has a cluster size that is larger than the backup cluster size and we are backing up to a target that cannot (for whichever reason) pull clusters up from a backing image, we may inadvertantly create unusable incremental backup images. For example: If the bitmap tracks changes at a 64KB granularity and we transmit 64KB of data at a time but the target uses a 128KB cluster size, it is possible that only half of a target cluster will be recognized as dirty by the backup block job. When the cluster is allocated on the target image but only half populated with data, we lose the ability to distinguish between zero padding and uninitialized data. This does not happen if the target image has a backing file that points to the last known good backup. Even if we have a backing file, though, it's likely going to be faster to just buffer the redundant data ourselves from the live image than fetching it from the backing file, so let's just always round up to the target granularity. The same logic applies to backup modes top, none, and full. Copying fractional clusters without the guarantee of COW is dangerous, but even if we can rely on COW, it's likely better to just re-copy the data. Reported-by: Fam Zheng <famz@redhat.com> Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 1456433911-24718-3-git-send-email-jsnow@redhat.com Signed-off-by: Jeff Cody <jcody@redhat.com>
2016-02-25 21:58:30 +01:00
if (ret < 0 && !target->backing) {
error_setg_errno(errp, -ret,
"Couldn't determine the cluster size of the target image, "
"which has no backing file");
error_append_hint(errp,
"Aborting, since this may create an unusable destination image\n");
goto error;
} else if (ret < 0 && target->backing) {
/* Not fatal; just trudge on ahead. */
job->cluster_size = BACKUP_CLUSTER_SIZE_DEFAULT;
} else {
job->cluster_size = MAX(BACKUP_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
}
block_job_add_bdrv(&job->common, target);
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
job->common.len = len;
job->common.co = qemu_coroutine_create(backup_run, job);
block_job_txn_add_job(txn, &job->common);
qemu_coroutine_enter(job->common.co);
return;
error:
if (sync_bitmap) {
bdrv_reclaim_dirty_bitmap(bs, sync_bitmap, NULL);
}
if (job) {
blk_unref(job->target);
block_job_unref(&job->common);
}
block: add basic backup support to block driver backup_start() creates a block job that copies a point-in-time snapshot of a block device to a target block device. We call backup_do_cow() for each write during backup. That function reads the original data from the block device before it gets overwritten. The data is then written to the target device. Currently backup cluster size is hardcoded to 65536 bytes. [I made a number of changes to Dietmar's original patch and folded them in to make code review easy. Here is the full list: * Drop BackupDumpFunc interface in favor of a target block device * Detect zero clusters with buffer_is_zero() and use bdrv_co_write_zeroes() * Use 0 delay instead of 1us, like other block jobs * Unify creation/start functions into backup_start() * Simplify cleanup, free bitmap in backup_run() instead of cb * function * Use HBitmap to avoid duplicating bitmap code * Use bdrv_getlength() instead of accessing ->total_sectors * directly * Delete the backup.h header file, it is no longer necessary * Move ./backup.c to block/backup.c * Remove #ifdefed out code * Coding style and whitespace cleanups * Use bdrv_add_before_write_notifier() instead of blockjob-specific hooks * Keep our own in-flight CowRequest list instead of using block.c tracked requests. This means a little code duplication but is much simpler than trying to share the tracked requests list and use the backup block size. * Add on_source_error and on_target_error error handling. * Use trace events instead of DPRINTF() -- stefanha] Signed-off-by: Dietmar Maurer <dietmar@proxmox.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2013-06-24 17:13:11 +02:00
}