Testing infrastructure for softfpu (not run by default).

Drop countLeadingZeros.
 Fix div_floats.
 Add udiv_qrnnd specializations for x86_64, s390x, ppc64 hosts.
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJbt6apAAoJEGTfOOivfiFfv7IH/2pFUMKB8aaFA6p4xlMCufYg
 usYvyXqul2D6/ZFwirsxOmFrVs0Vx8/E2BHMvW7fx+XVfMUa7bUNYKeYwTtvKgI1
 hsm1hKEedVl+hOLZZBfiPEbMnm5Epg2L2NbLpMo1RWWqqKjlOMMU0RZH/lBpuoT3
 OUDQEQaMvTC91xqhWDgwkedNGRl57kXNDYLQAvfhYtcKHj8vYgwbzA46/y1p1xVd
 E37ym5jL6DHhzIoU7ty9u74PxkM2qBKGhVlRqLQ0YO6gStKoW0ZBVZSlQx9NPG7J
 OjYYmZwWs5T61ai0e3N0sqP5QJyhs7g/FfmKDgzhPMFkeGh8kwihjdJwPaKzJ88=
 =iTHi
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/rth/tags/pull-fpu-20181005' into staging

Testing infrastructure for softfpu (not run by default).
Drop countLeadingZeros.
Fix div_floats.
Add udiv_qrnnd specializations for x86_64, s390x, ppc64 hosts.

# gpg: Signature made Fri 05 Oct 2018 19:00:09 BST
# gpg:                using RSA key 64DF38E8AF7E215F
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>"
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A  05C0 64DF 38E8 AF7E 215F

* remotes/rth/tags/pull-fpu-20181005:
  softfloat: Specialize udiv_qrnnd for ppc64
  softfloat: Specialize udiv_qrnnd for s390x
  softfloat: Specialize udiv_qrnnd for x86_64
  softfloat: Fix division
  softfloat: Replace countLeadingZeros32/64 with clz32/64
  tests/fp/fp-test: add floating point tests
  gitmodules: add berkeley's softfloat + testfloat version 3
  softfloat: remove float64_trunc_to_int

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2018-10-08 12:44:35 +01:00
commit 079911cb6e
13 changed files with 2392 additions and 125 deletions

6
.gitmodules vendored
View File

@ -43,3 +43,9 @@
[submodule "roms/u-boot-sam460ex"]
path = roms/u-boot-sam460ex
url = git://git.qemu.org/u-boot-sam460ex.git
[submodule "tests/fp/berkeley-testfloat-3"]
path = tests/fp/berkeley-testfloat-3
url = git://github.com/cota/berkeley-testfloat-3
[submodule "tests/fp/berkeley-softfloat-3"]
path = tests/fp/berkeley-softfloat-3
url = git://github.com/cota/berkeley-softfloat-3

4
configure vendored
View File

@ -296,6 +296,8 @@ if test -e "$source_path/.git"
then
git_update=yes
git_submodules="ui/keycodemapdb"
git_submodules="$git_submodules tests/fp/berkeley-testfloat-3"
git_submodules="$git_submodules tests/fp/berkeley-softfloat-3"
else
git_update=no
git_submodules=""
@ -7449,12 +7451,14 @@ fi
# build tree in object directory in case the source is not in the current directory
DIRS="tests tests/tcg tests/tcg/cris tests/tcg/lm32 tests/libqos tests/qapi-schema tests/tcg/xtensa tests/qemu-iotests tests/vm"
DIRS="$DIRS tests/fp"
DIRS="$DIRS docs docs/interop fsdev scsi"
DIRS="$DIRS pc-bios/optionrom pc-bios/spapr-rtas pc-bios/s390-ccw"
DIRS="$DIRS roms/seabios roms/vgabios"
FILES="Makefile tests/tcg/Makefile qdict-test-data.txt"
FILES="$FILES tests/tcg/cris/Makefile tests/tcg/cris/.gdbinit"
FILES="$FILES tests/tcg/lm32/Makefile tests/tcg/xtensa/Makefile po/Makefile"
FILES="$FILES tests/fp/Makefile"
FILES="$FILES pc-bios/optionrom/Makefile pc-bios/keymaps"
FILES="$FILES pc-bios/spapr-rtas/Makefile"
FILES="$FILES pc-bios/s390-ccw/Makefile"

View File

@ -1112,19 +1112,38 @@ static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
bool sign = a.sign ^ b.sign;
if (a.cls == float_class_normal && b.cls == float_class_normal) {
uint64_t temp_lo, temp_hi;
uint64_t n0, n1, q, r;
int exp = a.exp - b.exp;
/*
* We want a 2*N / N-bit division to produce exactly an N-bit
* result, so that we do not lose any precision and so that we
* do not have to renormalize afterward. If A.frac < B.frac,
* then division would produce an (N-1)-bit result; shift A left
* by one to produce the an N-bit result, and decrement the
* exponent to match.
*
* The udiv_qrnnd algorithm that we're using requires normalization,
* i.e. the msb of the denominator must be set. Since we know that
* DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
* by one (more), and the remainder must be shifted right by one.
*/
if (a.frac < b.frac) {
exp -= 1;
shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
&temp_hi, &temp_lo);
shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
} else {
shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
&temp_hi, &temp_lo);
shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
}
/* LSB of quot is set if inexact which roundandpack will use
* to set flags. Yet again we re-use a for the result */
a.frac = div128To64(temp_lo, temp_hi, b.frac);
q = udiv_qrnnd(&r, n1, n0, b.frac << 1);
/*
* Set lsb if there is a remainder, to set inexact.
* As mentioned above, to find the actual value of the remainder we
* would need to shift right, but (1) we are only concerned about
* non-zero-ness, and (2) the remainder will always be even because
* both inputs to the division primitive are even.
*/
a.frac = q | (r != 0);
a.sign = sign;
a.exp = exp;
return a;
@ -1409,13 +1428,6 @@ float64 float64_round_to_int(float64 a, float_status *s)
return float64_round_pack_canonical(pr, s);
}
float64 float64_trunc_to_int(float64 a, float_status *s)
{
FloatParts pa = float64_unpack_canonical(a, s);
FloatParts pr = round_to_int(pa, float_round_to_zero, 0, s);
return float64_round_pack_canonical(pr, s);
}
/*
* Returns the result of converting the floating-point value `a' to
* the two's complement integer format. The conversion is performed
@ -2690,7 +2702,7 @@ static void
{
int8_t shiftCount;
shiftCount = countLeadingZeros32( aSig ) - 8;
shiftCount = clz32(aSig) - 8;
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
@ -2798,7 +2810,7 @@ static float32
{
int8_t shiftCount;
shiftCount = countLeadingZeros32( zSig ) - 1;
shiftCount = clz32(zSig) - 1;
return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
status);
@ -2831,7 +2843,7 @@ static void
{
int8_t shiftCount;
shiftCount = countLeadingZeros64( aSig ) - 11;
shiftCount = clz64(aSig) - 11;
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
@ -2969,7 +2981,7 @@ static float64
{
int8_t shiftCount;
shiftCount = countLeadingZeros64( zSig ) - 1;
shiftCount = clz64(zSig) - 1;
return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
status);
@ -2987,7 +2999,7 @@ void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
{
int8_t shiftCount;
shiftCount = countLeadingZeros64( aSig );
shiftCount = clz64(aSig);
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
@ -3226,7 +3238,7 @@ floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
zSig1 = 0;
zExp -= 64;
}
shiftCount = countLeadingZeros64( zSig0 );
shiftCount = clz64(zSig0);
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
zExp -= shiftCount;
return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
@ -3303,7 +3315,7 @@ static void
int8_t shiftCount;
if ( aSig0 == 0 ) {
shiftCount = countLeadingZeros64( aSig1 ) - 15;
shiftCount = clz64(aSig1) - 15;
if ( shiftCount < 0 ) {
*zSig0Ptr = aSig1>>( - shiftCount );
*zSig1Ptr = aSig1<<( shiftCount & 63 );
@ -3315,7 +3327,7 @@ static void
*zExpPtr = - shiftCount - 63;
}
else {
shiftCount = countLeadingZeros64( aSig0 ) - 15;
shiftCount = clz64(aSig0) - 15;
shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
*zExpPtr = 1 - shiftCount;
}
@ -3504,7 +3516,7 @@ static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
zSig1 = 0;
zExp -= 64;
}
shiftCount = countLeadingZeros64( zSig0 ) - 15;
shiftCount = clz64(zSig0) - 15;
if ( 0 <= shiftCount ) {
zSig2 = 0;
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
@ -3536,7 +3548,7 @@ floatx80 int32_to_floatx80(int32_t a, float_status *status)
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros32( absA ) + 32;
shiftCount = clz32(absA) + 32;
zSig = absA;
return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
@ -3558,7 +3570,7 @@ float128 int32_to_float128(int32_t a, float_status *status)
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros32( absA ) + 17;
shiftCount = clz32(absA) + 17;
zSig0 = absA;
return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
@ -3580,7 +3592,7 @@ floatx80 int64_to_floatx80(int64_t a, float_status *status)
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros64( absA );
shiftCount = clz64(absA);
return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
}
@ -3602,7 +3614,7 @@ float128 int64_to_float128(int64_t a, float_status *status)
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros64( absA ) + 49;
shiftCount = clz64(absA) + 49;
zExp = 0x406E - shiftCount;
if ( 64 <= shiftCount ) {
zSig1 = 0;

View File

@ -79,17 +79,6 @@ this code that are retained.
* version 2 or later. See the COPYING file in the top-level directory.
*/
/*----------------------------------------------------------------------------
| This macro tests for minimum version of the GNU C compiler.
*----------------------------------------------------------------------------*/
#if defined(__GNUC__) && defined(__GNUC_MINOR__)
# define SOFTFLOAT_GNUC_PREREQ(maj, min) \
((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#else
# define SOFTFLOAT_GNUC_PREREQ(maj, min) 0
#endif
/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'. If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
@ -340,15 +329,30 @@ static inline void
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void
shortShift128Left(
uint64_t a0, uint64_t a1, int count, uint64_t *z0Ptr, uint64_t *z1Ptr)
static inline void shortShift128Left(uint64_t a0, uint64_t a1, int count,
uint64_t *z0Ptr, uint64_t *z1Ptr)
{
*z1Ptr = a1 << count;
*z0Ptr = count == 0 ? a0 : (a0 << count) | (a1 >> (-count & 63));
}
*z1Ptr = a1<<count;
*z0Ptr =
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
| number of bits given in `count'. Any bits shifted off are lost. The value
| of `count' may be greater than 64. The result is broken into two 64-bit
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/
static inline void shift128Left(uint64_t a0, uint64_t a1, int count,
uint64_t *z0Ptr, uint64_t *z1Ptr)
{
if (count < 64) {
*z1Ptr = a1 << count;
*z0Ptr = count == 0 ? a0 : (a0 << count) | (a1 >> (-count & 63));
} else {
*z1Ptr = 0;
*z0Ptr = a1 << (count - 64);
}
}
/*----------------------------------------------------------------------------
@ -630,8 +634,36 @@ static inline uint64_t estimateDiv128To64(uint64_t a0, uint64_t a1, uint64_t b)
*
* Licensed under the GPLv2/LGPLv3
*/
static inline uint64_t div128To64(uint64_t n0, uint64_t n1, uint64_t d)
static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1,
uint64_t n0, uint64_t d)
{
#if defined(__x86_64__)
uint64_t q;
asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d));
return q;
#elif defined(__s390x__)
/* Need to use a TImode type to get an even register pair for DLGR. */
unsigned __int128 n = (unsigned __int128)n1 << 64 | n0;
asm("dlgr %0, %1" : "+r"(n) : "r"(d));
*r = n >> 64;
return n;
#elif defined(_ARCH_PPC64)
/* From Power ISA 3.0B, programming note for divdeu. */
uint64_t q1, q2, Q, r1, r2, R;
asm("divdeu %0,%2,%4; divdu %1,%3,%4"
: "=&r"(q1), "=r"(q2)
: "r"(n1), "r"(n0), "r"(d));
r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */
r2 = n0 - (q2 * d);
Q = q1 + q2;
R = r1 + r2;
if (R >= d || R < r2) { /* overflow implies R > d */
Q += 1;
R -= d;
}
*r = R;
return Q;
#else
uint64_t d0, d1, q0, q1, r1, r0, m;
d0 = (uint32_t)d;
@ -669,8 +701,9 @@ static inline uint64_t div128To64(uint64_t n0, uint64_t n1, uint64_t d)
}
r0 -= m;
/* Return remainder in LSB */
return (q1 << 32) | q0 | (r0 != 0);
*r = r0;
return (q1 << 32) | q0;
#endif
}
/*----------------------------------------------------------------------------
@ -712,82 +745,6 @@ static inline uint32_t estimateSqrt32(int aExp, uint32_t a)
}
/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'. If `a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
static inline int8_t countLeadingZeros32(uint32_t a)
{
#if SOFTFLOAT_GNUC_PREREQ(3, 4)
if (a) {
return __builtin_clz(a);
} else {
return 32;
}
#else
static const int8_t countLeadingZerosHigh[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int8_t shiftCount;
shiftCount = 0;
if ( a < 0x10000 ) {
shiftCount += 16;
a <<= 16;
}
if ( a < 0x1000000 ) {
shiftCount += 8;
a <<= 8;
}
shiftCount += countLeadingZerosHigh[ a>>24 ];
return shiftCount;
#endif
}
/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'. If `a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
static inline int8_t countLeadingZeros64(uint64_t a)
{
#if SOFTFLOAT_GNUC_PREREQ(3, 4)
if (a) {
return __builtin_clzll(a);
} else {
return 64;
}
#else
int8_t shiftCount;
shiftCount = 0;
if ( a < ( (uint64_t) 1 )<<32 ) {
shiftCount += 32;
}
else {
a >>= 32;
}
shiftCount += countLeadingZeros32( a );
return shiftCount;
#endif
}
/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.

View File

@ -535,7 +535,6 @@ float128 float64_to_float128(float64, float_status *status);
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
float64 float64_round_to_int(float64, float_status *status);
float64 float64_trunc_to_int(float64, float_status *status);
float64 float64_add(float64, float64, float_status *status);
float64 float64_sub(float64, float64, float_status *status);
float64 float64_mul(float64, float64, float_status *status);

View File

@ -670,6 +670,9 @@ tests/test-bufferiszero$(EXESUF): tests/test-bufferiszero.o $(test-util-obj-y)
tests/atomic_add-bench$(EXESUF): tests/atomic_add-bench.o $(test-util-obj-y)
tests/atomic64-bench$(EXESUF): tests/atomic64-bench.o $(test-util-obj-y)
tests/fp/%:
$(MAKE) -C $(dir $@) $(notdir $@)
tests/test-qdev-global-props$(EXESUF): tests/test-qdev-global-props.o \
hw/core/qdev.o hw/core/qdev-properties.o hw/core/hotplug.o\
hw/core/bus.o \

1
tests/fp/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
fp-test

597
tests/fp/Makefile Normal file
View File

@ -0,0 +1,597 @@
BUILD_DIR := $(CURDIR)/../..
include $(BUILD_DIR)/config-host.mak
include $(SRC_PATH)/rules.mak
SOFTFLOAT_DIR := $(SRC_PATH)/tests/fp/berkeley-softfloat-3
TESTFLOAT_DIR := $(SRC_PATH)/tests/fp/berkeley-testfloat-3
SF_SOURCE_DIR := $(SOFTFLOAT_DIR)/source
SF_INCLUDE_DIR := $(SOFTFLOAT_DIR)/source/include
# we could use any specialize here, it doesn't matter
SF_SPECIALIZE := 8086-SSE
SF_SPECIALIZE_DIR := $(SF_SOURCE_DIR)/$(SF_SPECIALIZE)
TF_SOURCE_DIR := $(TESTFLOAT_DIR)/source
$(call set-vpath, $(SRC_PATH)/fpu $(SRC_PATH)/tests/fp)
LIBQEMUUTIL := $(BUILD_DIR)/libqemuutil.a
# Use this variable to be clear when we pull in our own implementation
# We build the object with a default rule thanks to the vpath above
QEMU_SOFTFLOAT_OBJ := softfloat.o
QEMU_INCLUDES += -I$(SRC_PATH)/tests/fp
QEMU_INCLUDES += -I$(SF_INCLUDE_DIR)
QEMU_INCLUDES += -I$(SF_SPECIALIZE_DIR)
QEMU_INCLUDES += -I$(TF_SOURCE_DIR)
# work around TARGET_* poisoning
QEMU_CFLAGS += -DHW_POISON_H
# capstone has a platform.h file that clashes with softfloat's
QEMU_CFLAGS := $(filter-out %capstone, $(QEMU_CFLAGS))
# softfloat defines
SF_OPTS :=
SF_OPTS += -DSOFTFLOAT_ROUND_ODD
SF_OPTS += -DINLINE_LEVEL=5
SF_OPTS += -DSOFTFLOAT_FAST_DIV32TO16
SF_OPTS += -DSOFTFLOAT_FAST_DIV64TO32
SF_OPTS += -DSOFTFLOAT_FAST_INT64
QEMU_CFLAGS += $(SF_OPTS)
# silence the build of softfloat objects
SF_CFLAGS += -Wno-missing-prototypes
SF_CFLAGS += -Wno-redundant-decls
SF_CFLAGS += -Wno-return-type
SF_CFLAGS += -Wno-error
# testfloat defines
TF_OPTS :=
TF_OPTS += -DFLOAT16
TF_OPTS += -DFLOAT64
TF_OPTS += -DEXTFLOAT80
TF_OPTS += -DFLOAT128
TF_OPTS += -DFLOAT_ROUND_ODD
TF_OPTS += -DLONG_DOUBLE_IS_EXTFLOAT80
QEMU_CFLAGS += $(TF_OPTS)
# silence the build of testfloat objects
TF_CFLAGS :=
TF_CFLAGS += -Wno-strict-prototypes
TF_CFLAGS += -Wno-unknown-pragmas
TF_CFLAGS += -Wno-discarded-qualifiers
TF_CFLAGS += -Wno-maybe-uninitialized
TF_CFLAGS += -Wno-missing-prototypes
TF_CFLAGS += -Wno-return-type
TF_CFLAGS += -Wno-unused-function
TF_CFLAGS += -Wno-error
# softfloat objects
SF_OBJS_PRIMITIVES :=
SF_OBJS_PRIMITIVES += s_eq128.o
SF_OBJS_PRIMITIVES += s_le128.o
SF_OBJS_PRIMITIVES += s_lt128.o
SF_OBJS_PRIMITIVES += s_shortShiftLeft128.o
SF_OBJS_PRIMITIVES += s_shortShiftRight128.o
SF_OBJS_PRIMITIVES += s_shortShiftRightJam64.o
SF_OBJS_PRIMITIVES += s_shortShiftRightJam64Extra.o
SF_OBJS_PRIMITIVES += s_shortShiftRightJam128.o
SF_OBJS_PRIMITIVES += s_shortShiftRightJam128Extra.o
SF_OBJS_PRIMITIVES += s_shiftRightJam32.o
SF_OBJS_PRIMITIVES += s_shiftRightJam64.o
SF_OBJS_PRIMITIVES += s_shiftRightJam64Extra.o
SF_OBJS_PRIMITIVES += s_shiftRightJam128.o
SF_OBJS_PRIMITIVES += s_shiftRightJam128Extra.o
SF_OBJS_PRIMITIVES += s_shiftRightJam256M.o
SF_OBJS_PRIMITIVES += s_countLeadingZeros8.o
SF_OBJS_PRIMITIVES += s_countLeadingZeros16.o
SF_OBJS_PRIMITIVES += s_countLeadingZeros32.o
SF_OBJS_PRIMITIVES += s_countLeadingZeros64.o
SF_OBJS_PRIMITIVES += s_add128.o
SF_OBJS_PRIMITIVES += s_add256M.o
SF_OBJS_PRIMITIVES += s_sub128.o
SF_OBJS_PRIMITIVES += s_sub256M.o
SF_OBJS_PRIMITIVES += s_mul64ByShifted32To128.o
SF_OBJS_PRIMITIVES += s_mul64To128.o
SF_OBJS_PRIMITIVES += s_mul128By32.o
SF_OBJS_PRIMITIVES += s_mul128To256M.o
SF_OBJS_PRIMITIVES += s_approxRecip_1Ks.o
SF_OBJS_PRIMITIVES += s_approxRecip32_1.o
SF_OBJS_PRIMITIVES += s_approxRecipSqrt_1Ks.o
SF_OBJS_PRIMITIVES += s_approxRecipSqrt32_1.o
SF_OBJS_SPECIALIZE :=
SF_OBJS_SPECIALIZE += softfloat_raiseFlags.o
SF_OBJS_SPECIALIZE += s_f16UIToCommonNaN.o
SF_OBJS_SPECIALIZE += s_commonNaNToF16UI.o
SF_OBJS_SPECIALIZE += s_propagateNaNF16UI.o
SF_OBJS_SPECIALIZE += s_f32UIToCommonNaN.o
SF_OBJS_SPECIALIZE += s_commonNaNToF32UI.o
SF_OBJS_SPECIALIZE += s_propagateNaNF32UI.o
SF_OBJS_SPECIALIZE += s_f64UIToCommonNaN.o
SF_OBJS_SPECIALIZE += s_commonNaNToF64UI.o
SF_OBJS_SPECIALIZE += s_propagateNaNF64UI.o
SF_OBJS_SPECIALIZE += extF80M_isSignalingNaN.o
SF_OBJS_SPECIALIZE += s_extF80UIToCommonNaN.o
SF_OBJS_SPECIALIZE += s_commonNaNToExtF80UI.o
SF_OBJS_SPECIALIZE += s_propagateNaNExtF80UI.o
SF_OBJS_SPECIALIZE += f128M_isSignalingNaN.o
SF_OBJS_SPECIALIZE += s_f128UIToCommonNaN.o
SF_OBJS_SPECIALIZE += s_commonNaNToF128UI.o
SF_OBJS_SPECIALIZE += s_propagateNaNF128UI.o
SF_OBJS_OTHERS :=
SF_OBJS_OTHERS += s_roundToUI32.o
SF_OBJS_OTHERS += s_roundToUI64.o
SF_OBJS_OTHERS += s_roundToI32.o
SF_OBJS_OTHERS += s_roundToI64.o
SF_OBJS_OTHERS += s_normSubnormalF16Sig.o
SF_OBJS_OTHERS += s_roundPackToF16.o
SF_OBJS_OTHERS += s_normRoundPackToF16.o
SF_OBJS_OTHERS += s_addMagsF16.o
SF_OBJS_OTHERS += s_subMagsF16.o
SF_OBJS_OTHERS += s_mulAddF16.o
SF_OBJS_OTHERS += s_normSubnormalF32Sig.o
SF_OBJS_OTHERS += s_roundPackToF32.o
SF_OBJS_OTHERS += s_normRoundPackToF32.o
SF_OBJS_OTHERS += s_addMagsF32.o
SF_OBJS_OTHERS += s_subMagsF32.o
SF_OBJS_OTHERS += s_mulAddF32.o
SF_OBJS_OTHERS += s_normSubnormalF64Sig.o
SF_OBJS_OTHERS += s_roundPackToF64.o
SF_OBJS_OTHERS += s_normRoundPackToF64.o
SF_OBJS_OTHERS += s_addMagsF64.o
SF_OBJS_OTHERS += s_subMagsF64.o
SF_OBJS_OTHERS += s_mulAddF64.o
SF_OBJS_OTHERS += s_normSubnormalExtF80Sig.o
SF_OBJS_OTHERS += s_roundPackToExtF80.o
SF_OBJS_OTHERS += s_normRoundPackToExtF80.o
SF_OBJS_OTHERS += s_addMagsExtF80.o
SF_OBJS_OTHERS += s_subMagsExtF80.o
SF_OBJS_OTHERS += s_normSubnormalF128Sig.o
SF_OBJS_OTHERS += s_roundPackToF128.o
SF_OBJS_OTHERS += s_normRoundPackToF128.o
SF_OBJS_OTHERS += s_addMagsF128.o
SF_OBJS_OTHERS += s_subMagsF128.o
SF_OBJS_OTHERS += s_mulAddF128.o
SF_OBJS_OTHERS += softfloat_state.o
SF_OBJS_OTHERS += ui32_to_f16.o
SF_OBJS_OTHERS += ui32_to_f32.o
SF_OBJS_OTHERS += ui32_to_f64.o
SF_OBJS_OTHERS += ui32_to_extF80.o
SF_OBJS_OTHERS += ui32_to_extF80M.o
SF_OBJS_OTHERS += ui32_to_f128.o
SF_OBJS_OTHERS += ui32_to_f128M.o
SF_OBJS_OTHERS += ui64_to_f16.o
SF_OBJS_OTHERS += ui64_to_f32.o
SF_OBJS_OTHERS += ui64_to_f64.o
SF_OBJS_OTHERS += ui64_to_extF80.o
SF_OBJS_OTHERS += ui64_to_extF80M.o
SF_OBJS_OTHERS += ui64_to_f128.o
SF_OBJS_OTHERS += ui64_to_f128M.o
SF_OBJS_OTHERS += i32_to_f16.o
SF_OBJS_OTHERS += i32_to_f32.o
SF_OBJS_OTHERS += i32_to_f64.o
SF_OBJS_OTHERS += i32_to_extF80.o
SF_OBJS_OTHERS += i32_to_extF80M.o
SF_OBJS_OTHERS += i32_to_f128.o
SF_OBJS_OTHERS += i32_to_f128M.o
SF_OBJS_OTHERS += i64_to_f16.o
SF_OBJS_OTHERS += i64_to_f32.o
SF_OBJS_OTHERS += i64_to_f64.o
SF_OBJS_OTHERS += i64_to_extF80.o
SF_OBJS_OTHERS += i64_to_extF80M.o
SF_OBJS_OTHERS += i64_to_f128.o
SF_OBJS_OTHERS += i64_to_f128M.o
SF_OBJS_OTHERS += f16_to_ui32.o
SF_OBJS_OTHERS += f16_to_ui64.o
SF_OBJS_OTHERS += f16_to_i32.o
SF_OBJS_OTHERS += f16_to_i64.o
SF_OBJS_OTHERS += f16_to_ui32_r_minMag.o
SF_OBJS_OTHERS += f16_to_ui64_r_minMag.o
SF_OBJS_OTHERS += f16_to_i32_r_minMag.o
SF_OBJS_OTHERS += f16_to_i64_r_minMag.o
SF_OBJS_OTHERS += f16_to_f32.o
SF_OBJS_OTHERS += f16_to_f64.o
SF_OBJS_OTHERS += f16_to_extF80.o
SF_OBJS_OTHERS += f16_to_extF80M.o
SF_OBJS_OTHERS += f16_to_f128.o
SF_OBJS_OTHERS += f16_to_f128M.o
SF_OBJS_OTHERS += f16_roundToInt.o
SF_OBJS_OTHERS += f16_add.o
SF_OBJS_OTHERS += f16_sub.o
SF_OBJS_OTHERS += f16_mul.o
SF_OBJS_OTHERS += f16_mulAdd.o
SF_OBJS_OTHERS += f16_div.o
SF_OBJS_OTHERS += f16_rem.o
SF_OBJS_OTHERS += f16_sqrt.o
SF_OBJS_OTHERS += f16_eq.o
SF_OBJS_OTHERS += f16_le.o
SF_OBJS_OTHERS += f16_lt.o
SF_OBJS_OTHERS += f16_eq_signaling.o
SF_OBJS_OTHERS += f16_le_quiet.o
SF_OBJS_OTHERS += f16_lt_quiet.o
SF_OBJS_OTHERS += f16_isSignalingNaN.o
SF_OBJS_OTHERS += f32_to_ui32.o
SF_OBJS_OTHERS += f32_to_ui64.o
SF_OBJS_OTHERS += f32_to_i32.o
SF_OBJS_OTHERS += f32_to_i64.o
SF_OBJS_OTHERS += f32_to_ui32_r_minMag.o
SF_OBJS_OTHERS += f32_to_ui64_r_minMag.o
SF_OBJS_OTHERS += f32_to_i32_r_minMag.o
SF_OBJS_OTHERS += f32_to_i64_r_minMag.o
SF_OBJS_OTHERS += f32_to_f16.o
SF_OBJS_OTHERS += f32_to_f64.o
SF_OBJS_OTHERS += f32_to_extF80.o
SF_OBJS_OTHERS += f32_to_extF80M.o
SF_OBJS_OTHERS += f32_to_f128.o
SF_OBJS_OTHERS += f32_to_f128M.o
SF_OBJS_OTHERS += f32_roundToInt.o
SF_OBJS_OTHERS += f32_add.o
SF_OBJS_OTHERS += f32_sub.o
SF_OBJS_OTHERS += f32_mul.o
SF_OBJS_OTHERS += f32_mulAdd.o
SF_OBJS_OTHERS += f32_div.o
SF_OBJS_OTHERS += f32_rem.o
SF_OBJS_OTHERS += f32_sqrt.o
SF_OBJS_OTHERS += f32_eq.o
SF_OBJS_OTHERS += f32_le.o
SF_OBJS_OTHERS += f32_lt.o
SF_OBJS_OTHERS += f32_eq_signaling.o
SF_OBJS_OTHERS += f32_le_quiet.o
SF_OBJS_OTHERS += f32_lt_quiet.o
SF_OBJS_OTHERS += f32_isSignalingNaN.o
SF_OBJS_OTHERS += f64_to_ui32.o
SF_OBJS_OTHERS += f64_to_ui64.o
SF_OBJS_OTHERS += f64_to_i32.o
SF_OBJS_OTHERS += f64_to_i64.o
SF_OBJS_OTHERS += f64_to_ui32_r_minMag.o
SF_OBJS_OTHERS += f64_to_ui64_r_minMag.o
SF_OBJS_OTHERS += f64_to_i32_r_minMag.o
SF_OBJS_OTHERS += f64_to_i64_r_minMag.o
SF_OBJS_OTHERS += f64_to_f16.o
SF_OBJS_OTHERS += f64_to_f32.o
SF_OBJS_OTHERS += f64_to_extF80.o
SF_OBJS_OTHERS += f64_to_extF80M.o
SF_OBJS_OTHERS += f64_to_f128.o
SF_OBJS_OTHERS += f64_to_f128M.o
SF_OBJS_OTHERS += f64_roundToInt.o
SF_OBJS_OTHERS += f64_add.o
SF_OBJS_OTHERS += f64_sub.o
SF_OBJS_OTHERS += f64_mul.o
SF_OBJS_OTHERS += f64_mulAdd.o
SF_OBJS_OTHERS += f64_div.o
SF_OBJS_OTHERS += f64_rem.o
SF_OBJS_OTHERS += f64_sqrt.o
SF_OBJS_OTHERS += f64_eq.o
SF_OBJS_OTHERS += f64_le.o
SF_OBJS_OTHERS += f64_lt.o
SF_OBJS_OTHERS += f64_eq_signaling.o
SF_OBJS_OTHERS += f64_le_quiet.o
SF_OBJS_OTHERS += f64_lt_quiet.o
SF_OBJS_OTHERS += f64_isSignalingNaN.o
SF_OBJS_OTHERS += extF80_to_ui32.o
SF_OBJS_OTHERS += extF80_to_ui64.o
SF_OBJS_OTHERS += extF80_to_i32.o
SF_OBJS_OTHERS += extF80_to_i64.o
SF_OBJS_OTHERS += extF80_to_ui32_r_minMag.o
SF_OBJS_OTHERS += extF80_to_ui64_r_minMag.o
SF_OBJS_OTHERS += extF80_to_i32_r_minMag.o
SF_OBJS_OTHERS += extF80_to_i64_r_minMag.o
SF_OBJS_OTHERS += extF80_to_f16.o
SF_OBJS_OTHERS += extF80_to_f32.o
SF_OBJS_OTHERS += extF80_to_f64.o
SF_OBJS_OTHERS += extF80_to_f128.o
SF_OBJS_OTHERS += extF80_roundToInt.o
SF_OBJS_OTHERS += extF80_add.o
SF_OBJS_OTHERS += extF80_sub.o
SF_OBJS_OTHERS += extF80_mul.o
SF_OBJS_OTHERS += extF80_div.o
SF_OBJS_OTHERS += extF80_rem.o
SF_OBJS_OTHERS += extF80_sqrt.o
SF_OBJS_OTHERS += extF80_eq.o
SF_OBJS_OTHERS += extF80_le.o
SF_OBJS_OTHERS += extF80_lt.o
SF_OBJS_OTHERS += extF80_eq_signaling.o
SF_OBJS_OTHERS += extF80_le_quiet.o
SF_OBJS_OTHERS += extF80_lt_quiet.o
SF_OBJS_OTHERS += extF80_isSignalingNaN.o
SF_OBJS_OTHERS += extF80M_to_ui32.o
SF_OBJS_OTHERS += extF80M_to_ui64.o
SF_OBJS_OTHERS += extF80M_to_i32.o
SF_OBJS_OTHERS += extF80M_to_i64.o
SF_OBJS_OTHERS += extF80M_to_ui32_r_minMag.o
SF_OBJS_OTHERS += extF80M_to_ui64_r_minMag.o
SF_OBJS_OTHERS += extF80M_to_i32_r_minMag.o
SF_OBJS_OTHERS += extF80M_to_i64_r_minMag.o
SF_OBJS_OTHERS += extF80M_to_f16.o
SF_OBJS_OTHERS += extF80M_to_f32.o
SF_OBJS_OTHERS += extF80M_to_f64.o
SF_OBJS_OTHERS += extF80M_to_f128M.o
SF_OBJS_OTHERS += extF80M_roundToInt.o
SF_OBJS_OTHERS += extF80M_add.o
SF_OBJS_OTHERS += extF80M_sub.o
SF_OBJS_OTHERS += extF80M_mul.o
SF_OBJS_OTHERS += extF80M_div.o
SF_OBJS_OTHERS += extF80M_rem.o
SF_OBJS_OTHERS += extF80M_sqrt.o
SF_OBJS_OTHERS += extF80M_eq.o
SF_OBJS_OTHERS += extF80M_le.o
SF_OBJS_OTHERS += extF80M_lt.o
SF_OBJS_OTHERS += extF80M_eq_signaling.o
SF_OBJS_OTHERS += extF80M_le_quiet.o
SF_OBJS_OTHERS += extF80M_lt_quiet.o
SF_OBJS_OTHERS += f128_to_ui32.o
SF_OBJS_OTHERS += f128_to_ui64.o
SF_OBJS_OTHERS += f128_to_i32.o
SF_OBJS_OTHERS += f128_to_i64.o
SF_OBJS_OTHERS += f128_to_ui32_r_minMag.o
SF_OBJS_OTHERS += f128_to_ui64_r_minMag.o
SF_OBJS_OTHERS += f128_to_i32_r_minMag.o
SF_OBJS_OTHERS += f128_to_i64_r_minMag.o
SF_OBJS_OTHERS += f128_to_f16.o
SF_OBJS_OTHERS += f128_to_f32.o
SF_OBJS_OTHERS += f128_to_extF80.o
SF_OBJS_OTHERS += f128_to_f64.o
SF_OBJS_OTHERS += f128_roundToInt.o
SF_OBJS_OTHERS += f128_add.o
SF_OBJS_OTHERS += f128_sub.o
SF_OBJS_OTHERS += f128_mul.o
SF_OBJS_OTHERS += f128_mulAdd.o
SF_OBJS_OTHERS += f128_div.o
SF_OBJS_OTHERS += f128_rem.o
SF_OBJS_OTHERS += f128_sqrt.o
SF_OBJS_OTHERS += f128_eq.o
SF_OBJS_OTHERS += f128_le.o
SF_OBJS_OTHERS += f128_lt.o
SF_OBJS_OTHERS += f128_eq_signaling.o
SF_OBJS_OTHERS += f128_le_quiet.o
SF_OBJS_OTHERS += f128_lt_quiet.o
SF_OBJS_OTHERS += f128_isSignalingNaN.o
SF_OBJS_OTHERS += f128M_to_ui32.o
SF_OBJS_OTHERS += f128M_to_ui64.o
SF_OBJS_OTHERS += f128M_to_i32.o
SF_OBJS_OTHERS += f128M_to_i64.o
SF_OBJS_OTHERS += f128M_to_ui32_r_minMag.o
SF_OBJS_OTHERS += f128M_to_ui64_r_minMag.o
SF_OBJS_OTHERS += f128M_to_i32_r_minMag.o
SF_OBJS_OTHERS += f128M_to_i64_r_minMag.o
SF_OBJS_OTHERS += f128M_to_f16.o
SF_OBJS_OTHERS += f128M_to_f32.o
SF_OBJS_OTHERS += f128M_to_extF80M.o
SF_OBJS_OTHERS += f128M_to_f64.o
SF_OBJS_OTHERS += f128M_roundToInt.o
SF_OBJS_OTHERS += f128M_add.o
SF_OBJS_OTHERS += f128M_sub.o
SF_OBJS_OTHERS += f128M_mul.o
SF_OBJS_OTHERS += f128M_mulAdd.o
SF_OBJS_OTHERS += f128M_div.o
SF_OBJS_OTHERS += f128M_rem.o
SF_OBJS_OTHERS += f128M_sqrt.o
SF_OBJS_OTHERS += f128M_eq.o
SF_OBJS_OTHERS += f128M_le.o
SF_OBJS_OTHERS += f128M_lt.o
SF_OBJS_OTHERS += f128M_eq_signaling.o
SF_OBJS_OTHERS += f128M_le_quiet.o
SF_OBJS_OTHERS += f128M_lt_quiet.o
SF_OBJS_ALL_NOSPEC :=
SF_OBJS_ALL_NOSPEC += $(SF_OBJS_PRIMITIVES)
SF_OBJS_ALL_NOSPEC += $(SF_OBJS_OTHERS)
SF_OBJS_ALL :=
SF_OBJS_ALL += $(SF_OBJS_ALL_NOSPEC)
SF_OBJS_ALL += $(SF_OBJS_SPECIALIZE)
# testfloat objects
TF_OBJS_GENCASES :=
TF_OBJS_GENCASES += genCases_ui32.o
TF_OBJS_GENCASES += genCases_ui64.o
TF_OBJS_GENCASES += genCases_i32.o
TF_OBJS_GENCASES += genCases_i64.o
TF_OBJS_GENCASES += genCases_f16.o
TF_OBJS_GENCASES += genCases_f32.o
TF_OBJS_GENCASES += genCases_f64.o
TF_OBJS_GENCASES += genCases_extF80.o
TF_OBJS_GENCASES += genCases_f128.o
TF_OBJS_WRITECASE :=
TF_OBJS_WRITECASE += writeCase_a_ui32.o
TF_OBJS_WRITECASE += writeCase_a_ui64.o
TF_OBJS_WRITECASE += writeCase_a_f16.o
TF_OBJS_WRITECASE += writeCase_ab_f16.o
TF_OBJS_WRITECASE += writeCase_abc_f16.o
TF_OBJS_WRITECASE += writeCase_a_f32.o
TF_OBJS_WRITECASE += writeCase_ab_f32.o
TF_OBJS_WRITECASE += writeCase_abc_f32.o
TF_OBJS_WRITECASE += writeCase_a_f64.o
TF_OBJS_WRITECASE += writeCase_ab_f64.o
TF_OBJS_WRITECASE += writeCase_abc_f64.o
TF_OBJS_WRITECASE += writeCase_a_extF80M.o
TF_OBJS_WRITECASE += writeCase_ab_extF80M.o
TF_OBJS_WRITECASE += writeCase_a_f128M.o
TF_OBJS_WRITECASE += writeCase_ab_f128M.o
TF_OBJS_WRITECASE += writeCase_abc_f128M.o
TF_OBJS_WRITECASE += writeCase_z_bool.o
TF_OBJS_WRITECASE += writeCase_z_ui32.o
TF_OBJS_WRITECASE += writeCase_z_ui64.o
TF_OBJS_WRITECASE += writeCase_z_f16.o
TF_OBJS_WRITECASE += writeCase_z_f32.o
TF_OBJS_WRITECASE += writeCase_z_f64.o
TF_OBJS_WRITECASE += writeCase_z_extF80M.o
TF_OBJS_WRITECASE += writeCase_z_f128M.o
TF_OBJS_TEST :=
TF_OBJS_TEST += test_a_ui32_z_f16.o
TF_OBJS_TEST += test_a_ui32_z_f32.o
TF_OBJS_TEST += test_a_ui32_z_f64.o
TF_OBJS_TEST += test_a_ui32_z_extF80.o
TF_OBJS_TEST += test_a_ui32_z_f128.o
TF_OBJS_TEST += test_a_ui64_z_f16.o
TF_OBJS_TEST += test_a_ui64_z_f32.o
TF_OBJS_TEST += test_a_ui64_z_f64.o
TF_OBJS_TEST += test_a_ui64_z_extF80.o
TF_OBJS_TEST += test_a_ui64_z_f128.o
TF_OBJS_TEST += test_a_i32_z_f16.o
TF_OBJS_TEST += test_a_i32_z_f32.o
TF_OBJS_TEST += test_a_i32_z_f64.o
TF_OBJS_TEST += test_a_i32_z_extF80.o
TF_OBJS_TEST += test_a_i32_z_f128.o
TF_OBJS_TEST += test_a_i64_z_f16.o
TF_OBJS_TEST += test_a_i64_z_f32.o
TF_OBJS_TEST += test_a_i64_z_f64.o
TF_OBJS_TEST += test_a_i64_z_extF80.o
TF_OBJS_TEST += test_a_i64_z_f128.o
TF_OBJS_TEST += test_a_f16_z_ui32_rx.o
TF_OBJS_TEST += test_a_f16_z_ui64_rx.o
TF_OBJS_TEST += test_a_f16_z_i32_rx.o
TF_OBJS_TEST += test_a_f16_z_i64_rx.o
TF_OBJS_TEST += test_a_f16_z_ui32_x.o
TF_OBJS_TEST += test_a_f16_z_ui64_x.o
TF_OBJS_TEST += test_a_f16_z_i32_x.o
TF_OBJS_TEST += test_a_f16_z_i64_x.o
TF_OBJS_TEST += test_a_f16_z_f32.o
TF_OBJS_TEST += test_a_f16_z_f64.o
TF_OBJS_TEST += test_a_f16_z_extF80.o
TF_OBJS_TEST += test_a_f16_z_f128.o
TF_OBJS_TEST += test_az_f16.o
TF_OBJS_TEST += test_az_f16_rx.o
TF_OBJS_TEST += test_abz_f16.o
TF_OBJS_TEST += test_abcz_f16.o
TF_OBJS_TEST += test_ab_f16_z_bool.o
TF_OBJS_TEST += test_a_f32_z_ui32_rx.o
TF_OBJS_TEST += test_a_f32_z_ui64_rx.o
TF_OBJS_TEST += test_a_f32_z_i32_rx.o
TF_OBJS_TEST += test_a_f32_z_i64_rx.o
TF_OBJS_TEST += test_a_f32_z_ui32_x.o
TF_OBJS_TEST += test_a_f32_z_ui64_x.o
TF_OBJS_TEST += test_a_f32_z_i32_x.o
TF_OBJS_TEST += test_a_f32_z_i64_x.o
TF_OBJS_TEST += test_a_f32_z_f16.o
TF_OBJS_TEST += test_a_f32_z_f64.o
TF_OBJS_TEST += test_a_f32_z_extF80.o
TF_OBJS_TEST += test_a_f32_z_f128.o
TF_OBJS_TEST += test_az_f32.o
TF_OBJS_TEST += test_az_f32_rx.o
TF_OBJS_TEST += test_abz_f32.o
TF_OBJS_TEST += test_abcz_f32.o
TF_OBJS_TEST += test_ab_f32_z_bool.o
TF_OBJS_TEST += test_a_f64_z_ui32_rx.o
TF_OBJS_TEST += test_a_f64_z_ui64_rx.o
TF_OBJS_TEST += test_a_f64_z_i32_rx.o
TF_OBJS_TEST += test_a_f64_z_i64_rx.o
TF_OBJS_TEST += test_a_f64_z_ui32_x.o
TF_OBJS_TEST += test_a_f64_z_ui64_x.o
TF_OBJS_TEST += test_a_f64_z_i32_x.o
TF_OBJS_TEST += test_a_f64_z_i64_x.o
TF_OBJS_TEST += test_a_f64_z_f16.o
TF_OBJS_TEST += test_a_f64_z_f32.o
TF_OBJS_TEST += test_a_f64_z_extF80.o
TF_OBJS_TEST += test_a_f64_z_f128.o
TF_OBJS_TEST += test_az_f64.o
TF_OBJS_TEST += test_az_f64_rx.o
TF_OBJS_TEST += test_abz_f64.o
TF_OBJS_TEST += test_abcz_f64.o
TF_OBJS_TEST += test_ab_f64_z_bool.o
TF_OBJS_TEST += test_a_extF80_z_ui32_rx.o
TF_OBJS_TEST += test_a_extF80_z_ui64_rx.o
TF_OBJS_TEST += test_a_extF80_z_i32_rx.o
TF_OBJS_TEST += test_a_extF80_z_i64_rx.o
TF_OBJS_TEST += test_a_extF80_z_ui32_x.o
TF_OBJS_TEST += test_a_extF80_z_ui64_x.o
TF_OBJS_TEST += test_a_extF80_z_i32_x.o
TF_OBJS_TEST += test_a_extF80_z_i64_x.o
TF_OBJS_TEST += test_a_extF80_z_f16.o
TF_OBJS_TEST += test_a_extF80_z_f32.o
TF_OBJS_TEST += test_a_extF80_z_f64.o
TF_OBJS_TEST += test_a_extF80_z_f128.o
TF_OBJS_TEST += test_az_extF80.o
TF_OBJS_TEST += test_az_extF80_rx.o
TF_OBJS_TEST += test_abz_extF80.o
TF_OBJS_TEST += test_ab_extF80_z_bool.o
TF_OBJS_TEST += test_a_f128_z_ui32_rx.o
TF_OBJS_TEST += test_a_f128_z_ui64_rx.o
TF_OBJS_TEST += test_a_f128_z_i32_rx.o
TF_OBJS_TEST += test_a_f128_z_i64_rx.o
TF_OBJS_TEST += test_a_f128_z_ui32_x.o
TF_OBJS_TEST += test_a_f128_z_ui64_x.o
TF_OBJS_TEST += test_a_f128_z_i32_x.o
TF_OBJS_TEST += test_a_f128_z_i64_x.o
TF_OBJS_TEST += test_a_f128_z_f16.o
TF_OBJS_TEST += test_a_f128_z_f32.o
TF_OBJS_TEST += test_a_f128_z_f64.o
TF_OBJS_TEST += test_a_f128_z_extF80.o
TF_OBJS_TEST += test_az_f128.o
TF_OBJS_TEST += test_az_f128_rx.o
TF_OBJS_TEST += test_abz_f128.o
TF_OBJS_TEST += test_abcz_f128.o
TF_OBJS_TEST += test_ab_f128_z_bool.o
TF_OBJS_LIB :=
TF_OBJS_LIB += uint128_inline.o
TF_OBJS_LIB += uint128.o
TF_OBJS_LIB += fail.o
TF_OBJS_LIB += functions_common.o
TF_OBJS_LIB += functionInfos.o
TF_OBJS_LIB += standardFunctionInfos.o
TF_OBJS_LIB += random.o
TF_OBJS_LIB += genCases_common.o
TF_OBJS_LIB += $(TF_OBJS_GENCASES)
TF_OBJS_LIB += genCases_writeTestsTotal.o
TF_OBJS_LIB += verCases_inline.o
TF_OBJS_LIB += verCases_common.o
TF_OBJS_LIB += verCases_writeFunctionName.o
TF_OBJS_LIB += readHex.o
TF_OBJS_LIB += writeHex.o
TF_OBJS_LIB += $(TF_OBJS_WRITECASE)
TF_OBJS_LIB += testLoops_common.o
TF_OBJS_LIB += $(TF_OBJS_TEST)
BINARIES := fp-test$(EXESUF)
# everything depends on config-host.h because platform.h includes it
all: $(BUILD_DIR)/config-host.h
$(MAKE) $(BINARIES)
$(LIBQEMUUTIL):
$(MAKE) -C $(BUILD_DIR) libqemuutil.a
$(BUILD_DIR)/config-host.h:
$(MAKE) -C $(BUILD_DIR) config-host.h
# libtestfloat.a depends on libsoftfloat.a, so specify it first
FP_TEST_LIBS := libtestfloat.a libsoftfloat.a $(LIBQEMUUTIL)
fp-test$(EXESUF): fp-test.o slowfloat.o $(QEMU_SOFTFLOAT_OBJ) $(FP_TEST_LIBS)
# Custom rule to build with SF_CFLAGS
SF_BUILD = $(call quiet-command,$(CC) $(QEMU_LOCAL_INCLUDES) $(QEMU_INCLUDES) \
$(QEMU_CFLAGS) $(SF_CFLAGS) $(QEMU_DGFLAGS) $(CFLAGS) \
$($@-cflags) -c -o $@ $<,"CC","$(TARGET_DIR)$@")
$(SF_OBJS_ALL_NOSPEC): %.o: $(SF_SOURCE_DIR)/%.c
$(SF_BUILD)
$(SF_OBJS_SPECIALIZE): %.o: $(SF_SPECIALIZE_DIR)/%.c
$(SF_BUILD)
libsoftfloat.a: $(SF_OBJS_ALL)
# Custom rule to build with TF_CFLAGS
$(TF_OBJS_LIB) slowfloat.o: %.o: $(TF_SOURCE_DIR)/%.c
$(call quiet-command,$(CC) $(QEMU_LOCAL_INCLUDES) $(QEMU_INCLUDES) \
$(QEMU_CFLAGS) $(TF_CFLAGS) $(QEMU_DGFLAGS) $(CFLAGS) \
$($@-cflags) -c -o $@ $<,"CC","$(TARGET_DIR)$@")
libtestfloat.a: $(TF_OBJS_LIB)
clean:
rm -f *.o *.d $(BINARIES)
rm -f *.gcno *.gcda *.gcov
rm -f fp-test$(EXESUF)
rm -f libsoftfloat.a
rm -f libtestfloat.a
-include $(wildcard *.d)

@ -0,0 +1 @@
Subproject commit b64af41c3276f97f0e181920400ee056b9c88037

@ -0,0 +1 @@
Subproject commit ca9fa2ba05625ba929958f163b01747e07dd39cc

992
tests/fp/fp-test.c Normal file
View File

@ -0,0 +1,992 @@
/*
* fp-test.c - test QEMU's softfloat implementation using Berkeley's Testfloat
*
* Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* This file is derived from testfloat/source/testsoftfloat.c. Its copyright
* info follows:
*
* Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
* University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions, and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the University nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef HW_POISON_H
#error Must define HW_POISON_H to work around TARGET_* poisoning
#endif
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include <math.h>
#include "fpu/softfloat.h"
#include "platform.h"
#include "fail.h"
#include "slowfloat.h"
#include "functions.h"
#include "genCases.h"
#include "verCases.h"
#include "writeCase.h"
#include "testLoops.h"
typedef float16_t (*abz_f16)(float16_t, float16_t);
typedef bool (*ab_f16_z_bool)(float16_t, float16_t);
typedef float32_t (*abz_f32)(float32_t, float32_t);
typedef bool (*ab_f32_z_bool)(float32_t, float32_t);
typedef float64_t (*abz_f64)(float64_t, float64_t);
typedef bool (*ab_f64_z_bool)(float64_t, float64_t);
typedef void (*abz_extF80M)(const extFloat80_t *, const extFloat80_t *,
extFloat80_t *);
typedef bool (*ab_extF80M_z_bool)(const extFloat80_t *, const extFloat80_t *);
typedef void (*abz_f128M)(const float128_t *, const float128_t *, float128_t *);
typedef bool (*ab_f128M_z_bool)(const float128_t *, const float128_t *);
static const char * const round_mode_names[] = {
[ROUND_NEAR_EVEN] = "even",
[ROUND_MINMAG] = "zero",
[ROUND_MIN] = "down",
[ROUND_MAX] = "up",
[ROUND_NEAR_MAXMAG] = "tieaway",
[ROUND_ODD] = "odd",
};
static unsigned int *test_ops;
static unsigned int n_test_ops;
static unsigned int n_max_errors = 20;
static unsigned int test_round_mode = ROUND_NEAR_EVEN;
static unsigned int *round_modes;
static unsigned int n_round_modes;
static int test_level = 1;
static uint8_t slow_init_flags;
static uint8_t qemu_init_flags;
/* qemu softfloat status */
static float_status qsf;
static const char commands_string[] =
"operations:\n"
" <int>_to_<float> <float>_add <float>_eq\n"
" <float>_to_<int> <float>_sub <float>_le\n"
" <float>_to_<int>_r_minMag <float>_mul <float>_lt\n"
" <float>_to_<float> <float>_mulAdd <float>_eq_signaling\n"
" <float>_roundToInt <float>_div <float>_le_quiet\n"
" <float>_rem <float>_lt_quiet\n"
" <float>_sqrt\n"
" Where <int>: ui32, ui64, i32, i64\n"
" <float>: f16, f32, f64, extF80, f128\n"
" If no operation is provided, all the above are tested\n"
"options:\n"
" -e = max error count per test. Default: 20. Set no limit with 0\n"
" -f = initial FP exception flags (vioux). Default: none\n"
" -l = thoroughness level (1 (default), 2)\n"
" -r = rounding mode (even (default), zero, down, up, tieaway, odd)\n"
" Set to 'all' to test all rounding modes, if applicable\n"
" -s = stop when a test fails";
static void usage_complete(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s [options] [operation1 ...]\n", argv[0]);
fprintf(stderr, "%s\n", commands_string);
exit(EXIT_FAILURE);
}
/* keep wrappers separate but do not bother defining headers for all of them */
#include "wrap.inc.c"
static void not_implemented(void)
{
fprintf(stderr, "Not implemented.\n");
}
static bool blacklisted(unsigned op, int rmode)
{
/* odd has only been implemented for a few 128-bit ops */
if (rmode == softfloat_round_odd) {
switch (op) {
case F128_ADD:
case F128_SUB:
case F128_MUL:
case F128_DIV:
case F128_TO_F64:
case F128_SQRT:
return false;
default:
return true;
}
}
return false;
}
static void do_testfloat(int op, int rmode, bool exact)
{
abz_f16 true_abz_f16;
abz_f16 subj_abz_f16;
ab_f16_z_bool true_f16_z_bool;
ab_f16_z_bool subj_f16_z_bool;
abz_f32 true_abz_f32;
abz_f32 subj_abz_f32;
ab_f32_z_bool true_ab_f32_z_bool;
ab_f32_z_bool subj_ab_f32_z_bool;
abz_f64 true_abz_f64;
abz_f64 subj_abz_f64;
ab_f64_z_bool true_ab_f64_z_bool;
ab_f64_z_bool subj_ab_f64_z_bool;
abz_extF80M true_abz_extF80M;
abz_extF80M subj_abz_extF80M;
ab_extF80M_z_bool true_ab_extF80M_z_bool;
ab_extF80M_z_bool subj_ab_extF80M_z_bool;
abz_f128M true_abz_f128M;
abz_f128M subj_abz_f128M;
ab_f128M_z_bool true_ab_f128M_z_bool;
ab_f128M_z_bool subj_ab_f128M_z_bool;
fputs(">> Testing ", stderr);
verCases_writeFunctionName(stderr);
fputs("\n", stderr);
if (blacklisted(op, rmode)) {
not_implemented();
return;
}
switch (op) {
case UI32_TO_F16:
test_a_ui32_z_f16(slow_ui32_to_f16, qemu_ui32_to_f16);
break;
case UI32_TO_F32:
test_a_ui32_z_f32(slow_ui32_to_f32, qemu_ui32_to_f32);
break;
case UI32_TO_F64:
test_a_ui32_z_f64(slow_ui32_to_f64, qemu_ui32_to_f64);
break;
case UI32_TO_EXTF80:
not_implemented();
break;
case UI32_TO_F128:
not_implemented();
break;
case UI64_TO_F16:
test_a_ui64_z_f16(slow_ui64_to_f16, qemu_ui64_to_f16);
break;
case UI64_TO_F32:
test_a_ui64_z_f32(slow_ui64_to_f32, qemu_ui64_to_f32);
break;
case UI64_TO_F64:
test_a_ui64_z_f64(slow_ui64_to_f64, qemu_ui64_to_f64);
break;
case UI64_TO_EXTF80:
not_implemented();
break;
case UI64_TO_F128:
test_a_ui64_z_f128(slow_ui64_to_f128M, qemu_ui64_to_f128M);
break;
case I32_TO_F16:
test_a_i32_z_f16(slow_i32_to_f16, qemu_i32_to_f16);
break;
case I32_TO_F32:
test_a_i32_z_f32(slow_i32_to_f32, qemu_i32_to_f32);
break;
case I32_TO_F64:
test_a_i32_z_f64(slow_i32_to_f64, qemu_i32_to_f64);
break;
case I32_TO_EXTF80:
test_a_i32_z_extF80(slow_i32_to_extF80M, qemu_i32_to_extF80M);
break;
case I32_TO_F128:
test_a_i32_z_f128(slow_i32_to_f128M, qemu_i32_to_f128M);
break;
case I64_TO_F16:
test_a_i64_z_f16(slow_i64_to_f16, qemu_i64_to_f16);
break;
case I64_TO_F32:
test_a_i64_z_f32(slow_i64_to_f32, qemu_i64_to_f32);
break;
case I64_TO_F64:
test_a_i64_z_f64(slow_i64_to_f64, qemu_i64_to_f64);
break;
case I64_TO_EXTF80:
test_a_i64_z_extF80(slow_i64_to_extF80M, qemu_i64_to_extF80M);
break;
case I64_TO_F128:
test_a_i64_z_f128(slow_i64_to_f128M, qemu_i64_to_f128M);
break;
case F16_TO_UI32:
test_a_f16_z_ui32_rx(slow_f16_to_ui32, qemu_f16_to_ui32, rmode, exact);
break;
case F16_TO_UI64:
test_a_f16_z_ui64_rx(slow_f16_to_ui64, qemu_f16_to_ui64, rmode, exact);
break;
case F16_TO_I32:
test_a_f16_z_i32_rx(slow_f16_to_i32, qemu_f16_to_i32, rmode, exact);
break;
case F16_TO_I64:
test_a_f16_z_i64_rx(slow_f16_to_i64, qemu_f16_to_i64, rmode, exact);
break;
case F16_TO_UI32_R_MINMAG:
test_a_f16_z_ui32_x(slow_f16_to_ui32_r_minMag,
qemu_f16_to_ui32_r_minMag, exact);
break;
case F16_TO_UI64_R_MINMAG:
test_a_f16_z_ui64_x(slow_f16_to_ui64_r_minMag,
qemu_f16_to_ui64_r_minMag, exact);
break;
case F16_TO_I32_R_MINMAG:
test_a_f16_z_i32_x(slow_f16_to_i32_r_minMag, qemu_f16_to_i32_r_minMag,
exact);
break;
case F16_TO_I64_R_MINMAG:
test_a_f16_z_i64_x(slow_f16_to_i64_r_minMag, qemu_f16_to_i64_r_minMag,
exact);
break;
case F16_TO_F32:
test_a_f16_z_f32(slow_f16_to_f32, qemu_f16_to_f32);
break;
case F16_TO_F64:
test_a_f16_z_f64(slow_f16_to_f64, qemu_f16_to_f64);
break;
case F16_TO_EXTF80:
not_implemented();
break;
case F16_TO_F128:
not_implemented();
break;
case F16_ROUNDTOINT:
test_az_f16_rx(slow_f16_roundToInt, qemu_f16_roundToInt, rmode, exact);
break;
case F16_ADD:
true_abz_f16 = slow_f16_add;
subj_abz_f16 = qemu_f16_add;
goto test_abz_f16;
case F16_SUB:
true_abz_f16 = slow_f16_sub;
subj_abz_f16 = qemu_f16_sub;
goto test_abz_f16;
case F16_MUL:
true_abz_f16 = slow_f16_mul;
subj_abz_f16 = qemu_f16_mul;
goto test_abz_f16;
case F16_DIV:
true_abz_f16 = slow_f16_div;
subj_abz_f16 = qemu_f16_div;
goto test_abz_f16;
case F16_REM:
not_implemented();
break;
test_abz_f16:
test_abz_f16(true_abz_f16, subj_abz_f16);
break;
case F16_MULADD:
test_abcz_f16(slow_f16_mulAdd, qemu_f16_mulAdd);
break;
case F16_SQRT:
test_az_f16(slow_f16_sqrt, qemu_f16_sqrt);
break;
case F16_EQ:
true_f16_z_bool = slow_f16_eq;
subj_f16_z_bool = qemu_f16_eq;
goto test_ab_f16_z_bool;
case F16_LE:
true_f16_z_bool = slow_f16_le;
subj_f16_z_bool = qemu_f16_le;
goto test_ab_f16_z_bool;
case F16_LT:
true_f16_z_bool = slow_f16_lt;
subj_f16_z_bool = qemu_f16_lt;
goto test_ab_f16_z_bool;
case F16_EQ_SIGNALING:
true_f16_z_bool = slow_f16_eq_signaling;
subj_f16_z_bool = qemu_f16_eq_signaling;
goto test_ab_f16_z_bool;
case F16_LE_QUIET:
true_f16_z_bool = slow_f16_le_quiet;
subj_f16_z_bool = qemu_f16_le_quiet;
goto test_ab_f16_z_bool;
case F16_LT_QUIET:
true_f16_z_bool = slow_f16_lt_quiet;
subj_f16_z_bool = qemu_f16_lt_quiet;
test_ab_f16_z_bool:
test_ab_f16_z_bool(true_f16_z_bool, subj_f16_z_bool);
break;
case F32_TO_UI32:
test_a_f32_z_ui32_rx(slow_f32_to_ui32, qemu_f32_to_ui32, rmode, exact);
break;
case F32_TO_UI64:
test_a_f32_z_ui64_rx(slow_f32_to_ui64, qemu_f32_to_ui64, rmode, exact);
break;
case F32_TO_I32:
test_a_f32_z_i32_rx(slow_f32_to_i32, qemu_f32_to_i32, rmode, exact);
break;
case F32_TO_I64:
test_a_f32_z_i64_rx(slow_f32_to_i64, qemu_f32_to_i64, rmode, exact);
break;
case F32_TO_UI32_R_MINMAG:
test_a_f32_z_ui32_x(slow_f32_to_ui32_r_minMag,
qemu_f32_to_ui32_r_minMag, exact);
break;
case F32_TO_UI64_R_MINMAG:
test_a_f32_z_ui64_x(slow_f32_to_ui64_r_minMag,
qemu_f32_to_ui64_r_minMag, exact);
break;
case F32_TO_I32_R_MINMAG:
test_a_f32_z_i32_x(slow_f32_to_i32_r_minMag, qemu_f32_to_i32_r_minMag,
exact);
break;
case F32_TO_I64_R_MINMAG:
test_a_f32_z_i64_x(slow_f32_to_i64_r_minMag, qemu_f32_to_i64_r_minMag,
exact);
break;
case F32_TO_F16:
test_a_f32_z_f16(slow_f32_to_f16, qemu_f32_to_f16);
break;
case F32_TO_F64:
test_a_f32_z_f64(slow_f32_to_f64, qemu_f32_to_f64);
break;
case F32_TO_EXTF80:
test_a_f32_z_extF80(slow_f32_to_extF80M, qemu_f32_to_extF80M);
break;
case F32_TO_F128:
test_a_f32_z_f128(slow_f32_to_f128M, qemu_f32_to_f128M);
break;
case F32_ROUNDTOINT:
test_az_f32_rx(slow_f32_roundToInt, qemu_f32_roundToInt, rmode, exact);
break;
case F32_ADD:
true_abz_f32 = slow_f32_add;
subj_abz_f32 = qemu_f32_add;
goto test_abz_f32;
case F32_SUB:
true_abz_f32 = slow_f32_sub;
subj_abz_f32 = qemu_f32_sub;
goto test_abz_f32;
case F32_MUL:
true_abz_f32 = slow_f32_mul;
subj_abz_f32 = qemu_f32_mul;
goto test_abz_f32;
case F32_DIV:
true_abz_f32 = slow_f32_div;
subj_abz_f32 = qemu_f32_div;
goto test_abz_f32;
case F32_REM:
true_abz_f32 = slow_f32_rem;
subj_abz_f32 = qemu_f32_rem;
test_abz_f32:
test_abz_f32(true_abz_f32, subj_abz_f32);
break;
case F32_MULADD:
test_abcz_f32(slow_f32_mulAdd, qemu_f32_mulAdd);
break;
case F32_SQRT:
test_az_f32(slow_f32_sqrt, qemu_f32_sqrt);
break;
case F32_EQ:
true_ab_f32_z_bool = slow_f32_eq;
subj_ab_f32_z_bool = qemu_f32_eq;
goto test_ab_f32_z_bool;
case F32_LE:
true_ab_f32_z_bool = slow_f32_le;
subj_ab_f32_z_bool = qemu_f32_le;
goto test_ab_f32_z_bool;
case F32_LT:
true_ab_f32_z_bool = slow_f32_lt;
subj_ab_f32_z_bool = qemu_f32_lt;
goto test_ab_f32_z_bool;
case F32_EQ_SIGNALING:
true_ab_f32_z_bool = slow_f32_eq_signaling;
subj_ab_f32_z_bool = qemu_f32_eq_signaling;
goto test_ab_f32_z_bool;
case F32_LE_QUIET:
true_ab_f32_z_bool = slow_f32_le_quiet;
subj_ab_f32_z_bool = qemu_f32_le_quiet;
goto test_ab_f32_z_bool;
case F32_LT_QUIET:
true_ab_f32_z_bool = slow_f32_lt_quiet;
subj_ab_f32_z_bool = qemu_f32_lt_quiet;
test_ab_f32_z_bool:
test_ab_f32_z_bool(true_ab_f32_z_bool, subj_ab_f32_z_bool);
break;
case F64_TO_UI32:
test_a_f64_z_ui32_rx(slow_f64_to_ui32, qemu_f64_to_ui32, rmode, exact);
break;
case F64_TO_UI64:
test_a_f64_z_ui64_rx(slow_f64_to_ui64, qemu_f64_to_ui64, rmode, exact);
break;
case F64_TO_I32:
test_a_f64_z_i32_rx(slow_f64_to_i32, qemu_f64_to_i32, rmode, exact);
break;
case F64_TO_I64:
test_a_f64_z_i64_rx(slow_f64_to_i64, qemu_f64_to_i64, rmode, exact);
break;
case F64_TO_UI32_R_MINMAG:
test_a_f64_z_ui32_x(slow_f64_to_ui32_r_minMag,
qemu_f64_to_ui32_r_minMag, exact);
break;
case F64_TO_UI64_R_MINMAG:
test_a_f64_z_ui64_x(slow_f64_to_ui64_r_minMag,
qemu_f64_to_ui64_r_minMag, exact);
break;
case F64_TO_I32_R_MINMAG:
test_a_f64_z_i32_x(slow_f64_to_i32_r_minMag, qemu_f64_to_i32_r_minMag,
exact);
break;
case F64_TO_I64_R_MINMAG:
test_a_f64_z_i64_x(slow_f64_to_i64_r_minMag, qemu_f64_to_i64_r_minMag,
exact);
break;
case F64_TO_F16:
test_a_f64_z_f16(slow_f64_to_f16, qemu_f64_to_f16);
break;
case F64_TO_F32:
test_a_f64_z_f32(slow_f64_to_f32, qemu_f64_to_f32);
break;
case F64_TO_EXTF80:
test_a_f64_z_extF80(slow_f64_to_extF80M, qemu_f64_to_extF80M);
break;
case F64_TO_F128:
test_a_f64_z_f128(slow_f64_to_f128M, qemu_f64_to_f128M);
break;
case F64_ROUNDTOINT:
test_az_f64_rx(slow_f64_roundToInt, qemu_f64_roundToInt, rmode, exact);
break;
case F64_ADD:
true_abz_f64 = slow_f64_add;
subj_abz_f64 = qemu_f64_add;
goto test_abz_f64;
case F64_SUB:
true_abz_f64 = slow_f64_sub;
subj_abz_f64 = qemu_f64_sub;
goto test_abz_f64;
case F64_MUL:
true_abz_f64 = slow_f64_mul;
subj_abz_f64 = qemu_f64_mul;
goto test_abz_f64;
case F64_DIV:
true_abz_f64 = slow_f64_div;
subj_abz_f64 = qemu_f64_div;
goto test_abz_f64;
case F64_REM:
true_abz_f64 = slow_f64_rem;
subj_abz_f64 = qemu_f64_rem;
test_abz_f64:
test_abz_f64(true_abz_f64, subj_abz_f64);
break;
case F64_MULADD:
test_abcz_f64(slow_f64_mulAdd, qemu_f64_mulAdd);
break;
case F64_SQRT:
test_az_f64(slow_f64_sqrt, qemu_f64_sqrt);
break;
case F64_EQ:
true_ab_f64_z_bool = slow_f64_eq;
subj_ab_f64_z_bool = qemu_f64_eq;
goto test_ab_f64_z_bool;
case F64_LE:
true_ab_f64_z_bool = slow_f64_le;
subj_ab_f64_z_bool = qemu_f64_le;
goto test_ab_f64_z_bool;
case F64_LT:
true_ab_f64_z_bool = slow_f64_lt;
subj_ab_f64_z_bool = qemu_f64_lt;
goto test_ab_f64_z_bool;
case F64_EQ_SIGNALING:
true_ab_f64_z_bool = slow_f64_eq_signaling;
subj_ab_f64_z_bool = qemu_f64_eq_signaling;
goto test_ab_f64_z_bool;
case F64_LE_QUIET:
true_ab_f64_z_bool = slow_f64_le_quiet;
subj_ab_f64_z_bool = qemu_f64_le_quiet;
goto test_ab_f64_z_bool;
case F64_LT_QUIET:
true_ab_f64_z_bool = slow_f64_lt_quiet;
subj_ab_f64_z_bool = qemu_f64_lt_quiet;
test_ab_f64_z_bool:
test_ab_f64_z_bool(true_ab_f64_z_bool, subj_ab_f64_z_bool);
break;
case EXTF80_TO_UI32:
not_implemented();
break;
case EXTF80_TO_UI64:
not_implemented();
break;
case EXTF80_TO_I32:
test_a_extF80_z_i32_rx(slow_extF80M_to_i32, qemu_extF80M_to_i32, rmode,
exact);
break;
case EXTF80_TO_I64:
test_a_extF80_z_i64_rx(slow_extF80M_to_i64, qemu_extF80M_to_i64, rmode,
exact);
break;
case EXTF80_TO_UI32_R_MINMAG:
not_implemented();
break;
case EXTF80_TO_UI64_R_MINMAG:
not_implemented();
break;
case EXTF80_TO_I32_R_MINMAG:
test_a_extF80_z_i32_x(slow_extF80M_to_i32_r_minMag,
qemu_extF80M_to_i32_r_minMag, exact);
break;
case EXTF80_TO_I64_R_MINMAG:
test_a_extF80_z_i64_x(slow_extF80M_to_i64_r_minMag,
qemu_extF80M_to_i64_r_minMag, exact);
break;
case EXTF80_TO_F16:
not_implemented();
break;
case EXTF80_TO_F32:
test_a_extF80_z_f32(slow_extF80M_to_f32, qemu_extF80M_to_f32);
break;
case EXTF80_TO_F64:
test_a_extF80_z_f64(slow_extF80M_to_f64, qemu_extF80M_to_f64);
break;
case EXTF80_TO_F128:
test_a_extF80_z_f128(slow_extF80M_to_f128M, qemu_extF80M_to_f128M);
break;
case EXTF80_ROUNDTOINT:
test_az_extF80_rx(slow_extF80M_roundToInt, qemu_extF80M_roundToInt,
rmode, exact);
break;
case EXTF80_ADD:
true_abz_extF80M = slow_extF80M_add;
subj_abz_extF80M = qemu_extF80M_add;
goto test_abz_extF80;
case EXTF80_SUB:
true_abz_extF80M = slow_extF80M_sub;
subj_abz_extF80M = qemu_extF80M_sub;
goto test_abz_extF80;
case EXTF80_MUL:
true_abz_extF80M = slow_extF80M_mul;
subj_abz_extF80M = qemu_extF80M_mul;
goto test_abz_extF80;
case EXTF80_DIV:
true_abz_extF80M = slow_extF80M_div;
subj_abz_extF80M = qemu_extF80M_div;
goto test_abz_extF80;
case EXTF80_REM:
true_abz_extF80M = slow_extF80M_rem;
subj_abz_extF80M = qemu_extF80M_rem;
test_abz_extF80:
test_abz_extF80(true_abz_extF80M, subj_abz_extF80M);
break;
case EXTF80_SQRT:
test_az_extF80(slow_extF80M_sqrt, qemu_extF80M_sqrt);
break;
case EXTF80_EQ:
true_ab_extF80M_z_bool = slow_extF80M_eq;
subj_ab_extF80M_z_bool = qemu_extF80M_eq;
goto test_ab_extF80_z_bool;
case EXTF80_LE:
true_ab_extF80M_z_bool = slow_extF80M_le;
subj_ab_extF80M_z_bool = qemu_extF80M_le;
goto test_ab_extF80_z_bool;
case EXTF80_LT:
true_ab_extF80M_z_bool = slow_extF80M_lt;
subj_ab_extF80M_z_bool = qemu_extF80M_lt;
goto test_ab_extF80_z_bool;
case EXTF80_EQ_SIGNALING:
true_ab_extF80M_z_bool = slow_extF80M_eq_signaling;
subj_ab_extF80M_z_bool = qemu_extF80M_eq_signaling;
goto test_ab_extF80_z_bool;
case EXTF80_LE_QUIET:
true_ab_extF80M_z_bool = slow_extF80M_le_quiet;
subj_ab_extF80M_z_bool = qemu_extF80M_le_quiet;
goto test_ab_extF80_z_bool;
case EXTF80_LT_QUIET:
true_ab_extF80M_z_bool = slow_extF80M_lt_quiet;
subj_ab_extF80M_z_bool = qemu_extF80M_lt_quiet;
test_ab_extF80_z_bool:
test_ab_extF80_z_bool(true_ab_extF80M_z_bool, subj_ab_extF80M_z_bool);
break;
case F128_TO_UI32:
not_implemented();
break;
case F128_TO_UI64:
test_a_f128_z_ui64_rx(slow_f128M_to_ui64, qemu_f128M_to_ui64, rmode,
exact);
break;
case F128_TO_I32:
test_a_f128_z_i32_rx(slow_f128M_to_i32, qemu_f128M_to_i32, rmode,
exact);
break;
case F128_TO_I64:
test_a_f128_z_i64_rx(slow_f128M_to_i64, qemu_f128M_to_i64, rmode,
exact);
break;
case F128_TO_UI32_R_MINMAG:
test_a_f128_z_ui32_x(slow_f128M_to_ui32_r_minMag,
qemu_f128M_to_ui32_r_minMag, exact);
break;
case F128_TO_UI64_R_MINMAG:
test_a_f128_z_ui64_x(slow_f128M_to_ui64_r_minMag,
qemu_f128M_to_ui64_r_minMag, exact);
break;
case F128_TO_I32_R_MINMAG:
test_a_f128_z_i32_x(slow_f128M_to_i32_r_minMag,
qemu_f128M_to_i32_r_minMag, exact);
break;
case F128_TO_I64_R_MINMAG:
test_a_f128_z_i64_x(slow_f128M_to_i64_r_minMag,
qemu_f128M_to_i64_r_minMag, exact);
break;
case F128_TO_F16:
not_implemented();
break;
case F128_TO_F32:
test_a_f128_z_f32(slow_f128M_to_f32, qemu_f128M_to_f32);
break;
case F128_TO_F64:
test_a_f128_z_f64(slow_f128M_to_f64, qemu_f128M_to_f64);
break;
case F128_TO_EXTF80:
test_a_f128_z_extF80(slow_f128M_to_extF80M, qemu_f128M_to_extF80M);
break;
case F128_ROUNDTOINT:
test_az_f128_rx(slow_f128M_roundToInt, qemu_f128M_roundToInt, rmode,
exact);
break;
case F128_ADD:
true_abz_f128M = slow_f128M_add;
subj_abz_f128M = qemu_f128M_add;
goto test_abz_f128;
case F128_SUB:
true_abz_f128M = slow_f128M_sub;
subj_abz_f128M = qemu_f128M_sub;
goto test_abz_f128;
case F128_MUL:
true_abz_f128M = slow_f128M_mul;
subj_abz_f128M = qemu_f128M_mul;
goto test_abz_f128;
case F128_DIV:
true_abz_f128M = slow_f128M_div;
subj_abz_f128M = qemu_f128M_div;
goto test_abz_f128;
case F128_REM:
true_abz_f128M = slow_f128M_rem;
subj_abz_f128M = qemu_f128M_rem;
test_abz_f128:
test_abz_f128(true_abz_f128M, subj_abz_f128M);
break;
case F128_MULADD:
not_implemented();
break;
case F128_SQRT:
test_az_f128(slow_f128M_sqrt, qemu_f128M_sqrt);
break;
case F128_EQ:
true_ab_f128M_z_bool = slow_f128M_eq;
subj_ab_f128M_z_bool = qemu_f128M_eq;
goto test_ab_f128_z_bool;
case F128_LE:
true_ab_f128M_z_bool = slow_f128M_le;
subj_ab_f128M_z_bool = qemu_f128M_le;
goto test_ab_f128_z_bool;
case F128_LT:
true_ab_f128M_z_bool = slow_f128M_lt;
subj_ab_f128M_z_bool = qemu_f128M_lt;
goto test_ab_f128_z_bool;
case F128_EQ_SIGNALING:
true_ab_f128M_z_bool = slow_f128M_eq_signaling;
subj_ab_f128M_z_bool = qemu_f128M_eq_signaling;
goto test_ab_f128_z_bool;
case F128_LE_QUIET:
true_ab_f128M_z_bool = slow_f128M_le_quiet;
subj_ab_f128M_z_bool = qemu_f128M_le_quiet;
goto test_ab_f128_z_bool;
case F128_LT_QUIET:
true_ab_f128M_z_bool = slow_f128M_lt_quiet;
subj_ab_f128M_z_bool = qemu_f128M_lt_quiet;
test_ab_f128_z_bool:
test_ab_f128_z_bool(true_ab_f128M_z_bool, subj_ab_f128M_z_bool);
break;
}
if ((verCases_errorStop && verCases_anyErrors)) {
verCases_exitWithStatus();
}
}
static unsigned int test_name_to_op(const char *arg)
{
unsigned int i;
/* counting begins at 1 */
for (i = 1; i < NUM_FUNCTIONS; i++) {
const char *name = functionInfos[i].namePtr;
if (name && !strcmp(name, arg)) {
return i;
}
}
return 0;
}
static unsigned int round_name_to_mode(const char *name)
{
int i;
/* counting begins at 1 */
for (i = 1; i < NUM_ROUNDINGMODES; i++) {
if (!strcmp(round_mode_names[i], name)) {
return i;
}
}
return 0;
}
static int set_init_flags(const char *flags)
{
const char *p;
for (p = flags; *p != '\0'; p++) {
switch (*p) {
case 'v':
slow_init_flags |= softfloat_flag_invalid;
qemu_init_flags |= float_flag_invalid;
break;
case 'i':
slow_init_flags |= softfloat_flag_infinite;
qemu_init_flags |= float_flag_divbyzero;
break;
case 'o':
slow_init_flags |= softfloat_flag_overflow;
qemu_init_flags |= float_flag_overflow;
break;
case 'u':
slow_init_flags |= softfloat_flag_underflow;
qemu_init_flags |= float_flag_underflow;
break;
case 'x':
slow_init_flags |= softfloat_flag_inexact;
qemu_init_flags |= float_flag_inexact;
break;
default:
return 1;
}
}
return 0;
}
static uint8_t slow_clear_flags(void)
{
uint8_t prev = slowfloat_exceptionFlags;
slowfloat_exceptionFlags = slow_init_flags;
return prev;
}
static uint8_t qemu_clear_flags(void)
{
uint8_t prev = qemu_flags_to_sf(qsf.float_exception_flags);
qsf.float_exception_flags = qemu_init_flags;
return prev;
}
static void parse_args(int argc, char *argv[])
{
unsigned int i;
int c;
for (;;) {
c = getopt(argc, argv, "he:f:l:r:s");
if (c < 0) {
break;
}
switch (c) {
case 'h':
usage_complete(argc, argv);
exit(EXIT_SUCCESS);
case 'e':
if (qemu_strtoui(optarg, NULL, 0, &n_max_errors)) {
fprintf(stderr, "fatal: invalid max error count\n");
exit(EXIT_FAILURE);
}
break;
case 'f':
if (set_init_flags(optarg)) {
fprintf(stderr, "fatal: flags must be a subset of 'vioux'\n");
exit(EXIT_FAILURE);
}
break;
case 'l':
if (qemu_strtoi(optarg, NULL, 0, &test_level)) {
fprintf(stderr, "fatal: invalid test level\n");
exit(EXIT_FAILURE);
}
break;
case 'r':
if (!strcmp(optarg, "all")) {
test_round_mode = 0;
} else {
test_round_mode = round_name_to_mode(optarg);
if (test_round_mode == 0) {
fprintf(stderr, "fatal: invalid rounding mode\n");
exit(EXIT_FAILURE);
}
}
break;
case 's':
verCases_errorStop = true;
break;
case '?':
/* invalid option or missing argument; getopt prints error info */
exit(EXIT_FAILURE);
}
}
/* set rounding modes */
if (test_round_mode == 0) {
/* test all rounding modes; note that counting begins at 1 */
n_round_modes = NUM_ROUNDINGMODES - 1;
round_modes = g_malloc_n(n_round_modes, sizeof(*round_modes));
for (i = 0; i < n_round_modes; i++) {
round_modes[i] = i + 1;
}
} else {
n_round_modes = 1;
round_modes = g_malloc(sizeof(*round_modes));
round_modes[0] = test_round_mode;
}
/* set test ops */
if (optind == argc) {
/* test all ops; note that counting begins at 1 */
n_test_ops = NUM_FUNCTIONS - 1;
test_ops = g_malloc_n(n_test_ops, sizeof(*test_ops));
for (i = 0; i < n_test_ops; i++) {
test_ops[i] = i + 1;
}
} else {
n_test_ops = argc - optind;
test_ops = g_malloc_n(n_test_ops, sizeof(*test_ops));
for (i = 0; i < n_test_ops; i++) {
const char *name = argv[i + optind];
unsigned int op = test_name_to_op(name);
if (op == 0) {
fprintf(stderr, "fatal: invalid op '%s'\n", name);
exit(EXIT_FAILURE);
}
test_ops[i] = op;
}
}
}
static void QEMU_NORETURN run_test(void)
{
unsigned int i;
genCases_setLevel(test_level);
verCases_maxErrorCount = n_max_errors;
testLoops_trueFlagsFunction = slow_clear_flags;
testLoops_subjFlagsFunction = qemu_clear_flags;
for (i = 0; i < n_test_ops; i++) {
unsigned int op = test_ops[i];
int j;
if (functionInfos[op].namePtr == NULL) {
continue;
}
verCases_functionNamePtr = functionInfos[op].namePtr;
for (j = 0; j < n_round_modes; j++) {
int attrs = functionInfos[op].attribs;
int round = round_modes[j];
int rmode = roundingModes[round];
int k;
verCases_roundingCode = 0;
slowfloat_roundingMode = rmode;
qsf.float_rounding_mode = sf_rounding_to_qemu(rmode);
if (attrs & (FUNC_ARG_ROUNDINGMODE | FUNC_EFF_ROUNDINGMODE)) {
/* print rounding mode if the op is affected by it */
verCases_roundingCode = round;
} else if (j > 0) {
/* if the op is not sensitive to rounding, move on */
break;
}
/* QEMU doesn't have !exact */
verCases_exact = true;
verCases_usesExact = !!(attrs & FUNC_ARG_EXACT);
for (k = 0; k < 3; k++) {
int prec80 = 32;
int l;
if (k == 1) {
prec80 = 64;
} else if (k == 2) {
prec80 = 80;
}
verCases_roundingPrecision = 0;
slow_extF80_roundingPrecision = prec80;
qsf.floatx80_rounding_precision = prec80;
if (attrs & FUNC_EFF_ROUNDINGPRECISION) {
verCases_roundingPrecision = prec80;
} else if (k > 0) {
/* if the op is not sensitive to prec80, move on */
break;
}
/* note: the count begins at 1 */
for (l = 1; l < NUM_TININESSMODES; l++) {
int tmode = tininessModes[l];
verCases_tininessCode = 0;
slowfloat_detectTininess = tmode;
qsf.float_detect_tininess = sf_tininess_to_qemu(tmode);
if (attrs & FUNC_EFF_TININESSMODE ||
((attrs & FUNC_EFF_TININESSMODE_REDUCEDPREC) &&
prec80 && prec80 < 80)) {
verCases_tininessCode = l;
} else if (l > 1) {
/* if the op is not sensitive to tininess, move on */
break;
}
do_testfloat(op, rmode, true);
}
}
}
}
verCases_exitWithStatus();
/* old compilers might miss that we exited */
g_assert_not_reached();
}
int main(int argc, char *argv[])
{
parse_args(argc, argv);
fail_programName = argv[0];
run_test(); /* does not return */
}

41
tests/fp/platform.h Normal file
View File

@ -0,0 +1,41 @@
#ifndef QEMU_TESTFLOAT_PLATFORM_H
#define QEMU_TESTFLOAT_PLATFORM_H
/*
* Copyright 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of
* California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions, and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the University nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config-host.h"
#ifndef HOST_WORDS_BIGENDIAN
#define LITTLEENDIAN 1
/* otherwise do not define it */
#endif
#define INLINE static inline
#endif /* QEMU_TESTFLOAT_PLATFORM_H */

653
tests/fp/wrap.inc.c Normal file
View File

@ -0,0 +1,653 @@
/*
* In this file we wrap QEMU FP functions to look like softfloat/testfloat's,
* so that we can use the testfloat infrastructure as-is.
*
* This file must be included directly from fp-test.c. We could compile it
* separately, but it would be tedious to add declarations for all the wrappers.
*/
static signed char sf_tininess_to_qemu(uint_fast8_t mode)
{
switch (mode) {
case softfloat_tininess_beforeRounding:
return float_tininess_before_rounding;
case softfloat_tininess_afterRounding:
return float_tininess_after_rounding;
default:
g_assert_not_reached();
}
}
static signed char sf_rounding_to_qemu(uint_fast8_t mode)
{
switch (mode) {
case softfloat_round_near_even:
return float_round_nearest_even;
case softfloat_round_minMag:
return float_round_to_zero;
case softfloat_round_min:
return float_round_down;
case softfloat_round_max:
return float_round_up;
case softfloat_round_near_maxMag:
return float_round_ties_away;
case softfloat_round_odd:
return float_round_to_odd;
default:
g_assert_not_reached();
}
}
static uint_fast8_t qemu_flags_to_sf(uint8_t qflags)
{
uint_fast8_t ret = 0;
if (qflags & float_flag_invalid) {
ret |= softfloat_flag_invalid;
}
if (qflags & float_flag_divbyzero) {
ret |= softfloat_flag_infinite;
}
if (qflags & float_flag_overflow) {
ret |= softfloat_flag_overflow;
}
if (qflags & float_flag_underflow) {
ret |= softfloat_flag_underflow;
}
if (qflags & float_flag_inexact) {
ret |= softfloat_flag_inexact;
}
return ret;
}
/*
* floatx80 and float128 cannot be cast between qemu and softfloat, because
* in softfloat the order of the fields depends on the host's endianness.
*/
static extFloat80_t qemu_to_soft80(floatx80 a)
{
extFloat80_t ret;
ret.signif = a.low;
ret.signExp = a.high;
return ret;
}
static floatx80 soft_to_qemu80(extFloat80_t a)
{
floatx80 ret;
ret.low = a.signif;
ret.high = a.signExp;
return ret;
}
static float128_t qemu_to_soft128(float128 a)
{
float128_t ret;
struct uint128 *to = (struct uint128 *)&ret;
to->v0 = a.low;
to->v64 = a.high;
return ret;
}
static float128 soft_to_qemu128(float128_t a)
{
struct uint128 *from = (struct uint128 *)&a;
float128 ret;
ret.low = from->v0;
ret.high = from->v64;
return ret;
}
/* conversions */
#define WRAP_SF_TO_SF_IEEE(name, func, a_type, b_type) \
static b_type##_t name(a_type##_t a) \
{ \
a_type *ap = (a_type *)&a; \
b_type ret; \
\
ret = func(*ap, true, &qsf); \
return *(b_type##_t *)&ret; \
}
WRAP_SF_TO_SF_IEEE(qemu_f16_to_f32, float16_to_float32, float16, float32)
WRAP_SF_TO_SF_IEEE(qemu_f16_to_f64, float16_to_float64, float16, float64)
WRAP_SF_TO_SF_IEEE(qemu_f32_to_f16, float32_to_float16, float32, float16)
WRAP_SF_TO_SF_IEEE(qemu_f64_to_f16, float64_to_float16, float64, float16)
#undef WRAP_SF_TO_SF_IEEE
#define WRAP_SF_TO_SF(name, func, a_type, b_type) \
static b_type##_t name(a_type##_t a) \
{ \
a_type *ap = (a_type *)&a; \
b_type ret; \
\
ret = func(*ap, &qsf); \
return *(b_type##_t *)&ret; \
}
WRAP_SF_TO_SF(qemu_f32_to_f64, float32_to_float64, float32, float64)
WRAP_SF_TO_SF(qemu_f64_to_f32, float64_to_float32, float64, float32)
#undef WRAP_SF_TO_SF
#define WRAP_SF_TO_80(name, func, type) \
static void name(type##_t a, extFloat80_t *res) \
{ \
floatx80 ret; \
type *ap = (type *)&a; \
\
ret = func(*ap, &qsf); \
*res = qemu_to_soft80(ret); \
}
WRAP_SF_TO_80(qemu_f32_to_extF80M, float32_to_floatx80, float32)
WRAP_SF_TO_80(qemu_f64_to_extF80M, float64_to_floatx80, float64)
#undef WRAP_SF_TO_80
#define WRAP_SF_TO_128(name, func, type) \
static void name(type##_t a, float128_t *res) \
{ \
float128 ret; \
type *ap = (type *)&a; \
\
ret = func(*ap, &qsf); \
*res = qemu_to_soft128(ret); \
}
WRAP_SF_TO_128(qemu_f32_to_f128M, float32_to_float128, float32)
WRAP_SF_TO_128(qemu_f64_to_f128M, float64_to_float128, float64)
#undef WRAP_SF_TO_128
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_SF_TO_INT(name, func, type, fast_type) \
static fast_type name(type##_t a, uint_fast8_t round, bool exact) \
{ \
type *ap = (type *)&a; \
\
qsf.float_rounding_mode = sf_rounding_to_qemu(round); \
return func(*ap, &qsf); \
}
WRAP_SF_TO_INT(qemu_f16_to_ui32, float16_to_uint32, float16, uint_fast32_t)
WRAP_SF_TO_INT(qemu_f16_to_ui64, float16_to_uint64, float16, uint_fast64_t)
WRAP_SF_TO_INT(qemu_f32_to_ui32, float32_to_uint32, float32, uint_fast32_t)
WRAP_SF_TO_INT(qemu_f32_to_ui64, float32_to_uint64, float32, uint_fast64_t)
WRAP_SF_TO_INT(qemu_f64_to_ui32, float64_to_uint32, float64, uint_fast32_t)
WRAP_SF_TO_INT(qemu_f64_to_ui64, float64_to_uint64, float64, uint_fast64_t)
WRAP_SF_TO_INT(qemu_f16_to_i32, float16_to_int32, float16, int_fast32_t)
WRAP_SF_TO_INT(qemu_f16_to_i64, float16_to_int64, float16, int_fast64_t)
WRAP_SF_TO_INT(qemu_f32_to_i32, float32_to_int32, float32, int_fast32_t)
WRAP_SF_TO_INT(qemu_f32_to_i64, float32_to_int64, float32, int_fast64_t)
WRAP_SF_TO_INT(qemu_f64_to_i32, float64_to_int32, float64, int_fast32_t)
WRAP_SF_TO_INT(qemu_f64_to_i64, float64_to_int64, float64, int_fast64_t)
#undef WRAP_SF_TO_INT
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_SF_TO_INT_MINMAG(name, func, type, fast_type) \
static fast_type name(type##_t a, bool exact) \
{ \
type *ap = (type *)&a; \
\
return func(*ap, &qsf); \
}
WRAP_SF_TO_INT_MINMAG(qemu_f16_to_ui32_r_minMag,
float16_to_uint32_round_to_zero, float16, uint_fast32_t)
WRAP_SF_TO_INT_MINMAG(qemu_f16_to_ui64_r_minMag,
float16_to_uint64_round_to_zero, float16, uint_fast64_t)
WRAP_SF_TO_INT_MINMAG(qemu_f16_to_i32_r_minMag,
float16_to_int32_round_to_zero, float16, int_fast32_t)
WRAP_SF_TO_INT_MINMAG(qemu_f16_to_i64_r_minMag,
float16_to_int64_round_to_zero, float16, int_fast64_t)
WRAP_SF_TO_INT_MINMAG(qemu_f32_to_ui32_r_minMag,
float32_to_uint32_round_to_zero, float32, uint_fast32_t)
WRAP_SF_TO_INT_MINMAG(qemu_f32_to_ui64_r_minMag,
float32_to_uint64_round_to_zero, float32, uint_fast64_t)
WRAP_SF_TO_INT_MINMAG(qemu_f32_to_i32_r_minMag,
float32_to_int32_round_to_zero, float32, int_fast32_t)
WRAP_SF_TO_INT_MINMAG(qemu_f32_to_i64_r_minMag,
float32_to_int64_round_to_zero, float32, int_fast64_t)
WRAP_SF_TO_INT_MINMAG(qemu_f64_to_ui32_r_minMag,
float64_to_uint32_round_to_zero, float64, uint_fast32_t)
WRAP_SF_TO_INT_MINMAG(qemu_f64_to_ui64_r_minMag,
float64_to_uint64_round_to_zero, float64, uint_fast64_t)
WRAP_SF_TO_INT_MINMAG(qemu_f64_to_i32_r_minMag,
float64_to_int32_round_to_zero, float64, int_fast32_t)
WRAP_SF_TO_INT_MINMAG(qemu_f64_to_i64_r_minMag,
float64_to_int64_round_to_zero, float64, int_fast64_t)
#undef WRAP_SF_TO_INT_MINMAG
#define WRAP_80_TO_SF(name, func, type) \
static type##_t name(const extFloat80_t *ap) \
{ \
floatx80 a; \
type ret; \
\
a = soft_to_qemu80(*ap); \
ret = func(a, &qsf); \
return *(type##_t *)&ret; \
}
WRAP_80_TO_SF(qemu_extF80M_to_f32, floatx80_to_float32, float32)
WRAP_80_TO_SF(qemu_extF80M_to_f64, floatx80_to_float64, float64)
#undef WRAP_80_TO_SF
#define WRAP_128_TO_SF(name, func, type) \
static type##_t name(const float128_t *ap) \
{ \
float128 a; \
type ret; \
\
a = soft_to_qemu128(*ap); \
ret = func(a, &qsf); \
return *(type##_t *)&ret; \
}
WRAP_128_TO_SF(qemu_f128M_to_f32, float128_to_float32, float32)
WRAP_128_TO_SF(qemu_f128M_to_f64, float128_to_float64, float64)
#undef WRAP_128_TO_SF
static void qemu_extF80M_to_f128M(const extFloat80_t *from, float128_t *to)
{
floatx80 qfrom;
float128 qto;
qfrom = soft_to_qemu80(*from);
qto = floatx80_to_float128(qfrom, &qsf);
*to = qemu_to_soft128(qto);
}
static void qemu_f128M_to_extF80M(const float128_t *from, extFloat80_t *to)
{
float128 qfrom;
floatx80 qto;
qfrom = soft_to_qemu128(*from);
qto = float128_to_floatx80(qfrom, &qsf);
*to = qemu_to_soft80(qto);
}
#define WRAP_INT_TO_SF(name, func, int_type, type) \
static type##_t name(int_type a) \
{ \
type ret; \
\
ret = func(a, &qsf); \
return *(type##_t *)&ret; \
}
WRAP_INT_TO_SF(qemu_ui32_to_f16, uint32_to_float16, uint32_t, float16)
WRAP_INT_TO_SF(qemu_ui32_to_f32, uint32_to_float32, uint32_t, float32)
WRAP_INT_TO_SF(qemu_ui32_to_f64, uint32_to_float64, uint32_t, float64)
WRAP_INT_TO_SF(qemu_ui64_to_f16, uint64_to_float16, uint64_t, float16)
WRAP_INT_TO_SF(qemu_ui64_to_f32, uint64_to_float32, uint64_t, float32)
WRAP_INT_TO_SF(qemu_ui64_to_f64, uint64_to_float64, uint64_t, float64)
WRAP_INT_TO_SF(qemu_i32_to_f16, int32_to_float16, int32_t, float16)
WRAP_INT_TO_SF(qemu_i32_to_f32, int32_to_float32, int32_t, float32)
WRAP_INT_TO_SF(qemu_i32_to_f64, int32_to_float64, int32_t, float64)
WRAP_INT_TO_SF(qemu_i64_to_f16, int64_to_float16, int64_t, float16)
WRAP_INT_TO_SF(qemu_i64_to_f32, int64_to_float32, int64_t, float32)
WRAP_INT_TO_SF(qemu_i64_to_f64, int64_to_float64, int64_t, float64)
#undef WRAP_INT_TO_SF
#define WRAP_INT_TO_80(name, func, int_type) \
static void name(int_type a, extFloat80_t *res) \
{ \
floatx80 ret; \
\
ret = func(a, &qsf); \
*res = qemu_to_soft80(ret); \
}
WRAP_INT_TO_80(qemu_i32_to_extF80M, int32_to_floatx80, int32_t)
WRAP_INT_TO_80(qemu_i64_to_extF80M, int64_to_floatx80, int64_t)
#undef WRAP_INT_TO_80
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_80_TO_INT(name, func, fast_type) \
static fast_type name(const extFloat80_t *ap, uint_fast8_t round, \
bool exact) \
{ \
floatx80 a; \
\
a = soft_to_qemu80(*ap); \
qsf.float_rounding_mode = sf_rounding_to_qemu(round); \
return func(a, &qsf); \
}
WRAP_80_TO_INT(qemu_extF80M_to_i32, floatx80_to_int32, int_fast32_t)
WRAP_80_TO_INT(qemu_extF80M_to_i64, floatx80_to_int64, int_fast64_t)
#undef WRAP_80_TO_INT
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_80_TO_INT_MINMAG(name, func, fast_type) \
static fast_type name(const extFloat80_t *ap, bool exact) \
{ \
floatx80 a; \
\
a = soft_to_qemu80(*ap); \
return func(a, &qsf); \
}
WRAP_80_TO_INT_MINMAG(qemu_extF80M_to_i32_r_minMag,
floatx80_to_int32_round_to_zero, int_fast32_t)
WRAP_80_TO_INT_MINMAG(qemu_extF80M_to_i64_r_minMag,
floatx80_to_int64_round_to_zero, int_fast64_t)
#undef WRAP_80_TO_INT_MINMAG
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_128_TO_INT(name, func, fast_type) \
static fast_type name(const float128_t *ap, uint_fast8_t round, \
bool exact) \
{ \
float128 a; \
\
a = soft_to_qemu128(*ap); \
qsf.float_rounding_mode = sf_rounding_to_qemu(round); \
return func(a, &qsf); \
}
WRAP_128_TO_INT(qemu_f128M_to_i32, float128_to_int32, int_fast32_t)
WRAP_128_TO_INT(qemu_f128M_to_i64, float128_to_int64, int_fast64_t)
WRAP_128_TO_INT(qemu_f128M_to_ui64, float128_to_uint64, uint_fast64_t)
#undef WRAP_128_TO_INT
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_128_TO_INT_MINMAG(name, func, fast_type) \
static fast_type name(const float128_t *ap, bool exact) \
{ \
float128 a; \
\
a = soft_to_qemu128(*ap); \
return func(a, &qsf); \
}
WRAP_128_TO_INT_MINMAG(qemu_f128M_to_i32_r_minMag,
float128_to_int32_round_to_zero, int_fast32_t)
WRAP_128_TO_INT_MINMAG(qemu_f128M_to_i64_r_minMag,
float128_to_int64_round_to_zero, int_fast64_t)
WRAP_128_TO_INT_MINMAG(qemu_f128M_to_ui32_r_minMag,
float128_to_uint32_round_to_zero, uint_fast32_t)
WRAP_128_TO_INT_MINMAG(qemu_f128M_to_ui64_r_minMag,
float128_to_uint64_round_to_zero, uint_fast64_t)
#undef WRAP_128_TO_INT_MINMAG
#define WRAP_INT_TO_128(name, func, int_type) \
static void name(int_type a, float128_t *res) \
{ \
float128 ret; \
\
ret = func(a, &qsf); \
*res = qemu_to_soft128(ret); \
}
WRAP_INT_TO_128(qemu_ui64_to_f128M, uint64_to_float128, uint64_t)
WRAP_INT_TO_128(qemu_i32_to_f128M, int32_to_float128, int32_t)
WRAP_INT_TO_128(qemu_i64_to_f128M, int64_to_float128, int64_t)
#undef WRAP_INT_TO_128
/* Note: exact is ignored since qemu's softfloat assumes it is set */
#define WRAP_ROUND_TO_INT(name, func, type) \
static type##_t name(type##_t a, uint_fast8_t round, bool exact) \
{ \
type *ap = (type *)&a; \
type ret; \
\
qsf.float_rounding_mode = sf_rounding_to_qemu(round); \
ret = func(*ap, &qsf); \
return *(type##_t *)&ret; \
}
WRAP_ROUND_TO_INT(qemu_f16_roundToInt, float16_round_to_int, float16)
WRAP_ROUND_TO_INT(qemu_f32_roundToInt, float32_round_to_int, float32)
WRAP_ROUND_TO_INT(qemu_f64_roundToInt, float64_round_to_int, float64)
#undef WRAP_ROUND_TO_INT
static void qemu_extF80M_roundToInt(const extFloat80_t *ap, uint_fast8_t round,
bool exact, extFloat80_t *res)
{
floatx80 a;
floatx80 ret;
a = soft_to_qemu80(*ap);
qsf.float_rounding_mode = sf_rounding_to_qemu(round);
ret = floatx80_round_to_int(a, &qsf);
*res = qemu_to_soft80(ret);
}
static void qemu_f128M_roundToInt(const float128_t *ap, uint_fast8_t round,
bool exact, float128_t *res)
{
float128 a;
float128 ret;
a = soft_to_qemu128(*ap);
qsf.float_rounding_mode = sf_rounding_to_qemu(round);
ret = float128_round_to_int(a, &qsf);
*res = qemu_to_soft128(ret);
}
/* operations */
#define WRAP1(name, func, type) \
static type##_t name(type##_t a) \
{ \
type *ap = (type *)&a; \
type ret; \
\
ret = func(*ap, &qsf); \
return *(type##_t *)&ret; \
}
#define WRAP2(name, func, type) \
static type##_t name(type##_t a, type##_t b) \
{ \
type *ap = (type *)&a; \
type *bp = (type *)&b; \
type ret; \
\
ret = func(*ap, *bp, &qsf); \
return *(type##_t *)&ret; \
}
#define WRAP_COMMON_OPS(b) \
WRAP1(qemu_f##b##_sqrt, float##b##_sqrt, float##b) \
WRAP2(qemu_f##b##_add, float##b##_add, float##b) \
WRAP2(qemu_f##b##_sub, float##b##_sub, float##b) \
WRAP2(qemu_f##b##_mul, float##b##_mul, float##b) \
WRAP2(qemu_f##b##_div, float##b##_div, float##b)
WRAP_COMMON_OPS(16)
WRAP_COMMON_OPS(32)
WRAP_COMMON_OPS(64)
#undef WRAP_COMMON
WRAP2(qemu_f32_rem, float32_rem, float32)
WRAP2(qemu_f64_rem, float64_rem, float64)
#undef WRAP2
#undef WRAP1
#define WRAP1_80(name, func) \
static void name(const extFloat80_t *ap, extFloat80_t *res) \
{ \
floatx80 a; \
floatx80 ret; \
\
a = soft_to_qemu80(*ap); \
ret = func(a, &qsf); \
*res = qemu_to_soft80(ret); \
}
WRAP1_80(qemu_extF80M_sqrt, floatx80_sqrt)
#undef WRAP1_80
#define WRAP1_128(name, func) \
static void name(const float128_t *ap, float128_t *res) \
{ \
float128 a; \
float128 ret; \
\
a = soft_to_qemu128(*ap); \
ret = func(a, &qsf); \
*res = qemu_to_soft128(ret); \
}
WRAP1_128(qemu_f128M_sqrt, float128_sqrt)
#undef WRAP1_128
#define WRAP2_80(name, func) \
static void name(const extFloat80_t *ap, const extFloat80_t *bp, \
extFloat80_t *res) \
{ \
floatx80 a; \
floatx80 b; \
floatx80 ret; \
\
a = soft_to_qemu80(*ap); \
b = soft_to_qemu80(*bp); \
ret = func(a, b, &qsf); \
*res = qemu_to_soft80(ret); \
}
WRAP2_80(qemu_extF80M_add, floatx80_add)
WRAP2_80(qemu_extF80M_sub, floatx80_sub)
WRAP2_80(qemu_extF80M_mul, floatx80_mul)
WRAP2_80(qemu_extF80M_div, floatx80_div)
WRAP2_80(qemu_extF80M_rem, floatx80_rem)
#undef WRAP2_80
#define WRAP2_128(name, func) \
static void name(const float128_t *ap, const float128_t *bp, \
float128_t *res) \
{ \
float128 a; \
float128 b; \
float128 ret; \
\
a = soft_to_qemu128(*ap); \
b = soft_to_qemu128(*bp); \
ret = func(a, b, &qsf); \
*res = qemu_to_soft128(ret); \
}
WRAP2_128(qemu_f128M_add, float128_add)
WRAP2_128(qemu_f128M_sub, float128_sub)
WRAP2_128(qemu_f128M_mul, float128_mul)
WRAP2_128(qemu_f128M_div, float128_div)
WRAP2_128(qemu_f128M_rem, float128_rem)
#undef WRAP2_128
#define WRAP_MULADD(name, func, type) \
static type##_t name(type##_t a, type##_t b, type##_t c) \
{ \
type *ap = (type *)&a; \
type *bp = (type *)&b; \
type *cp = (type *)&c; \
type ret; \
\
ret = func(*ap, *bp, *cp, 0, &qsf); \
return *(type##_t *)&ret; \
}
WRAP_MULADD(qemu_f16_mulAdd, float16_muladd, float16)
WRAP_MULADD(qemu_f32_mulAdd, float32_muladd, float32)
WRAP_MULADD(qemu_f64_mulAdd, float64_muladd, float64)
#undef WRAP_MULADD
#define WRAP_CMP16(name, func, retcond) \
static bool name(float16_t a, float16_t b) \
{ \
float16 *ap = (float16 *)&a; \
float16 *bp = (float16 *)&b; \
int ret; \
\
ret = func(*ap, *bp, &qsf); \
return retcond; \
}
WRAP_CMP16(qemu_f16_eq_signaling, float16_compare, ret == 0)
WRAP_CMP16(qemu_f16_eq, float16_compare_quiet, ret == 0)
WRAP_CMP16(qemu_f16_le, float16_compare, ret <= 0)
WRAP_CMP16(qemu_f16_lt, float16_compare, ret < 0)
WRAP_CMP16(qemu_f16_le_quiet, float16_compare_quiet, ret <= 0)
WRAP_CMP16(qemu_f16_lt_quiet, float16_compare_quiet, ret < 0)
#undef WRAP_CMP16
#define WRAP_CMP(name, func, type) \
static bool name(type##_t a, type##_t b) \
{ \
type *ap = (type *)&a; \
type *bp = (type *)&b; \
\
return !!func(*ap, *bp, &qsf); \
}
#define GEN_WRAP_CMP(b) \
WRAP_CMP(qemu_f##b##_eq_signaling, float##b##_eq, float##b) \
WRAP_CMP(qemu_f##b##_eq, float##b##_eq_quiet, float##b) \
WRAP_CMP(qemu_f##b##_le, float##b##_le, float##b) \
WRAP_CMP(qemu_f##b##_lt, float##b##_lt, float##b) \
WRAP_CMP(qemu_f##b##_le_quiet, float##b##_le_quiet, float##b) \
WRAP_CMP(qemu_f##b##_lt_quiet, float##b##_lt_quiet, float##b)
GEN_WRAP_CMP(32)
GEN_WRAP_CMP(64)
#undef GEN_WRAP_CMP
#undef WRAP_CMP
#define WRAP_CMP80(name, func) \
static bool name(const extFloat80_t *ap, const extFloat80_t *bp) \
{ \
floatx80 a; \
floatx80 b; \
\
a = soft_to_qemu80(*ap); \
b = soft_to_qemu80(*bp); \
return !!func(a, b, &qsf); \
}
WRAP_CMP80(qemu_extF80M_eq_signaling, floatx80_eq)
WRAP_CMP80(qemu_extF80M_eq, floatx80_eq_quiet)
WRAP_CMP80(qemu_extF80M_le, floatx80_le)
WRAP_CMP80(qemu_extF80M_lt, floatx80_lt)
WRAP_CMP80(qemu_extF80M_le_quiet, floatx80_le_quiet)
WRAP_CMP80(qemu_extF80M_lt_quiet, floatx80_le_quiet)
#undef WRAP_CMP80
#define WRAP_CMP128(name, func) \
static bool name(const float128_t *ap, const float128_t *bp) \
{ \
float128 a; \
float128 b; \
\
a = soft_to_qemu128(*ap); \
b = soft_to_qemu128(*bp); \
return !!func(a, b, &qsf); \
}
WRAP_CMP128(qemu_f128M_eq_signaling, float128_eq)
WRAP_CMP128(qemu_f128M_eq, float128_eq_quiet)
WRAP_CMP128(qemu_f128M_le, float128_le)
WRAP_CMP128(qemu_f128M_lt, float128_lt)
WRAP_CMP128(qemu_f128M_le_quiet, float128_le_quiet)
WRAP_CMP128(qemu_f128M_lt_quiet, float128_lt_quiet)
#undef WRAP_CMP128