qemu-e2k/authz/pamacct.c

148 lines
3.7 KiB
C
Raw Normal View History

authz: add QAuthZPAM object type for authorizing using PAM Add an authorization backend that talks to PAM to check whether the user identity is allowed. This only uses the PAM account validation facility, which is essentially just a check to see if the provided username is permitted access. It doesn't use the authentication or session parts of PAM, since that's dealt with by the relevant part of QEMU (eg VNC server). Consider starting QEMU with a VNC server and telling it to use TLS with x509 client certificates and configuring it to use an PAM to validate the x509 distinguished name. In this example we're telling it to use PAM for the QAuthZ impl with a service name of "qemu-vnc" $ qemu-system-x86_64 \ -object tls-creds-x509,id=tls0,dir=/home/berrange/security/qemutls,\ endpoint=server,verify-peer=yes \ -object authz-pam,id=authz0,service=qemu-vnc \ -vnc :1,tls-creds=tls0,tls-authz=authz0 This requires an /etc/pam/qemu-vnc file to be created with the auth rules. A very simple file based whitelist can be setup using $ cat > /etc/pam/qemu-vnc <<EOF account requisite pam_listfile.so item=user sense=allow file=/etc/qemu/vnc.allow EOF The /etc/qemu/vnc.allow file simply contains one username per line. Any username not in the file is denied. The usernames in this example are the x509 distinguished name from the client's x509 cert. $ cat > /etc/qemu/vnc.allow <<EOF CN=laptop.berrange.com,O=Berrange Home,L=London,ST=London,C=GB EOF More interesting would be to configure PAM to use an LDAP backend, so that the QEMU authorization check data can be centralized instead of requiring each compute host to have file maintained. The main limitation with this PAM module is that the rules apply to all QEMU instances on the host. Setting up different rules per VM, would require creating a separate PAM service name & config file for every guest. An alternative approach for the future might be to not pass in the plain username to PAM, but instead combine the VM name or UUID with the username. This requires further consideration though. Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2016-07-27 15:13:56 +02:00
/*
* QEMU PAM authorization driver
*
* Copyright (c) 2018 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "authz/pamacct.h"
#include "trace.h"
#include "qemu/module.h"
authz: add QAuthZPAM object type for authorizing using PAM Add an authorization backend that talks to PAM to check whether the user identity is allowed. This only uses the PAM account validation facility, which is essentially just a check to see if the provided username is permitted access. It doesn't use the authentication or session parts of PAM, since that's dealt with by the relevant part of QEMU (eg VNC server). Consider starting QEMU with a VNC server and telling it to use TLS with x509 client certificates and configuring it to use an PAM to validate the x509 distinguished name. In this example we're telling it to use PAM for the QAuthZ impl with a service name of "qemu-vnc" $ qemu-system-x86_64 \ -object tls-creds-x509,id=tls0,dir=/home/berrange/security/qemutls,\ endpoint=server,verify-peer=yes \ -object authz-pam,id=authz0,service=qemu-vnc \ -vnc :1,tls-creds=tls0,tls-authz=authz0 This requires an /etc/pam/qemu-vnc file to be created with the auth rules. A very simple file based whitelist can be setup using $ cat > /etc/pam/qemu-vnc <<EOF account requisite pam_listfile.so item=user sense=allow file=/etc/qemu/vnc.allow EOF The /etc/qemu/vnc.allow file simply contains one username per line. Any username not in the file is denied. The usernames in this example are the x509 distinguished name from the client's x509 cert. $ cat > /etc/qemu/vnc.allow <<EOF CN=laptop.berrange.com,O=Berrange Home,L=London,ST=London,C=GB EOF More interesting would be to configure PAM to use an LDAP backend, so that the QEMU authorization check data can be centralized instead of requiring each compute host to have file maintained. The main limitation with this PAM module is that the rules apply to all QEMU instances on the host. Setting up different rules per VM, would require creating a separate PAM service name & config file for every guest. An alternative approach for the future might be to not pass in the plain username to PAM, but instead combine the VM name or UUID with the username. This requires further consideration though. Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2016-07-27 15:13:56 +02:00
#include "qom/object_interfaces.h"
#include <security/pam_appl.h>
static bool qauthz_pam_is_allowed(QAuthZ *authz,
const char *identity,
Error **errp)
{
QAuthZPAM *pauthz = QAUTHZ_PAM(authz);
const struct pam_conv pam_conversation = { 0 };
pam_handle_t *pamh = NULL;
int ret;
trace_qauthz_pam_check(authz, identity, pauthz->service);
ret = pam_start(pauthz->service,
identity,
&pam_conversation,
&pamh);
if (ret != PAM_SUCCESS) {
error_setg(errp, "Unable to start PAM transaction: %s",
pam_strerror(NULL, ret));
return false;
}
ret = pam_acct_mgmt(pamh, PAM_SILENT);
pam_end(pamh, ret);
if (ret != PAM_SUCCESS) {
error_setg(errp, "Unable to authorize user '%s': %s",
identity, pam_strerror(pamh, ret));
return false;
}
return true;
}
static void
qauthz_pam_prop_set_service(Object *obj,
const char *service,
Error **errp G_GNUC_UNUSED)
{
QAuthZPAM *pauthz = QAUTHZ_PAM(obj);
g_free(pauthz->service);
pauthz->service = g_strdup(service);
}
static char *
qauthz_pam_prop_get_service(Object *obj,
Error **errp G_GNUC_UNUSED)
{
QAuthZPAM *pauthz = QAUTHZ_PAM(obj);
return g_strdup(pauthz->service);
}
static void
qauthz_pam_complete(UserCreatable *uc, Error **errp)
{
}
static void
qauthz_pam_finalize(Object *obj)
{
QAuthZPAM *pauthz = QAUTHZ_PAM(obj);
g_free(pauthz->service);
}
static void
qauthz_pam_class_init(ObjectClass *oc, void *data)
{
UserCreatableClass *ucc = USER_CREATABLE_CLASS(oc);
QAuthZClass *authz = QAUTHZ_CLASS(oc);
ucc->complete = qauthz_pam_complete;
authz->is_allowed = qauthz_pam_is_allowed;
object_class_property_add_str(oc, "service",
qauthz_pam_prop_get_service,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
qauthz_pam_prop_set_service);
authz: add QAuthZPAM object type for authorizing using PAM Add an authorization backend that talks to PAM to check whether the user identity is allowed. This only uses the PAM account validation facility, which is essentially just a check to see if the provided username is permitted access. It doesn't use the authentication or session parts of PAM, since that's dealt with by the relevant part of QEMU (eg VNC server). Consider starting QEMU with a VNC server and telling it to use TLS with x509 client certificates and configuring it to use an PAM to validate the x509 distinguished name. In this example we're telling it to use PAM for the QAuthZ impl with a service name of "qemu-vnc" $ qemu-system-x86_64 \ -object tls-creds-x509,id=tls0,dir=/home/berrange/security/qemutls,\ endpoint=server,verify-peer=yes \ -object authz-pam,id=authz0,service=qemu-vnc \ -vnc :1,tls-creds=tls0,tls-authz=authz0 This requires an /etc/pam/qemu-vnc file to be created with the auth rules. A very simple file based whitelist can be setup using $ cat > /etc/pam/qemu-vnc <<EOF account requisite pam_listfile.so item=user sense=allow file=/etc/qemu/vnc.allow EOF The /etc/qemu/vnc.allow file simply contains one username per line. Any username not in the file is denied. The usernames in this example are the x509 distinguished name from the client's x509 cert. $ cat > /etc/qemu/vnc.allow <<EOF CN=laptop.berrange.com,O=Berrange Home,L=London,ST=London,C=GB EOF More interesting would be to configure PAM to use an LDAP backend, so that the QEMU authorization check data can be centralized instead of requiring each compute host to have file maintained. The main limitation with this PAM module is that the rules apply to all QEMU instances on the host. Setting up different rules per VM, would require creating a separate PAM service name & config file for every guest. An alternative approach for the future might be to not pass in the plain username to PAM, but instead combine the VM name or UUID with the username. This requires further consideration though. Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2016-07-27 15:13:56 +02:00
}
QAuthZPAM *qauthz_pam_new(const char *id,
const char *service,
Error **errp)
{
return QAUTHZ_PAM(
object_new_with_props(TYPE_QAUTHZ_PAM,
object_get_objects_root(),
id, errp,
"service", service,
NULL));
}
static const TypeInfo qauthz_pam_info = {
.parent = TYPE_QAUTHZ,
.name = TYPE_QAUTHZ_PAM,
.instance_size = sizeof(QAuthZPAM),
.instance_finalize = qauthz_pam_finalize,
.class_init = qauthz_pam_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_USER_CREATABLE },
{ }
}
};
static void
qauthz_pam_register_types(void)
{
type_register_static(&qauthz_pam_info);
}
type_init(qauthz_pam_register_types);