qemu-e2k/tests/qtest/stm32l4x5_exti-test.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

562 lines
18 KiB
C
Raw Normal View History

/*
* QTest testcase for STM32L4x5_EXTI
*
* Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
* Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqtest-single.h"
#define EXTI_BASE_ADDR 0x40010400
#define EXTI_IMR1 0x00
#define EXTI_EMR1 0x04
#define EXTI_RTSR1 0x08
#define EXTI_FTSR1 0x0C
#define EXTI_SWIER1 0x10
#define EXTI_PR1 0x14
#define EXTI_IMR2 0x20
#define EXTI_EMR2 0x24
#define EXTI_RTSR2 0x28
#define EXTI_FTSR2 0x2C
#define EXTI_SWIER2 0x30
#define EXTI_PR2 0x34
#define NVIC_ISER 0xE000E100
#define NVIC_ISPR 0xE000E200
#define NVIC_ICPR 0xE000E280
#define EXTI0_IRQ 6
#define EXTI1_IRQ 7
#define EXTI5_9_IRQ 23
#define EXTI35_IRQ 1
static void enable_nvic_irq(unsigned int n)
{
writel(NVIC_ISER, 1 << n);
}
static void unpend_nvic_irq(unsigned int n)
{
writel(NVIC_ICPR, 1 << n);
}
static bool check_nvic_pending(unsigned int n)
{
return readl(NVIC_ISPR) & (1 << n);
}
static void exti_writel(unsigned int offset, uint32_t value)
{
writel(EXTI_BASE_ADDR + offset, value);
}
static uint32_t exti_readl(unsigned int offset)
{
return readl(EXTI_BASE_ADDR + offset);
}
static void exti_set_irq(int num, int level)
{
qtest_set_irq_in(global_qtest, "/machine/soc/exti", NULL,
num, level);
}
static void test_reg_write_read(void)
{
/* Test that non-reserved bits in xMR and xTSR can be set and cleared */
exti_writel(EXTI_IMR1, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_IMR1), ==, 0xFFFFFFFF);
exti_writel(EXTI_IMR1, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_IMR1), ==, 0x00000000);
exti_writel(EXTI_EMR1, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_EMR1), ==, 0xFFFFFFFF);
exti_writel(EXTI_EMR1, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_EMR1), ==, 0x00000000);
exti_writel(EXTI_RTSR1, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_RTSR1), ==, 0x007DFFFF);
exti_writel(EXTI_RTSR1, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_RTSR1), ==, 0x00000000);
exti_writel(EXTI_FTSR1, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_FTSR1), ==, 0x007DFFFF);
exti_writel(EXTI_FTSR1, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_FTSR1), ==, 0x00000000);
exti_writel(EXTI_IMR2, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_IMR2), ==, 0x000000FF);
exti_writel(EXTI_IMR2, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_IMR2), ==, 0x00000000);
exti_writel(EXTI_EMR2, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_EMR2), ==, 0x000000FF);
exti_writel(EXTI_EMR2, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_EMR2), ==, 0x00000000);
exti_writel(EXTI_RTSR2, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_RTSR2), ==, 0x00000078);
exti_writel(EXTI_RTSR2, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_RTSR2), ==, 0x00000000);
exti_writel(EXTI_FTSR2, 0xFFFFFFFF);
g_assert_cmpuint(exti_readl(EXTI_FTSR2), ==, 0x00000078);
exti_writel(EXTI_FTSR2, 0x00000000);
g_assert_cmpuint(exti_readl(EXTI_FTSR2), ==, 0x00000000);
}
static void test_direct_lines_write(void)
{
/* Test that direct lines reserved bits are not written to */
exti_writel(EXTI_RTSR1, 0xFF820000);
g_assert_cmpuint(exti_readl(EXTI_RTSR1), ==, 0x00000000);
exti_writel(EXTI_FTSR1, 0xFF820000);
g_assert_cmpuint(exti_readl(EXTI_FTSR1), ==, 0x00000000);
exti_writel(EXTI_SWIER1, 0xFF820000);
g_assert_cmpuint(exti_readl(EXTI_SWIER1), ==, 0x00000000);
exti_writel(EXTI_PR1, 0xFF820000);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
exti_writel(EXTI_RTSR2, 0x00000087);
g_assert_cmpuint(exti_readl(EXTI_RTSR2), ==, 0x00000000);
exti_writel(EXTI_FTSR2, 0x00000087);
g_assert_cmpuint(exti_readl(EXTI_FTSR2), ==, 0x00000000);
exti_writel(EXTI_SWIER2, 0x00000087);
g_assert_cmpuint(exti_readl(EXTI_SWIER2), ==, 0x00000000);
exti_writel(EXTI_PR2, 0x00000087);
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
}
static void test_reserved_bits_write(void)
{
/* Test that reserved bits stay are not written to */
exti_writel(EXTI_IMR2, 0xFFFFFF00);
g_assert_cmpuint(exti_readl(EXTI_IMR2), ==, 0x00000000);
exti_writel(EXTI_EMR2, 0xFFFFFF00);
g_assert_cmpuint(exti_readl(EXTI_EMR2), ==, 0x00000000);
exti_writel(EXTI_RTSR2, 0xFFFFFF00);
g_assert_cmpuint(exti_readl(EXTI_RTSR2), ==, 0x00000000);
exti_writel(EXTI_FTSR2, 0xFFFFFF00);
g_assert_cmpuint(exti_readl(EXTI_FTSR2), ==, 0x00000000);
exti_writel(EXTI_SWIER2, 0xFFFFFF00);
g_assert_cmpuint(exti_readl(EXTI_SWIER2), ==, 0x00000000);
exti_writel(EXTI_PR2, 0xFFFFFF00);
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
}
static void test_software_interrupt(void)
{
/*
* Test that we can launch a software irq by :
* - enabling its line in IMR
* - and then setting a bit from '0' to '1' in SWIER
*
* And that the interruption stays pending in NVIC
* even after clearing the pending bit in PR.
*/
/*
* Testing interrupt line EXTI0
* Bit 0 in EXTI_*1 registers (EXTI0) corresponds to GPIO Px_0
*/
enable_nvic_irq(EXTI0_IRQ);
/* Check that there are no interrupts already pending in PR */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that this specific interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Enable interrupt line EXTI0 */
exti_writel(EXTI_IMR1, 0x00000001);
/* Set the right SWIER bit from '0' to '1' */
exti_writel(EXTI_SWIER1, 0x00000000);
exti_writel(EXTI_SWIER1, 0x00000001);
/* Check that the write in SWIER was effective */
g_assert_cmpuint(exti_readl(EXTI_SWIER1), ==, 0x00000001);
/* Check that the corresponding pending bit in PR is set */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000001);
/* Check that the corresponding interrupt is pending in the NVIC */
g_assert_true(check_nvic_pending(EXTI0_IRQ));
/* Clear the pending bit in PR */
exti_writel(EXTI_PR1, 0x00000001);
/* Check that the write in PR was effective */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that the corresponding bit in SWIER was cleared */
g_assert_cmpuint(exti_readl(EXTI_SWIER1), ==, 0x00000000);
/* Check that the interrupt is still pending in the NVIC */
g_assert_true(check_nvic_pending(EXTI0_IRQ));
/*
* Testing interrupt line EXTI35
* Bit 3 in EXTI_*2 registers (EXTI35) corresponds to PVM 1 Wakeup
*/
enable_nvic_irq(EXTI35_IRQ);
/* Check that there are no interrupts already pending */
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
g_assert_false(check_nvic_pending(EXTI35_IRQ));
/* Enable interrupt line EXTI0 */
exti_writel(EXTI_IMR2, 0x00000008);
/* Set the right SWIER bit from '0' to '1' */
exti_writel(EXTI_SWIER2, 0x00000000);
exti_writel(EXTI_SWIER2, 0x00000008);
/* Check that the write in SWIER was effective */
g_assert_cmpuint(exti_readl(EXTI_SWIER2), ==, 0x00000008);
/* Check that the corresponding pending bit in PR is set */
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000008);
/* Check that the corresponding interrupt is pending in the NVIC */
g_assert_true(check_nvic_pending(EXTI35_IRQ));
/* Clear the pending bit in PR */
exti_writel(EXTI_PR2, 0x00000008);
/* Check that the write in PR was effective */
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
/* Check that the corresponding bit in SWIER was cleared */
g_assert_cmpuint(exti_readl(EXTI_SWIER2), ==, 0x00000000);
/* Check that the interrupt is still pending in the NVIC */
g_assert_true(check_nvic_pending(EXTI35_IRQ));
/* Clean NVIC */
unpend_nvic_irq(EXTI0_IRQ);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
unpend_nvic_irq(EXTI35_IRQ);
g_assert_false(check_nvic_pending(EXTI35_IRQ));
}
static void test_edge_selector(void)
{
enable_nvic_irq(EXTI0_IRQ);
/* Configure EXTI line 0 irq on rising edge */
exti_set_irq(0, 1);
exti_writel(EXTI_IMR1, 0x00000001);
exti_writel(EXTI_RTSR1, 0x00000001);
exti_writel(EXTI_FTSR1, 0x00000000);
/* Test that an irq is raised on rising edge only */
exti_set_irq(0, 0);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
exti_set_irq(0, 1);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000001);
g_assert_true(check_nvic_pending(EXTI0_IRQ));
/* Clean the test */
exti_writel(EXTI_PR1, 0x00000001);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
unpend_nvic_irq(EXTI0_IRQ);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Configure EXTI line 0 irq on falling edge */
exti_set_irq(0, 0);
exti_writel(EXTI_IMR1, 0x00000001);
exti_writel(EXTI_RTSR1, 0x00000000);
exti_writel(EXTI_FTSR1, 0x00000001);
/* Test that an irq is raised on falling edge only */
exti_set_irq(0, 1);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
exti_set_irq(0, 0);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000001);
g_assert_true(check_nvic_pending(EXTI0_IRQ));
/* Clean the test */
exti_writel(EXTI_PR1, 0x00000001);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
unpend_nvic_irq(EXTI0_IRQ);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Configure EXTI line 0 irq on falling and rising edge */
exti_writel(EXTI_IMR1, 0x00000001);
exti_writel(EXTI_RTSR1, 0x00000001);
exti_writel(EXTI_FTSR1, 0x00000001);
/* Test that an irq is raised on rising edge */
exti_set_irq(0, 1);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000001);
g_assert_true(check_nvic_pending(EXTI0_IRQ));
/* Clean the test */
exti_writel(EXTI_PR1, 0x00000001);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
unpend_nvic_irq(EXTI0_IRQ);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Test that an irq is raised on falling edge */
exti_set_irq(0, 0);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000001);
g_assert_true(check_nvic_pending(EXTI0_IRQ));
/* Clean the test */
exti_writel(EXTI_PR1, 0x00000001);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
unpend_nvic_irq(EXTI0_IRQ);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Configure EXTI line 0 irq without selecting an edge trigger */
exti_writel(EXTI_IMR1, 0x00000001);
exti_writel(EXTI_RTSR1, 0x00000000);
exti_writel(EXTI_FTSR1, 0x00000000);
/* Test that no irq is raised */
exti_set_irq(0, 1);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
exti_set_irq(0, 0);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
g_assert_false(check_nvic_pending(EXTI0_IRQ));
}
static void test_no_software_interrupt(void)
{
/*
* Test that software irq doesn't happen when :
* - corresponding bit in IMR isn't set
* - SWIER is set to 1 before IMR is set to 1
*/
/*
* Testing interrupt line EXTI0
* Bit 0 in EXTI_*1 registers (EXTI0) corresponds to GPIO Px_0
*/
enable_nvic_irq(EXTI0_IRQ);
/* Check that there are no interrupts already pending in PR */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that this specific interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Mask interrupt line EXTI0 */
exti_writel(EXTI_IMR1, 0x00000000);
/* Set the corresponding SWIER bit from '0' to '1' */
exti_writel(EXTI_SWIER1, 0x00000000);
exti_writel(EXTI_SWIER1, 0x00000001);
/* Check that the write in SWIER was effective */
g_assert_cmpuint(exti_readl(EXTI_SWIER1), ==, 0x00000001);
/* Check that the pending bit in PR wasn't set */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that the interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/* Enable interrupt line EXTI0 */
exti_writel(EXTI_IMR1, 0x00000001);
/* Check that the pending bit in PR wasn't set */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that the interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI0_IRQ));
/*
* Testing interrupt line EXTI35
* Bit 3 in EXTI_*2 registers (EXTI35) corresponds to PVM 1 Wakeup
*/
enable_nvic_irq(EXTI35_IRQ);
/* Check that there are no interrupts already pending in PR */
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
/* Check that this specific interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI35_IRQ));
/* Mask interrupt line EXTI35 */
exti_writel(EXTI_IMR2, 0x00000000);
/* Set the corresponding SWIER bit from '0' to '1' */
exti_writel(EXTI_SWIER2, 0x00000000);
exti_writel(EXTI_SWIER2, 0x00000008);
/* Check that the write in SWIER was effective */
g_assert_cmpuint(exti_readl(EXTI_SWIER2), ==, 0x00000008);
/* Check that the pending bit in PR wasn't set */
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
/* Check that the interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI35_IRQ));
/* Enable interrupt line EXTI35 */
exti_writel(EXTI_IMR2, 0x00000008);
/* Check that the pending bit in PR wasn't set */
g_assert_cmpuint(exti_readl(EXTI_PR2), ==, 0x00000000);
/* Check that the interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI35_IRQ));
}
static void test_masked_interrupt(void)
{
/*
* Test that irq doesn't happen when :
* - corresponding bit in IMR isn't set
* - SWIER is set to 1 before IMR is set to 1
*/
/*
* Testing interrupt line EXTI1
* with rising edge from GPIOx pin 1
*/
enable_nvic_irq(EXTI1_IRQ);
/* Check that there are no interrupts already pending in PR */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that this specific interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI1_IRQ));
/* Mask interrupt line EXTI1 */
exti_writel(EXTI_IMR1, 0x00000000);
/* Configure interrupt on rising edge */
exti_writel(EXTI_RTSR1, 0x00000002);
/* Simulate rising edge from GPIO line 1 */
exti_set_irq(1, 1);
/* Check that the pending bit in PR wasn't set */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that the interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI1_IRQ));
/* Enable interrupt line EXTI1 */
exti_writel(EXTI_IMR1, 0x00000002);
/* Check that the pending bit in PR wasn't set */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that the interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI1_IRQ));
}
static void test_interrupt(void)
{
/*
* Test that we can launch an irq by :
* - enabling its line in IMR
* - configuring interrupt on rising edge
* - and then setting the input line from '0' to '1'
*
* And that the interruption stays pending in NVIC
* even after clearing the pending bit in PR.
*/
/*
* Testing interrupt line EXTI1
* with rising edge from GPIOx pin 1
*/
enable_nvic_irq(EXTI1_IRQ);
/* Check that there are no interrupts already pending in PR */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that this specific interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI1_IRQ));
/* Enable interrupt line EXTI1 */
exti_writel(EXTI_IMR1, 0x00000002);
/* Configure interrupt on rising edge */
exti_writel(EXTI_RTSR1, 0x00000002);
/* Simulate rising edge from GPIO line 1 */
exti_set_irq(1, 1);
/* Check that the pending bit in PR was set */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000002);
/* Check that the interrupt is pending in NVIC */
g_assert_true(check_nvic_pending(EXTI1_IRQ));
/* Clear the pending bit in PR */
exti_writel(EXTI_PR1, 0x00000002);
/* Check that the write in PR was effective */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that the interrupt is still pending in the NVIC */
g_assert_true(check_nvic_pending(EXTI1_IRQ));
/* Clean NVIC */
unpend_nvic_irq(EXTI1_IRQ);
g_assert_false(check_nvic_pending(EXTI1_IRQ));
}
static void test_orred_interrupts(void)
{
/*
* For lines EXTI5..9 (fanned-in to NVIC irq 23),
* test that raising the line pends interrupt
* 23 in NVIC.
*/
enable_nvic_irq(EXTI5_9_IRQ);
/* Check that there are no interrupts already pending in PR */
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
/* Check that this specific interrupt isn't pending in NVIC */
g_assert_false(check_nvic_pending(EXTI5_9_IRQ));
/* Enable interrupt lines EXTI[5..9] */
exti_writel(EXTI_IMR1, (0x1F << 5));
/* Configure interrupt on rising edge */
exti_writel(EXTI_RTSR1, (0x1F << 5));
/* Raise GPIO line i, check that the interrupt is pending */
for (unsigned i = 5; i < 10; i++) {
exti_set_irq(i, 1);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 1 << i);
g_assert_true(check_nvic_pending(EXTI5_9_IRQ));
exti_writel(EXTI_PR1, 1 << i);
g_assert_cmpuint(exti_readl(EXTI_PR1), ==, 0x00000000);
g_assert_true(check_nvic_pending(EXTI5_9_IRQ));
unpend_nvic_irq(EXTI5_9_IRQ);
g_assert_false(check_nvic_pending(EXTI5_9_IRQ));
}
}
int main(int argc, char **argv)
{
int ret;
g_test_init(&argc, &argv, NULL);
g_test_set_nonfatal_assertions();
qtest_add_func("stm32l4x5/exti/direct_lines", test_direct_lines_write);
qtest_add_func("stm32l4x5/exti/reserved_bits", test_reserved_bits_write);
qtest_add_func("stm32l4x5/exti/reg_write_read", test_reg_write_read);
qtest_add_func("stm32l4x5/exti/no_software_interrupt",
test_no_software_interrupt);
qtest_add_func("stm32l4x5/exti/software_interrupt",
test_software_interrupt);
qtest_add_func("stm32l4x5/exti/masked_interrupt", test_masked_interrupt);
qtest_add_func("stm32l4x5/exti/interrupt", test_interrupt);
qtest_add_func("stm32l4x5/exti/test_edge_selector", test_edge_selector);
qtest_add_func("stm32l4x5/exti/test_orred_interrupts",
test_orred_interrupts);
qtest_start("-machine b-l475e-iot01a");
ret = g_test_run();
qtest_end();
return ret;
}