target-arm: A64: Implement pairwise integer ops from 3-reg-same SIMD

Implement the pairwise integer operations in the 3-reg-same SIMD group:
ADDP, SMAXP, SMINP, UMAXP and UMINP.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This commit is contained in:
Peter Maydell 2014-02-08 14:46:55 +00:00
parent 8b12a0cfc1
commit 0173a00521

View File

@ -6580,7 +6580,129 @@ static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
/* Pairwise op subgroup of C3.6.16. */
static void disas_simd_3same_pair(DisasContext *s, uint32_t insn)
{
unsupported_encoding(s, insn);
int is_q = extract32(insn, 30, 1);
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 11, 5);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int pass;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x14: /* SMAXP, UMAXP */
case 0x15: /* SMINP, UMINP */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x17:
if (u) {
unallocated_encoding(s);
return;
}
break;
default:
g_assert_not_reached();
}
/* These operations work on the concatenated rm:rn, with each pair of
* adjacent elements being operated on to produce an element in the result.
*/
if (size == 3) {
TCGv_i64 tcg_res[2];
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
int passreg = (pass == 0) ? rn : rm;
read_vec_element(s, tcg_op1, passreg, 0, MO_64);
read_vec_element(s, tcg_op2, passreg, 1, MO_64);
tcg_res[pass] = tcg_temp_new_i64();
/* The only 64 bit pairwise integer op is ADDP */
assert(opcode == 0x17);
tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
tcg_temp_free_i64(tcg_op1);
tcg_temp_free_i64(tcg_op2);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_res[pass]);
}
} else {
int maxpass = is_q ? 4 : 2;
TCGv_i32 tcg_res[4];
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
NeonGenTwoOpFn *genfn;
int passreg = pass < (maxpass / 2) ? rn : rm;
int passelt = (is_q && (pass & 1)) ? 2 : 0;
read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
tcg_res[pass] = tcg_temp_new_i32();
switch (opcode) {
case 0x17: /* ADDP */
{
static NeonGenTwoOpFn * const fns[3] = {
gen_helper_neon_padd_u8,
gen_helper_neon_padd_u16,
tcg_gen_add_i32,
};
genfn = fns[size];
break;
}
case 0x14: /* SMAXP, UMAXP */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
{ gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
{ gen_max_s32, gen_max_u32 },
};
genfn = fns[size][u];
break;
}
case 0x15: /* SMINP, UMINP */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
{ gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
{ gen_min_s32, gen_min_u32 },
};
genfn = fns[size][u];
break;
}
default:
g_assert_not_reached();
}
genfn(tcg_res[pass], tcg_op1, tcg_op2);
tcg_temp_free_i32(tcg_op1);
tcg_temp_free_i32(tcg_op2);
}
for (pass = 0; pass < maxpass; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
tcg_temp_free_i32(tcg_res[pass]);
}
if (!is_q) {
clear_vec_high(s, rd);
}
}
}
/* Floating point op subgroup of C3.6.16. */