Revert incorrect cflags initialization.

Add direct jumps for tcg/loongarch64.
 Speed up breakpoint check.
 Improve assertions for atomic.h.
 Move restore_state_to_opc to TCGCPUOps.
 Cleanups to TranslationBlock maintenance.
 -----BEGIN PGP SIGNATURE-----
 
 iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmNYlo4dHHJpY2hhcmQu
 aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV9y2wf9EKsCA6VtYI2Qtftf
 q/ujYFmUf8AKTb9eVcA0XX71CT1dEnFR7GQyT8B8X13x0pSbOX7tbEWHPreegTFV
 tESiejvymi6Q9devAB58GVwNoU/zPIQQGhCPxkVUKDmRztJz22MbGUzd7UKPPgU8
 2nVMkIpLTMBsKeFLxE/D3ZntmdKsgyI/1Dtkl9TxvlDGsCbMjbNcr8lM+TLaG2oX
 GZhFyJHKEVy0cobukvhhb/9rU7AWdG/BnFmZM16JxvHV/YCwJBx3Udhcy9xPePUU
 yIjkGsUAq4aB6H9RFuTWh7GmaY5u6gMbTTi2J7hDos0mzauYJtpgEB/H42LpycGE
 sOhkLQ==
 =DUb8
 -----END PGP SIGNATURE-----

Merge tag 'pull-tcg-20221026' of https://gitlab.com/rth7680/qemu into staging

Revert incorrect cflags initialization.
Add direct jumps for tcg/loongarch64.
Speed up breakpoint check.
Improve assertions for atomic.h.
Move restore_state_to_opc to TCGCPUOps.
Cleanups to TranslationBlock maintenance.

# -----BEGIN PGP SIGNATURE-----
#
# iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmNYlo4dHHJpY2hhcmQu
# aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV9y2wf9EKsCA6VtYI2Qtftf
# q/ujYFmUf8AKTb9eVcA0XX71CT1dEnFR7GQyT8B8X13x0pSbOX7tbEWHPreegTFV
# tESiejvymi6Q9devAB58GVwNoU/zPIQQGhCPxkVUKDmRztJz22MbGUzd7UKPPgU8
# 2nVMkIpLTMBsKeFLxE/D3ZntmdKsgyI/1Dtkl9TxvlDGsCbMjbNcr8lM+TLaG2oX
# GZhFyJHKEVy0cobukvhhb/9rU7AWdG/BnFmZM16JxvHV/YCwJBx3Udhcy9xPePUU
# yIjkGsUAq4aB6H9RFuTWh7GmaY5u6gMbTTi2J7hDos0mzauYJtpgEB/H42LpycGE
# sOhkLQ==
# =DUb8
# -----END PGP SIGNATURE-----
# gpg: Signature made Tue 25 Oct 2022 22:08:14 EDT
# gpg:                using RSA key 7A481E78868B4DB6A85A05C064DF38E8AF7E215F
# gpg:                issuer "richard.henderson@linaro.org"
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full]
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A  05C0 64DF 38E8 AF7E 215F

* tag 'pull-tcg-20221026' of https://gitlab.com/rth7680/qemu: (47 commits)
  accel/tcg: Remove restore_state_to_opc function
  target/xtensa: Convert to tcg_ops restore_state_to_opc
  target/tricore: Convert to tcg_ops restore_state_to_opc
  target/sparc: Convert to tcg_ops restore_state_to_opc
  target/sh4: Convert to tcg_ops restore_state_to_opc
  target/s390x: Convert to tcg_ops restore_state_to_opc
  target/rx: Convert to tcg_ops restore_state_to_opc
  target/riscv: Convert to tcg_ops restore_state_to_opc
  target/ppc: Convert to tcg_ops restore_state_to_opc
  target/openrisc: Convert to tcg_ops restore_state_to_opc
  target/nios2: Convert to tcg_ops restore_state_to_opc
  target/mips: Convert to tcg_ops restore_state_to_opc
  target/microblaze: Convert to tcg_ops restore_state_to_opc
  target/m68k: Convert to tcg_ops restore_state_to_opc
  target/loongarch: Convert to tcg_ops restore_state_to_opc
  target/i386: Convert to tcg_ops restore_state_to_opc
  target/hppa: Convert to tcg_ops restore_state_to_opc
  target/hexagon: Convert to tcg_ops restore_state_to_opc
  target/cris: Convert to tcg_ops restore_state_to_opc
  target/avr: Convert to tcg_ops restore_state_to_opc
  ...

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Stefan Hajnoczi 2022-10-26 10:53:41 -04:00
commit 08a5d04606
69 changed files with 1304 additions and 1221 deletions

View File

@ -187,13 +187,14 @@ static bool tb_lookup_cmp(const void *p, const void *d)
const struct tb_desc *desc = d;
if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
tb->page_addr[0] == desc->page_addr0 &&
tb_page_addr0(tb) == desc->page_addr0 &&
tb->cs_base == desc->cs_base &&
tb->flags == desc->flags &&
tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
tb_cflags(tb) == desc->cflags) {
/* check next page if needed */
if (tb->page_addr[1] == -1) {
tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
if (tb_phys_page1 == -1) {
return true;
} else {
tb_page_addr_t phys_page1;
@ -210,7 +211,7 @@ static bool tb_lookup_cmp(const void *p, const void *d)
*/
virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
phys_page1 = get_page_addr_code(desc->env, virt_page1);
if (tb->page_addr[1] == phys_page1) {
if (tb_phys_page1 == phys_page1) {
return true;
}
}
@ -304,16 +305,12 @@ static void log_cpu_exec(target_ulong pc, CPUState *cpu,
}
}
static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
uint32_t *cflags)
static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
uint32_t *cflags)
{
CPUBreakpoint *bp;
bool match_page = false;
if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
return false;
}
/*
* Singlestep overrides breakpoints.
* This requirement is visible in the record-replay tests, where
@ -374,6 +371,13 @@ static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
return false;
}
static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
uint32_t *cflags)
{
return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
check_for_breakpoints_slow(cpu, pc, cflags);
}
/**
* helper_lookup_tb_ptr: quick check for next tb
* @env: current cpu state
@ -1016,7 +1020,7 @@ int cpu_exec(CPUState *cpu)
* direct jump to a TB spanning two pages because the mapping
* for the second page can change.
*/
if (tb->page_addr[1] != -1) {
if (tb_page_addr1(tb) != -1) {
last_tb = NULL;
}
#endif

View File

@ -11,12 +11,103 @@
#include "exec/exec-all.h"
/*
* Access to the various translations structures need to be serialised
* via locks for consistency. In user-mode emulation access to the
* memory related structures are protected with mmap_lock.
* In !user-mode we use per-page locks.
*/
#ifdef CONFIG_SOFTMMU
#define assert_memory_lock()
#else
#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
#endif
typedef struct PageDesc {
/* list of TBs intersecting this ram page */
uintptr_t first_tb;
#ifdef CONFIG_USER_ONLY
unsigned long flags;
void *target_data;
#endif
#ifdef CONFIG_SOFTMMU
QemuSpin lock;
#endif
} PageDesc;
/* Size of the L2 (and L3, etc) page tables. */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)
/*
* L1 Mapping properties
*/
extern int v_l1_size;
extern int v_l1_shift;
extern int v_l2_levels;
/*
* The bottom level has pointers to PageDesc, and is indexed by
* anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
*/
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
extern void *l1_map[V_L1_MAX_SIZE];
PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc);
static inline PageDesc *page_find(tb_page_addr_t index)
{
return page_find_alloc(index, false);
}
/* list iterators for lists of tagged pointers in TranslationBlock */
#define TB_FOR_EACH_TAGGED(head, tb, n, field) \
for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
tb = (TranslationBlock *)((uintptr_t)tb & ~1))
#define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
#define TB_FOR_EACH_JMP(head_tb, tb, n) \
TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
/* In user-mode page locks aren't used; mmap_lock is enough */
#ifdef CONFIG_USER_ONLY
#define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
static inline void page_lock(PageDesc *pd) { }
static inline void page_unlock(PageDesc *pd) { }
#else
#ifdef CONFIG_DEBUG_TCG
void do_assert_page_locked(const PageDesc *pd, const char *file, int line);
#define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
#else
#define assert_page_locked(pd)
#endif
void page_lock(PageDesc *pd);
void page_unlock(PageDesc *pd);
#endif
#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
void assert_no_pages_locked(void);
#else
static inline void assert_no_pages_locked(void) { }
#endif
TranslationBlock *tb_gen_code(CPUState *cpu, target_ulong pc,
target_ulong cs_base, uint32_t flags,
int cflags);
G_NORETURN void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
void page_init(void);
void tb_htable_init(void);
void tb_reset_jump(TranslationBlock *tb, int n);
TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
tb_page_addr_t phys_page2);
bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc);
int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
uintptr_t searched_pc, bool reset_icount);
/* Return the current PC from CPU, which may be cached in TB. */
static inline target_ulong log_pc(CPUState *cpu, const TranslationBlock *tb)

View File

@ -3,6 +3,7 @@ tcg_ss.add(files(
'tcg-all.c',
'cpu-exec-common.c',
'cpu-exec.c',
'tb-maint.c',
'tcg-runtime-gvec.c',
'tcg-runtime.c',
'translate-all.c',

704
accel/tcg/tb-maint.c Normal file
View File

@ -0,0 +1,704 @@
/*
* Translation Block Maintaince
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/cputlb.h"
#include "exec/log.h"
#include "exec/exec-all.h"
#include "exec/translate-all.h"
#include "sysemu/tcg.h"
#include "tcg/tcg.h"
#include "tb-hash.h"
#include "tb-context.h"
#include "internal.h"
static bool tb_cmp(const void *ap, const void *bp)
{
const TranslationBlock *a = ap;
const TranslationBlock *b = bp;
return ((TARGET_TB_PCREL || tb_pc(a) == tb_pc(b)) &&
a->cs_base == b->cs_base &&
a->flags == b->flags &&
(tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
tb_page_addr0(a) == tb_page_addr0(b) &&
tb_page_addr1(a) == tb_page_addr1(b));
}
void tb_htable_init(void)
{
unsigned int mode = QHT_MODE_AUTO_RESIZE;
qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
}
/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
int i;
if (*lp == NULL) {
return;
}
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < V_L2_SIZE; ++i) {
page_lock(&pd[i]);
pd[i].first_tb = (uintptr_t)NULL;
page_unlock(&pd[i]);
}
} else {
void **pp = *lp;
for (i = 0; i < V_L2_SIZE; ++i) {
page_flush_tb_1(level - 1, pp + i);
}
}
}
static void page_flush_tb(void)
{
int i, l1_sz = v_l1_size;
for (i = 0; i < l1_sz; i++) {
page_flush_tb_1(v_l2_levels, l1_map + i);
}
}
/* flush all the translation blocks */
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
{
bool did_flush = false;
mmap_lock();
/* If it is already been done on request of another CPU, just retry. */
if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
goto done;
}
did_flush = true;
CPU_FOREACH(cpu) {
tcg_flush_jmp_cache(cpu);
}
qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
page_flush_tb();
tcg_region_reset_all();
/* XXX: flush processor icache at this point if cache flush is expensive */
qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
done:
mmap_unlock();
if (did_flush) {
qemu_plugin_flush_cb();
}
}
void tb_flush(CPUState *cpu)
{
if (tcg_enabled()) {
unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
if (cpu_in_exclusive_context(cpu)) {
do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
} else {
async_safe_run_on_cpu(cpu, do_tb_flush,
RUN_ON_CPU_HOST_INT(tb_flush_count));
}
}
}
/*
* user-mode: call with mmap_lock held
* !user-mode: call with @pd->lock held
*/
static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
{
TranslationBlock *tb1;
uintptr_t *pprev;
unsigned int n1;
assert_page_locked(pd);
pprev = &pd->first_tb;
PAGE_FOR_EACH_TB(pd, tb1, n1) {
if (tb1 == tb) {
*pprev = tb1->page_next[n1];
return;
}
pprev = &tb1->page_next[n1];
}
g_assert_not_reached();
}
/* remove @orig from its @n_orig-th jump list */
static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
{
uintptr_t ptr, ptr_locked;
TranslationBlock *dest;
TranslationBlock *tb;
uintptr_t *pprev;
int n;
/* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
dest = (TranslationBlock *)(ptr & ~1);
if (dest == NULL) {
return;
}
qemu_spin_lock(&dest->jmp_lock);
/*
* While acquiring the lock, the jump might have been removed if the
* destination TB was invalidated; check again.
*/
ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
if (ptr_locked != ptr) {
qemu_spin_unlock(&dest->jmp_lock);
/*
* The only possibility is that the jump was unlinked via
* tb_jump_unlink(dest). Seeing here another destination would be a bug,
* because we set the LSB above.
*/
g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
return;
}
/*
* We first acquired the lock, and since the destination pointer matches,
* we know for sure that @orig is in the jmp list.
*/
pprev = &dest->jmp_list_head;
TB_FOR_EACH_JMP(dest, tb, n) {
if (tb == orig && n == n_orig) {
*pprev = tb->jmp_list_next[n];
/* no need to set orig->jmp_dest[n]; setting the LSB was enough */
qemu_spin_unlock(&dest->jmp_lock);
return;
}
pprev = &tb->jmp_list_next[n];
}
g_assert_not_reached();
}
/*
* Reset the jump entry 'n' of a TB so that it is not chained to another TB.
*/
void tb_reset_jump(TranslationBlock *tb, int n)
{
uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
tb_set_jmp_target(tb, n, addr);
}
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *dest)
{
TranslationBlock *tb;
int n;
qemu_spin_lock(&dest->jmp_lock);
TB_FOR_EACH_JMP(dest, tb, n) {
tb_reset_jump(tb, n);
qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
/* No need to clear the list entry; setting the dest ptr is enough */
}
dest->jmp_list_head = (uintptr_t)NULL;
qemu_spin_unlock(&dest->jmp_lock);
}
static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
{
CPUState *cpu;
if (TARGET_TB_PCREL) {
/* A TB may be at any virtual address */
CPU_FOREACH(cpu) {
tcg_flush_jmp_cache(cpu);
}
} else {
uint32_t h = tb_jmp_cache_hash_func(tb_pc(tb));
CPU_FOREACH(cpu) {
CPUJumpCache *jc = cpu->tb_jmp_cache;
if (qatomic_read(&jc->array[h].tb) == tb) {
qatomic_set(&jc->array[h].tb, NULL);
}
}
}
}
/*
* In user-mode, call with mmap_lock held.
* In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
* locks held.
*/
static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
{
PageDesc *p;
uint32_t h;
tb_page_addr_t phys_pc;
uint32_t orig_cflags = tb_cflags(tb);
assert_memory_lock();
/* make sure no further incoming jumps will be chained to this TB */
qemu_spin_lock(&tb->jmp_lock);
qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
qemu_spin_unlock(&tb->jmp_lock);
/* remove the TB from the hash list */
phys_pc = tb_page_addr0(tb);
h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : tb_pc(tb)),
tb->flags, orig_cflags, tb->trace_vcpu_dstate);
if (!qht_remove(&tb_ctx.htable, tb, h)) {
return;
}
/* remove the TB from the page list */
if (rm_from_page_list) {
p = page_find(phys_pc >> TARGET_PAGE_BITS);
tb_page_remove(p, tb);
phys_pc = tb_page_addr1(tb);
if (phys_pc != -1) {
p = page_find(phys_pc >> TARGET_PAGE_BITS);
tb_page_remove(p, tb);
}
}
/* remove the TB from the hash list */
tb_jmp_cache_inval_tb(tb);
/* suppress this TB from the two jump lists */
tb_remove_from_jmp_list(tb, 0);
tb_remove_from_jmp_list(tb, 1);
/* suppress any remaining jumps to this TB */
tb_jmp_unlink(tb);
qatomic_set(&tb_ctx.tb_phys_invalidate_count,
tb_ctx.tb_phys_invalidate_count + 1);
}
static void tb_phys_invalidate__locked(TranslationBlock *tb)
{
qemu_thread_jit_write();
do_tb_phys_invalidate(tb, true);
qemu_thread_jit_execute();
}
static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc)
{
PageDesc *p1, *p2;
tb_page_addr_t page1;
tb_page_addr_t page2;
assert_memory_lock();
g_assert(phys1 != -1);
page1 = phys1 >> TARGET_PAGE_BITS;
page2 = phys2 >> TARGET_PAGE_BITS;
p1 = page_find_alloc(page1, alloc);
if (ret_p1) {
*ret_p1 = p1;
}
if (likely(phys2 == -1)) {
page_lock(p1);
return;
} else if (page1 == page2) {
page_lock(p1);
if (ret_p2) {
*ret_p2 = p1;
}
return;
}
p2 = page_find_alloc(page2, alloc);
if (ret_p2) {
*ret_p2 = p2;
}
if (page1 < page2) {
page_lock(p1);
page_lock(p2);
} else {
page_lock(p2);
page_lock(p1);
}
}
#ifdef CONFIG_USER_ONLY
static inline void page_lock_tb(const TranslationBlock *tb) { }
static inline void page_unlock_tb(const TranslationBlock *tb) { }
#else
/* lock the page(s) of a TB in the correct acquisition order */
static void page_lock_tb(const TranslationBlock *tb)
{
page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false);
}
static void page_unlock_tb(const TranslationBlock *tb)
{
PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS);
page_unlock(p1);
if (unlikely(tb_page_addr1(tb) != -1)) {
PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS);
if (p2 != p1) {
page_unlock(p2);
}
}
}
#endif
/*
* Invalidate one TB.
* Called with mmap_lock held in user-mode.
*/
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
if (page_addr == -1 && tb_page_addr0(tb) != -1) {
page_lock_tb(tb);
do_tb_phys_invalidate(tb, true);
page_unlock_tb(tb);
} else {
do_tb_phys_invalidate(tb, false);
}
}
/*
* Add the tb in the target page and protect it if necessary.
* Called with mmap_lock held for user-mode emulation.
* Called with @p->lock held in !user-mode.
*/
static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
unsigned int n, tb_page_addr_t page_addr)
{
#ifndef CONFIG_USER_ONLY
bool page_already_protected;
#endif
assert_page_locked(p);
tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
page_already_protected = p->first_tb != (uintptr_t)NULL;
#endif
p->first_tb = (uintptr_t)tb | n;
#if defined(CONFIG_USER_ONLY)
/* translator_loop() must have made all TB pages non-writable */
assert(!(p->flags & PAGE_WRITE));
#else
/*
* If some code is already present, then the pages are already
* protected. So we handle the case where only the first TB is
* allocated in a physical page.
*/
if (!page_already_protected) {
tlb_protect_code(page_addr);
}
#endif
}
/*
* Add a new TB and link it to the physical page tables. phys_page2 is
* (-1) to indicate that only one page contains the TB.
*
* Called with mmap_lock held for user-mode emulation.
*
* Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
* Note that in !user-mode, another thread might have already added a TB
* for the same block of guest code that @tb corresponds to. In that case,
* the caller should discard the original @tb, and use instead the returned TB.
*/
TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
tb_page_addr_t phys_page2)
{
PageDesc *p;
PageDesc *p2 = NULL;
void *existing_tb = NULL;
uint32_t h;
assert_memory_lock();
tcg_debug_assert(!(tb->cflags & CF_INVALID));
/*
* Add the TB to the page list, acquiring first the pages's locks.
* We keep the locks held until after inserting the TB in the hash table,
* so that if the insertion fails we know for sure that the TBs are still
* in the page descriptors.
* Note that inserting into the hash table first isn't an option, since
* we can only insert TBs that are fully initialized.
*/
page_lock_pair(&p, phys_pc, &p2, phys_page2, true);
tb_page_add(p, tb, 0, phys_pc);
if (p2) {
tb_page_add(p2, tb, 1, phys_page2);
}
/* add in the hash table */
h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : tb_pc(tb)),
tb->flags, tb->cflags, tb->trace_vcpu_dstate);
qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
/* remove TB from the page(s) if we couldn't insert it */
if (unlikely(existing_tb)) {
tb_page_remove(p, tb);
if (p2) {
tb_page_remove(p2, tb);
}
tb = existing_tb;
}
if (p2 && p2 != p) {
page_unlock(p2);
}
page_unlock(p);
return tb;
}
/*
* @p must be non-NULL.
* user-mode: call with mmap_lock held.
* !user-mode: call with all @pages locked.
*/
static void
tb_invalidate_phys_page_range__locked(struct page_collection *pages,
PageDesc *p, tb_page_addr_t start,
tb_page_addr_t end,
uintptr_t retaddr)
{
TranslationBlock *tb;
tb_page_addr_t tb_start, tb_end;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
CPUState *cpu = current_cpu;
bool current_tb_not_found = retaddr != 0;
bool current_tb_modified = false;
TranslationBlock *current_tb = NULL;
#endif /* TARGET_HAS_PRECISE_SMC */
assert_page_locked(p);
/*
* We remove all the TBs in the range [start, end[.
* XXX: see if in some cases it could be faster to invalidate all the code
*/
PAGE_FOR_EACH_TB(p, tb, n) {
assert_page_locked(p);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
it is not a problem */
tb_start = tb_page_addr0(tb);
tb_end = tb_start + tb->size;
} else {
tb_start = tb_page_addr1(tb);
tb_end = tb_start + ((tb_page_addr0(tb) + tb->size)
& ~TARGET_PAGE_MASK);
}
if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_not_found) {
current_tb_not_found = false;
/* now we have a real cpu fault */
current_tb = tcg_tb_lookup(retaddr);
}
if (current_tb == tb &&
(tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
/*
* If we are modifying the current TB, we must stop
* its execution. We could be more precise by checking
* that the modification is after the current PC, but it
* would require a specialized function to partially
* restore the CPU state.
*/
current_tb_modified = true;
cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate__locked(tb);
}
}
#if !defined(CONFIG_USER_ONLY)
/* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb) {
tlb_unprotect_code(start);
}
#endif
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
page_collection_unlock(pages);
/* Force execution of one insn next time. */
cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
mmap_unlock();
cpu_loop_exit_noexc(cpu);
}
#endif
}
/*
* Invalidate all TBs which intersect with the target physical
* address page @addr.
*
* Called with mmap_lock held for user-mode emulation
*/
void tb_invalidate_phys_page(tb_page_addr_t addr)
{
struct page_collection *pages;
tb_page_addr_t start, end;
PageDesc *p;
assert_memory_lock();
p = page_find(addr >> TARGET_PAGE_BITS);
if (p == NULL) {
return;
}
start = addr & TARGET_PAGE_MASK;
end = start + TARGET_PAGE_SIZE;
pages = page_collection_lock(start, end);
tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
page_collection_unlock(pages);
}
/*
* Invalidate all TBs which intersect with the target physical address range
* [start;end[. NOTE: start and end may refer to *different* physical pages.
* 'is_cpu_write_access' should be true if called from a real cpu write
* access: the virtual CPU will exit the current TB if code is modified inside
* this TB.
*
* Called with mmap_lock held for user-mode emulation.
*/
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
struct page_collection *pages;
tb_page_addr_t next;
assert_memory_lock();
pages = page_collection_lock(start, end);
for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
start < end;
start = next, next += TARGET_PAGE_SIZE) {
PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
tb_page_addr_t bound = MIN(next, end);
if (pd == NULL) {
continue;
}
tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
}
page_collection_unlock(pages);
}
#ifdef CONFIG_SOFTMMU
/*
* len must be <= 8 and start must be a multiple of len.
* Called via softmmu_template.h when code areas are written to with
* iothread mutex not held.
*
* Call with all @pages in the range [@start, @start + len[ locked.
*/
void tb_invalidate_phys_page_fast(struct page_collection *pages,
tb_page_addr_t start, int len,
uintptr_t retaddr)
{
PageDesc *p;
assert_memory_lock();
p = page_find(start >> TARGET_PAGE_BITS);
if (!p) {
return;
}
assert_page_locked(p);
tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
retaddr);
}
#else
/*
* Called with mmap_lock held. If pc is not 0 then it indicates the
* host PC of the faulting store instruction that caused this invalidate.
* Returns true if the caller needs to abort execution of the current
* TB (because it was modified by this store and the guest CPU has
* precise-SMC semantics).
*/
bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
{
TranslationBlock *tb;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = NULL;
CPUState *cpu = current_cpu;
bool current_tb_modified = false;
#endif
assert_memory_lock();
addr &= TARGET_PAGE_MASK;
p = page_find(addr >> TARGET_PAGE_BITS);
if (!p) {
return false;
}
#ifdef TARGET_HAS_PRECISE_SMC
if (p->first_tb && pc != 0) {
current_tb = tcg_tb_lookup(pc);
}
#endif
assert_page_locked(p);
PAGE_FOR_EACH_TB(p, tb, n) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
/*
* If we are modifying the current TB, we must stop its execution.
* We could be more precise by checking that the modification is
* after the current PC, but it would require a specialized
* function to partially restore the CPU state.
*/
current_tb_modified = true;
cpu_restore_state_from_tb(cpu, current_tb, pc, true);
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate(tb, addr);
}
p->first_tb = (uintptr_t)NULL;
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
/* Force execution of one insn next time. */
cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
return true;
}
#endif
return false;
}
#endif

View File

@ -70,8 +70,6 @@ static void *mttcg_cpu_thread_fn(void *arg)
assert(tcg_enabled());
g_assert(!icount_enabled());
tcg_cpu_init_cflags(cpu, current_machine->smp.max_cpus > 1);
rcu_register_thread();
force_rcu.notifier.notify = mttcg_force_rcu;
force_rcu.cpu = cpu;
@ -141,6 +139,9 @@ void mttcg_start_vcpu_thread(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
g_assert(tcg_enabled());
tcg_cpu_init_cflags(cpu, current_machine->smp.max_cpus > 1);
cpu->thread = g_new0(QemuThread, 1);
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(cpu->halt_cond);

View File

@ -152,9 +152,7 @@ static void *rr_cpu_thread_fn(void *arg)
Notifier force_rcu;
CPUState *cpu = arg;
g_assert(tcg_enabled());
tcg_cpu_init_cflags(cpu, false);
assert(tcg_enabled());
rcu_register_thread();
force_rcu.notify = rr_force_rcu;
rcu_add_force_rcu_notifier(&force_rcu);
@ -277,6 +275,9 @@ void rr_start_vcpu_thread(CPUState *cpu)
static QemuCond *single_tcg_halt_cond;
static QemuThread *single_tcg_cpu_thread;
g_assert(tcg_enabled());
tcg_cpu_init_cflags(cpu, false);
if (!single_tcg_cpu_thread) {
cpu->thread = g_new0(QemuThread, 1);
cpu->halt_cond = g_new0(QemuCond, 1);

File diff suppressed because it is too large Load Diff

View File

@ -157,7 +157,7 @@ static void *translator_access(CPUArchState *env, DisasContextBase *db,
tb = db->tb;
/* Use slow path if first page is MMIO. */
if (unlikely(tb->page_addr[0] == -1)) {
if (unlikely(tb_page_addr0(tb) == -1)) {
return NULL;
}
@ -169,13 +169,14 @@ static void *translator_access(CPUArchState *env, DisasContextBase *db,
host = db->host_addr[1];
base = TARGET_PAGE_ALIGN(db->pc_first);
if (host == NULL) {
tb->page_addr[1] =
tb_page_addr_t phys_page =
get_page_addr_code_hostp(env, base, &db->host_addr[1]);
/* We cannot handle MMIO as second page. */
assert(phys_page != -1);
tb_set_page_addr1(tb, phys_page);
#ifdef CONFIG_USER_ONLY
page_protect(end);
#endif
/* We cannot handle MMIO as second page. */
assert(tb->page_addr[1] != -1);
host = db->host_addr[1];
}

View File

@ -210,6 +210,48 @@ tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
return addr;
}
void page_reset_target_data(target_ulong start, target_ulong end)
{
#ifdef TARGET_PAGE_DATA_SIZE
target_ulong addr, len;
/*
* This function should never be called with addresses outside the
* guest address space. If this assert fires, it probably indicates
* a missing call to h2g_valid.
*/
assert(end - 1 <= GUEST_ADDR_MAX);
assert(start < end);
assert_memory_lock();
start = start & TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
for (addr = start, len = end - start;
len != 0;
len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
g_free(p->target_data);
p->target_data = NULL;
}
#endif
}
#ifdef TARGET_PAGE_DATA_SIZE
void *page_get_target_data(target_ulong address)
{
PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
void *ret = p->target_data;
if (!ret) {
ret = g_malloc0(TARGET_PAGE_DATA_SIZE);
p->target_data = ret;
}
return ret;
}
#endif
/* The softmmu versions of these helpers are in cputlb.c. */
/*

View File

@ -663,7 +663,6 @@ abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
page_dump(stdout);
printf("\n");
#endif
tb_invalidate_phys_range(start, start + len);
mmap_unlock();
return start;
fail:
@ -769,7 +768,6 @@ int target_munmap(abi_ulong start, abi_ulong len)
if (ret == 0) {
page_set_flags(start, start + len, 0);
tb_invalidate_phys_range(start, start + len);
}
mmap_unlock();
return ret;

4
cpu.c
View File

@ -277,7 +277,7 @@ void list_cpus(const char *optarg)
void tb_invalidate_phys_addr(target_ulong addr)
{
mmap_lock();
tb_invalidate_phys_page_range(addr, addr + 1);
tb_invalidate_phys_page(addr);
mmap_unlock();
}
#else
@ -298,7 +298,7 @@ void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
return;
}
ram_addr = memory_region_get_ram_addr(mr) + addr;
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
tb_invalidate_phys_page(ram_addr);
}
#endif

View File

@ -281,28 +281,18 @@ void page_reset_target_data(target_ulong start, target_ulong end);
int page_check_range(target_ulong start, target_ulong len, int flags);
/**
* page_alloc_target_data(address, size)
* page_get_target_data(address)
* @address: guest virtual address
* @size: size of data to allocate
*
* Allocate @size bytes of out-of-band data to associate with the
* guest page at @address. If the page is not mapped, NULL will
* be returned. If there is existing data associated with @address,
* no new memory will be allocated.
* Return TARGET_PAGE_DATA_SIZE bytes of out-of-band data to associate
* with the guest page at @address, allocating it if necessary. The
* caller should already have verified that the address is valid.
*
* The memory will be freed when the guest page is deallocated,
* e.g. with the munmap system call.
*/
void *page_alloc_target_data(target_ulong address, size_t size);
/**
* page_get_target_data(address)
* @address: guest virtual address
*
* Return any out-of-bound memory assocated with the guest page
* at @address, as per page_alloc_target_data.
*/
void *page_get_target_data(target_ulong address);
void *page_get_target_data(target_ulong address)
__attribute__((returns_nonnull));
#endif
CPUArchState *cpu_copy(CPUArchState *env);

View File

@ -39,9 +39,6 @@ typedef ram_addr_t tb_page_addr_t;
#define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
#endif
void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
target_ulong *data);
/**
* cpu_restore_state:
* @cpu: the vCPU state is to be restore to
@ -610,18 +607,40 @@ static inline uint32_t tb_cflags(const TranslationBlock *tb)
return qatomic_read(&tb->cflags);
}
static inline tb_page_addr_t tb_page_addr0(const TranslationBlock *tb)
{
return tb->page_addr[0];
}
static inline tb_page_addr_t tb_page_addr1(const TranslationBlock *tb)
{
return tb->page_addr[1];
}
static inline void tb_set_page_addr0(TranslationBlock *tb,
tb_page_addr_t addr)
{
tb->page_addr[0] = addr;
}
static inline void tb_set_page_addr1(TranslationBlock *tb,
tb_page_addr_t addr)
{
tb->page_addr[1] = addr;
}
/* current cflags for hashing/comparison */
uint32_t curr_cflags(CPUState *cpu);
/* TranslationBlock invalidate API */
#if defined(CONFIG_USER_ONLY)
void tb_invalidate_phys_addr(target_ulong addr);
void tb_invalidate_phys_range(target_ulong start, target_ulong end);
#else
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
#endif
void tb_flush(CPUState *cpu);
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end);
void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
/* GETPC is the true target of the return instruction that we'll execute. */
@ -642,14 +661,6 @@ extern __thread uintptr_t tci_tb_ptr;
smaller than 4 bytes, so we don't worry about special-casing this. */
#define GETPC_ADJ 2
#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
void assert_no_pages_locked(void);
#else
static inline void assert_no_pages_locked(void)
{
}
#endif
#if !defined(CONFIG_USER_ONLY)
/**

View File

@ -147,8 +147,6 @@ static inline void qemu_ram_block_writeback(RAMBlock *block)
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)

View File

@ -29,7 +29,7 @@ void page_collection_unlock(struct page_collection *set);
void tb_invalidate_phys_page_fast(struct page_collection *pages,
tb_page_addr_t start, int len,
uintptr_t retaddr);
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end);
void tb_invalidate_phys_page(tb_page_addr_t addr);
void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr);
#ifdef CONFIG_USER_ONLY

View File

@ -31,6 +31,17 @@ struct TCGCPUOps {
* function to restore all the state, and register it here.
*/
void (*synchronize_from_tb)(CPUState *cpu, const TranslationBlock *tb);
/**
* @restore_state_to_opc: Synchronize state from INDEX_op_start_insn
*
* This is called when we unwind state in the middle of a TB,
* usually before raising an exception. Set all part of the CPU
* state which are tracked insn-by-insn in the target-specific
* arguments to start_insn, passed as @data.
*/
void (*restore_state_to_opc)(CPUState *cpu, const TranslationBlock *tb,
const uint64_t *data);
/** @cpu_exec_enter: Callback for cpu_exec preparation */
void (*cpu_exec_enter)(CPUState *cpu);
/** @cpu_exec_exit: Callback for cpu_exec cleanup */

View File

@ -133,7 +133,7 @@
#define qatomic_read(ptr) \
({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
qatomic_read__nocheck(ptr); \
})
@ -141,7 +141,7 @@
__atomic_store_n(ptr, i, __ATOMIC_RELAXED)
#define qatomic_set(ptr, i) do { \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
qatomic_set__nocheck(ptr, i); \
} while(0)
@ -159,27 +159,27 @@
#define qatomic_rcu_read(ptr) \
({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
typeof_strip_qual(*ptr) _val; \
qatomic_rcu_read__nocheck(ptr, &_val); \
_val; \
})
#define qatomic_rcu_set(ptr, i) do { \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
} while(0)
#define qatomic_load_acquire(ptr) \
({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
typeof_strip_qual(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \
_val; \
})
#define qatomic_store_release(ptr, i) do { \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
} while(0)
@ -191,7 +191,7 @@
})
#define qatomic_xchg(ptr, i) ({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
qatomic_xchg__nocheck(ptr, i); \
})
@ -204,7 +204,7 @@
})
#define qatomic_cmpxchg(ptr, old, new) ({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
qatomic_cmpxchg__nocheck(ptr, old, new); \
})

View File

@ -186,6 +186,14 @@ void QEMU_ERROR("code path is reachable")
#define qemu_build_not_reached() g_assert_not_reached()
#endif
/**
* qemu_build_assert()
*
* The compiler, during optimization, is expected to prove that the
* assertion is true.
*/
#define qemu_build_assert(test) while (!(test)) qemu_build_not_reached()
/*
* According to waitpid man page:
* WCOREDUMP

View File

@ -227,7 +227,7 @@ struct QemuSpin {
static inline void qemu_spin_init(QemuSpin *spin)
{
__sync_lock_release(&spin->value);
qatomic_set(&spin->value, 0);
#ifdef CONFIG_TSAN
__tsan_mutex_create(spin, __tsan_mutex_not_static);
#endif
@ -246,7 +246,7 @@ static inline void qemu_spin_lock(QemuSpin *spin)
#ifdef CONFIG_TSAN
__tsan_mutex_pre_lock(spin, 0);
#endif
while (unlikely(__sync_lock_test_and_set(&spin->value, true))) {
while (unlikely(qatomic_xchg(&spin->value, 1))) {
while (qatomic_read(&spin->value)) {
cpu_relax();
}
@ -261,7 +261,7 @@ static inline bool qemu_spin_trylock(QemuSpin *spin)
#ifdef CONFIG_TSAN
__tsan_mutex_pre_lock(spin, __tsan_mutex_try_lock);
#endif
bool busy = __sync_lock_test_and_set(&spin->value, true);
bool busy = qatomic_xchg(&spin->value, true);
#ifdef CONFIG_TSAN
unsigned flags = __tsan_mutex_try_lock;
flags |= busy ? __tsan_mutex_try_lock_failed : 0;
@ -280,7 +280,7 @@ static inline void qemu_spin_unlock(QemuSpin *spin)
#ifdef CONFIG_TSAN
__tsan_mutex_pre_unlock(spin, 0);
#endif
__sync_lock_release(&spin->value);
qatomic_store_release(&spin->value, 0);
#ifdef CONFIG_TSAN
__tsan_mutex_post_unlock(spin, 0);
#endif

View File

@ -182,7 +182,6 @@ int target_mprotect(abi_ulong start, abi_ulong len, int target_prot)
}
page_set_flags(start, start + len, page_flags);
tb_invalidate_phys_range(start, start + len);
ret = 0;
error:
@ -662,7 +661,6 @@ abi_long target_mmap(abi_ulong start, abi_ulong len, int target_prot,
qemu_log_unlock(f);
}
}
tb_invalidate_phys_range(start, start + len);
mmap_unlock();
return start;
fail:
@ -766,7 +764,6 @@ int target_munmap(abi_ulong start, abi_ulong len)
if (ret == 0) {
page_set_flags(start, start + len, 0);
tb_invalidate_phys_range(start, start + len);
}
mmap_unlock();
return ret;
@ -856,7 +853,6 @@ abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
page_set_flags(new_addr, new_addr + new_size,
prot | PAGE_VALID | PAGE_RESET);
}
tb_invalidate_phys_range(new_addr, new_addr + new_size);
mmap_unlock();
return new_addr;
}

View File

@ -40,6 +40,14 @@ static vaddr alpha_cpu_get_pc(CPUState *cs)
return cpu->env.pc;
}
static void alpha_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
AlphaCPU *cpu = ALPHA_CPU(cs);
cpu->env.pc = data[0];
}
static bool alpha_cpu_has_work(CPUState *cs)
{
@ -226,6 +234,7 @@ static const struct SysemuCPUOps alpha_sysemu_ops = {
static const struct TCGCPUOps alpha_tcg_ops = {
.initialize = alpha_translate_init,
.restore_state_to_opc = alpha_restore_state_to_opc,
#ifdef CONFIG_USER_ONLY
.record_sigsegv = alpha_cpu_record_sigsegv,

View File

@ -3049,9 +3049,3 @@ void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns,
DisasContext dc;
translator_loop(cpu, tb, max_insns, pc, host_pc, &alpha_tr_ops, &dc.base);
}
void restore_state_to_opc(CPUAlphaState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}

View File

@ -90,6 +90,31 @@ void arm_cpu_synchronize_from_tb(CPUState *cs,
}
}
}
static void arm_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
CPUARMState *env = cs->env_ptr;
if (is_a64(env)) {
if (TARGET_TB_PCREL) {
env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
} else {
env->pc = data[0];
}
env->condexec_bits = 0;
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
} else {
if (TARGET_TB_PCREL) {
env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
} else {
env->regs[15] = data[0];
}
env->condexec_bits = data[1];
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
}
}
#endif /* CONFIG_TCG */
static bool arm_cpu_has_work(CPUState *cs)
@ -2152,6 +2177,7 @@ static const struct TCGCPUOps arm_tcg_ops = {
.initialize = arm_translate_init,
.synchronize_from_tb = arm_cpu_synchronize_from_tb,
.debug_excp_handler = arm_debug_excp_handler,
.restore_state_to_opc = arm_restore_state_to_opc,
#ifdef CONFIG_USER_ONLY
.record_sigsegv = arm_cpu_record_sigsegv,

View File

@ -3410,6 +3410,14 @@ extern const uint64_t pred_esz_masks[5];
#define PAGE_MTE PAGE_TARGET_2
#define PAGE_TARGET_STICKY PAGE_MTE
/* We associate one allocation tag per 16 bytes, the minimum. */
#define LOG2_TAG_GRANULE 4
#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
#ifdef CONFIG_USER_ONLY
#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
#endif
#ifdef TARGET_TAGGED_ADDRESSES
/**
* cpu_untagged_addr:

View File

@ -1164,10 +1164,6 @@ void arm_log_exception(CPUState *cs);
*/
#define GMID_EL1_BS 6
/* We associate one allocation tag per 16 bytes, the minimum. */
#define LOG2_TAG_GRANULE 4
#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
/*
* SVE predicates are 1/8 the size of SVE vectors, and cannot use
* the same simd_desc() encoding due to restrictions on size.

View File

@ -95,11 +95,6 @@ static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
}
tags = page_get_target_data(clean_ptr);
if (tags == NULL) {
size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
tags = page_alloc_target_data(clean_ptr, alloc_size);
assert(tags != NULL);
}
index = extract32(ptr, LOG2_TAG_GRANULE + 1,
TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);

View File

@ -9939,25 +9939,3 @@ void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns,
translator_loop(cpu, tb, max_insns, pc, host_pc, ops, &dc.base);
}
void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb,
target_ulong *data)
{
if (is_a64(env)) {
if (TARGET_TB_PCREL) {
env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
} else {
env->pc = data[0];
}
env->condexec_bits = 0;
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
} else {
if (TARGET_TB_PCREL) {
env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
} else {
env->regs[15] = data[0];
}
env->condexec_bits = data[1];
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
}
}

View File

@ -57,6 +57,16 @@ static void avr_cpu_synchronize_from_tb(CPUState *cs,
env->pc_w = tb_pc(tb) / 2; /* internally PC points to words */
}
static void avr_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
AVRCPU *cpu = AVR_CPU(cs);
CPUAVRState *env = &cpu->env;
env->pc_w = data[0];
}
static void avr_cpu_reset(DeviceState *ds)
{
CPUState *cs = CPU(ds);
@ -202,6 +212,7 @@ static const struct SysemuCPUOps avr_sysemu_ops = {
static const struct TCGCPUOps avr_tcg_ops = {
.initialize = avr_cpu_tcg_init,
.synchronize_from_tb = avr_cpu_synchronize_from_tb,
.restore_state_to_opc = avr_restore_state_to_opc,
.cpu_exec_interrupt = avr_cpu_exec_interrupt,
.tlb_fill = avr_cpu_tlb_fill,
.do_interrupt = avr_cpu_do_interrupt,

View File

@ -3055,9 +3055,3 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
DisasContext dc = { };
translator_loop(cs, tb, max_insns, pc, host_pc, &avr_tr_ops, &dc.base);
}
void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc_w = data[0];
}

View File

@ -42,6 +42,15 @@ static vaddr cris_cpu_get_pc(CPUState *cs)
return cpu->env.pc;
}
static void cris_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
CRISCPU *cpu = CRIS_CPU(cs);
cpu->env.pc = data[0];
}
static bool cris_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI);
@ -212,6 +221,7 @@ static const struct SysemuCPUOps cris_sysemu_ops = {
static const struct TCGCPUOps crisv10_tcg_ops = {
.initialize = cris_initialize_crisv10_tcg,
.restore_state_to_opc = cris_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = cris_cpu_tlb_fill,
@ -222,6 +232,7 @@ static const struct TCGCPUOps crisv10_tcg_ops = {
static const struct TCGCPUOps crisv32_tcg_ops = {
.initialize = cris_initialize_tcg,
.restore_state_to_opc = cris_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = cris_cpu_tlb_fill,

View File

@ -3392,9 +3392,3 @@ void cris_initialize_tcg(void)
pregnames_v32[i]);
}
}
void restore_state_to_opc(CPUCRISState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}

View File

@ -271,9 +271,13 @@ static bool hexagon_cpu_has_work(CPUState *cs)
return true;
}
void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb,
target_ulong *data)
static void hexagon_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
HexagonCPU *cpu = HEXAGON_CPU(cs);
CPUHexagonState *env = &cpu->env;
env->gpr[HEX_REG_PC] = data[0];
}
@ -327,6 +331,7 @@ static void hexagon_cpu_init(Object *obj)
static const struct TCGCPUOps hexagon_tcg_ops = {
.initialize = hexagon_translate_init,
.synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
.restore_state_to_opc = hexagon_restore_state_to_opc,
};
static void hexagon_cpu_class_init(ObjectClass *c, void *data)

View File

@ -68,6 +68,24 @@ static void hppa_cpu_synchronize_from_tb(CPUState *cs,
cpu->env.psw_n = (tb->flags & PSW_N) != 0;
}
static void hppa_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
HPPACPU *cpu = HPPA_CPU(cs);
cpu->env.iaoq_f = data[0];
if (data[1] != (target_ureg)-1) {
cpu->env.iaoq_b = data[1];
}
/*
* Since we were executing the instruction at IAOQ_F, and took some
* sort of action that provoked the cpu_restore_state, we can infer
* that the instruction was not nullified.
*/
cpu->env.psw_n = 0;
}
static bool hppa_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI);
@ -153,6 +171,7 @@ static const struct SysemuCPUOps hppa_sysemu_ops = {
static const struct TCGCPUOps hppa_tcg_ops = {
.initialize = hppa_translate_init,
.synchronize_from_tb = hppa_cpu_synchronize_from_tb,
.restore_state_to_opc = hppa_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = hppa_cpu_tlb_fill,

View File

@ -4346,16 +4346,3 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
DisasContext ctx;
translator_loop(cs, tb, max_insns, pc, host_pc, &hppa_tr_ops, &ctx.base);
}
void restore_state_to_opc(CPUHPPAState *env, TranslationBlock *tb,
target_ulong *data)
{
env->iaoq_f = data[0];
if (data[1] != (target_ureg)-1) {
env->iaoq_b = data[1];
}
/* Since we were executing the instruction at IAOQ_F, and took some
sort of action that provoked the cpu_restore_state, we can infer
that the instruction was not nullified. */
env->psw_n = 0;
}

View File

@ -56,6 +56,24 @@ static void x86_cpu_synchronize_from_tb(CPUState *cs,
}
}
static void x86_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
int cc_op = data[1];
if (TARGET_TB_PCREL) {
env->eip = (env->eip & TARGET_PAGE_MASK) | data[0];
} else {
env->eip = data[0] - tb->cs_base;
}
if (cc_op != CC_OP_DYNAMIC) {
env->cc_op = cc_op;
}
}
#ifndef CONFIG_USER_ONLY
static bool x86_debug_check_breakpoint(CPUState *cs)
{
@ -72,6 +90,7 @@ static bool x86_debug_check_breakpoint(CPUState *cs)
static const struct TCGCPUOps x86_tcg_ops = {
.initialize = tcg_x86_init,
.synchronize_from_tb = x86_cpu_synchronize_from_tb,
.restore_state_to_opc = x86_restore_state_to_opc,
.cpu_exec_enter = x86_cpu_exec_enter,
.cpu_exec_exit = x86_cpu_exec_exit,
#ifdef CONFIG_USER_ONLY

View File

@ -7023,18 +7023,3 @@ void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns,
translator_loop(cpu, tb, max_insns, pc, host_pc, &i386_tr_ops, &dc.base);
}
void restore_state_to_opc(CPUX86State *env, TranslationBlock *tb,
target_ulong *data)
{
int cc_op = data[1];
if (TARGET_TB_PCREL) {
env->eip = (env->eip & TARGET_PAGE_MASK) | data[0];
} else {
env->eip = data[0] - tb->cs_base;
}
if (cc_op != CC_OP_DYNAMIC) {
env->cc_op = cc_op;
}
}

View File

@ -319,6 +319,16 @@ static void loongarch_cpu_synchronize_from_tb(CPUState *cs,
env->pc = tb_pc(tb);
}
static void loongarch_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
env->pc = data[0];
}
#endif /* CONFIG_TCG */
static bool loongarch_cpu_has_work(CPUState *cs)
@ -651,6 +661,7 @@ void loongarch_cpu_dump_state(CPUState *cs, FILE *f, int flags)
static struct TCGCPUOps loongarch_tcg_ops = {
.initialize = loongarch_translate_init,
.synchronize_from_tb = loongarch_cpu_synchronize_from_tb,
.restore_state_to_opc = loongarch_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = loongarch_cpu_tlb_fill,

View File

@ -272,9 +272,3 @@ void loongarch_translate_init(void)
cpu_llval = tcg_global_mem_new(cpu_env,
offsetof(CPULoongArchState, llval), "llval");
}
void restore_state_to_opc(CPULoongArchState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}

View File

@ -38,6 +38,19 @@ static vaddr m68k_cpu_get_pc(CPUState *cs)
return cpu->env.pc;
}
static void m68k_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
M68kCPU *cpu = M68K_CPU(cs);
int cc_op = data[1];
cpu->env.pc = data[0];
if (cc_op != CC_OP_DYNAMIC) {
cpu->env.cc_op = cc_op;
}
}
static bool m68k_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & CPU_INTERRUPT_HARD;
@ -524,6 +537,7 @@ static const struct SysemuCPUOps m68k_sysemu_ops = {
static const struct TCGCPUOps m68k_tcg_ops = {
.initialize = m68k_tcg_init,
.restore_state_to_opc = m68k_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = m68k_cpu_tlb_fill,

View File

@ -6479,13 +6479,3 @@ void m68k_cpu_dump_state(CPUState *cs, FILE *f, int flags)
env->mmu.mmusr, env->mmu.ar);
#endif
}
void restore_state_to_opc(CPUM68KState *env, TranslationBlock *tb,
target_ulong *data)
{
int cc_op = data[1];
env->pc = data[0];
if (cc_op != CC_OP_DYNAMIC) {
env->cc_op = cc_op;
}
}

View File

@ -100,6 +100,16 @@ static void mb_cpu_synchronize_from_tb(CPUState *cs,
cpu->env.iflags = tb->flags & IFLAGS_TB_MASK;
}
static void mb_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
cpu->env.pc = data[0];
cpu->env.iflags = data[1];
}
static bool mb_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI);
@ -373,6 +383,7 @@ static const struct SysemuCPUOps mb_sysemu_ops = {
static const struct TCGCPUOps mb_tcg_ops = {
.initialize = mb_tcg_init,
.synchronize_from_tb = mb_cpu_synchronize_from_tb,
.restore_state_to_opc = mb_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = mb_cpu_tlb_fill,

View File

@ -1946,10 +1946,3 @@ void mb_tcg_init(void)
cpu_res_addr =
tcg_global_mem_new(cpu_env, offsetof(CPUMBState, res_addr), "res_addr");
}
void restore_state_to_opc(CPUMBState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
env->iflags = data[1];
}

View File

@ -538,6 +538,7 @@ static const struct SysemuCPUOps mips_sysemu_ops = {
static const struct TCGCPUOps mips_tcg_ops = {
.initialize = mips_tcg_init,
.synchronize_from_tb = mips_cpu_synchronize_from_tb,
.restore_state_to_opc = mips_restore_state_to_opc,
#if !defined(CONFIG_USER_ONLY)
.tlb_fill = mips_cpu_tlb_fill,

View File

@ -21,6 +21,9 @@ void mips_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
G_NORETURN void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type, int mmu_idx,
uintptr_t retaddr);
void mips_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data);
const char *mips_exception_name(int32_t exception);

View File

@ -16229,9 +16229,13 @@ void mips_tcg_init(void)
}
}
void restore_state_to_opc(CPUMIPSState *env, TranslationBlock *tb,
target_ulong *data)
void mips_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
env->active_tc.PC = data[0];
env->hflags &= ~MIPS_HFLAG_BMASK;
env->hflags |= data[1];

View File

@ -42,6 +42,16 @@ static vaddr nios2_cpu_get_pc(CPUState *cs)
return env->pc;
}
static void nios2_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
Nios2CPU *cpu = NIOS2_CPU(cs);
CPUNios2State *env = &cpu->env;
env->pc = data[0];
}
static bool nios2_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & CPU_INTERRUPT_HARD;
@ -346,6 +356,7 @@ static const struct SysemuCPUOps nios2_sysemu_ops = {
static const struct TCGCPUOps nios2_tcg_ops = {
.initialize = nios2_tcg_init,
.restore_state_to_opc = nios2_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = nios2_cpu_tlb_fill,

View File

@ -1110,9 +1110,3 @@ void nios2_tcg_init(void)
cpu_pc = tcg_global_mem_new(cpu_env,
offsetof(CPUNios2State, pc), "pc");
}
void restore_state_to_opc(CPUNios2State *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}

View File

@ -46,6 +46,18 @@ static void openrisc_cpu_synchronize_from_tb(CPUState *cs,
cpu->env.pc = tb_pc(tb);
}
static void openrisc_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
OpenRISCCPU *cpu = OPENRISC_CPU(cs);
cpu->env.pc = data[0];
cpu->env.dflag = data[1] & 1;
if (data[1] & 2) {
cpu->env.ppc = cpu->env.pc - 4;
}
}
static bool openrisc_cpu_has_work(CPUState *cs)
{
@ -203,6 +215,7 @@ static const struct SysemuCPUOps openrisc_sysemu_ops = {
static const struct TCGCPUOps openrisc_tcg_ops = {
.initialize = openrisc_translate_init,
.synchronize_from_tb = openrisc_cpu_synchronize_from_tb,
.restore_state_to_opc = openrisc_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = openrisc_cpu_tlb_fill,

View File

@ -1726,13 +1726,3 @@ void openrisc_cpu_dump_state(CPUState *cs, FILE *f, int flags)
(i % 4) == 3 ? '\n' : ' ');
}
}
void restore_state_to_opc(CPUOpenRISCState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
env->dflag = data[1] & 1;
if (data[1] & 2) {
env->ppc = env->pc - 4;
}
}

View File

@ -7221,6 +7221,15 @@ static vaddr ppc_cpu_get_pc(CPUState *cs)
return cpu->env.nip;
}
static void ppc_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
cpu->env.nip = data[0];
}
static bool ppc_cpu_has_work(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
@ -7446,6 +7455,7 @@ static const struct SysemuCPUOps ppc_sysemu_ops = {
static const struct TCGCPUOps ppc_tcg_ops = {
.initialize = ppc_translate_init,
.restore_state_to_opc = ppc_restore_state_to_opc,
#ifdef CONFIG_USER_ONLY
.record_sigsegv = ppc_cpu_record_sigsegv,

View File

@ -7739,9 +7739,3 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
translator_loop(cs, tb, max_insns, pc, host_pc, &ppc_tr_ops, &ctx.base);
}
void restore_state_to_opc(CPUPPCState *env, TranslationBlock *tb,
target_ulong *data)
{
env->nip = data[0];
}

View File

@ -503,10 +503,14 @@ static bool riscv_cpu_has_work(CPUState *cs)
#endif
}
void restore_state_to_opc(CPURISCVState *env, TranslationBlock *tb,
target_ulong *data)
static void riscv_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL);
if (xl == MXL_RV32) {
env->pc = (int32_t)data[0];
} else {
@ -1138,6 +1142,7 @@ static const struct SysemuCPUOps riscv_sysemu_ops = {
static const struct TCGCPUOps riscv_tcg_ops = {
.initialize = riscv_translate_init,
.synchronize_from_tb = riscv_cpu_synchronize_from_tb,
.restore_state_to_opc = riscv_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = riscv_cpu_tlb_fill,

View File

@ -47,6 +47,15 @@ static void rx_cpu_synchronize_from_tb(CPUState *cs,
cpu->env.pc = tb_pc(tb);
}
static void rx_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
RXCPU *cpu = RX_CPU(cs);
cpu->env.pc = data[0];
}
static bool rx_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request &
@ -192,6 +201,7 @@ static const struct SysemuCPUOps rx_sysemu_ops = {
static const struct TCGCPUOps rx_tcg_ops = {
.initialize = rx_translate_init,
.synchronize_from_tb = rx_cpu_synchronize_from_tb,
.restore_state_to_opc = rx_restore_state_to_opc,
.tlb_fill = rx_cpu_tlb_fill,
#ifndef CONFIG_USER_ONLY

View File

@ -2371,12 +2371,6 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
translator_loop(cs, tb, max_insns, pc, host_pc, &rx_tr_ops, &dc.base);
}
void restore_state_to_opc(CPURXState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}
#define ALLOC_REGISTER(sym, name) \
cpu_##sym = tcg_global_mem_new_i32(cpu_env, \
offsetof(CPURXState, sym), name)

View File

@ -272,6 +272,7 @@ static void s390_cpu_reset_full(DeviceState *dev)
static const struct TCGCPUOps s390_tcg_ops = {
.initialize = s390x_translate_init,
.restore_state_to_opc = s390x_restore_state_to_opc,
#ifdef CONFIG_USER_ONLY
.record_sigsegv = s390_cpu_record_sigsegv,

View File

@ -398,7 +398,9 @@ void handle_diag_308(CPUS390XState *env, uint64_t r1, uint64_t r3,
/* translate.c */
void s390x_translate_init(void);
void s390x_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data);
/* sigp.c */
int handle_sigp(CPUS390XState *env, uint8_t order, uint64_t r1, uint64_t r3);

View File

@ -6691,9 +6691,12 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
translator_loop(cs, tb, max_insns, pc, host_pc, &s390x_tr_ops, &dc.base);
}
void restore_state_to_opc(CPUS390XState *env, TranslationBlock *tb,
target_ulong *data)
void s390x_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
int cc_op = data[1];
env->psw.addr = data[0];

View File

@ -50,6 +50,21 @@ static void superh_cpu_synchronize_from_tb(CPUState *cs,
cpu->env.flags = tb->flags;
}
static void superh_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
cpu->env.pc = data[0];
cpu->env.flags = data[1];
/*
* Theoretically delayed_pc should also be restored. In practice the
* branch instruction is re-executed after exception, so the delayed
* branch target will be recomputed.
*/
}
#ifndef CONFIG_USER_ONLY
static bool superh_io_recompile_replay_branch(CPUState *cs,
const TranslationBlock *tb)
@ -243,6 +258,7 @@ static const struct SysemuCPUOps sh4_sysemu_ops = {
static const struct TCGCPUOps superh_tcg_ops = {
.initialize = sh4_translate_init,
.synchronize_from_tb = superh_cpu_synchronize_from_tb,
.restore_state_to_opc = superh_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = superh_cpu_tlb_fill,

View File

@ -2381,13 +2381,3 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
translator_loop(cs, tb, max_insns, pc, host_pc, &sh4_tr_ops, &ctx.base);
}
void restore_state_to_opc(CPUSH4State *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
env->flags = data[1];
/* Theoretically delayed_pc should also be restored. In practice the
branch instruction is re-executed after exception, so the delayed
branch target will be recomputed. */
}

View File

@ -872,6 +872,7 @@ static const struct SysemuCPUOps sparc_sysemu_ops = {
static const struct TCGCPUOps sparc_tcg_ops = {
.initialize = sparc_tcg_init,
.synchronize_from_tb = sparc_cpu_synchronize_from_tb,
.restore_state_to_opc = sparc_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = sparc_cpu_tlb_fill,

View File

@ -600,6 +600,9 @@ int sparc_cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
/* translate.c */
void sparc_tcg_init(void);
void sparc_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data);
/* cpu-exec.c */

View File

@ -6011,9 +6011,12 @@ void sparc_tcg_init(void)
}
}
void restore_state_to_opc(CPUSPARCState *env, TranslationBlock *tb,
target_ulong *data)
void sparc_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
SPARCCPU *cpu = SPARC_CPU(cs);
CPUSPARCState *env = &cpu->env;
target_ulong pc = data[0];
target_ulong npc = data[1];

View File

@ -58,6 +58,16 @@ static void tricore_cpu_synchronize_from_tb(CPUState *cs,
env->PC = tb_pc(tb);
}
static void tricore_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
TriCoreCPU *cpu = TRICORE_CPU(cs);
CPUTriCoreState *env = &cpu->env;
env->PC = data[0];
}
static void tricore_cpu_reset(DeviceState *dev)
{
CPUState *s = CPU(dev);
@ -161,6 +171,7 @@ static const struct SysemuCPUOps tricore_sysemu_ops = {
static const struct TCGCPUOps tricore_tcg_ops = {
.initialize = tricore_tcg_init,
.synchronize_from_tb = tricore_cpu_synchronize_from_tb,
.restore_state_to_opc = tricore_restore_state_to_opc,
.tlb_fill = tricore_cpu_tlb_fill,
};

View File

@ -8886,12 +8886,6 @@ void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns,
&tricore_tr_ops, &ctx.base);
}
void
restore_state_to_opc(CPUTriCoreState *env, TranslationBlock *tb,
target_ulong *data)
{
env->PC = data[0];
}
/*
*
* Initialization

View File

@ -51,6 +51,15 @@ static vaddr xtensa_cpu_get_pc(CPUState *cs)
return cpu->env.pc;
}
static void xtensa_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
cpu->env.pc = data[0];
}
static bool xtensa_cpu_has_work(CPUState *cs)
{
#ifndef CONFIG_USER_ONLY
@ -215,6 +224,7 @@ static const struct SysemuCPUOps xtensa_sysemu_ops = {
static const struct TCGCPUOps xtensa_tcg_ops = {
.initialize = xtensa_translate_init,
.debug_excp_handler = xtensa_breakpoint_handler,
.restore_state_to_opc = xtensa_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = xtensa_cpu_tlb_fill,

View File

@ -1355,12 +1355,6 @@ void xtensa_cpu_dump_state(CPUState *cs, FILE *f, int flags)
}
}
void restore_state_to_opc(CPUXtensaState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}
static void translate_abs(DisasContext *dc, const OpcodeArg arg[],
const uint32_t par[])
{

View File

@ -1916,24 +1916,21 @@ static void tcg_out_op(TCGContext *s, TCGOpcode opc,
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_insn_offset != NULL) {
/* TCG_TARGET_HAS_direct_jump */
/* Ensure that ADRP+ADD are 8-byte aligned so that an atomic
write can be used to patch the target address. */
if ((uintptr_t)s->code_ptr & 7) {
tcg_out32(s, NOP);
}
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
/* actual branch destination will be patched by
tb_target_set_jmp_target later. */
tcg_out_insn(s, 3406, ADRP, TCG_REG_TMP, 0);
tcg_out_insn(s, 3401, ADDI, TCG_TYPE_I64, TCG_REG_TMP, TCG_REG_TMP, 0);
} else {
/* !TCG_TARGET_HAS_direct_jump */
tcg_debug_assert(s->tb_jmp_target_addr != NULL);
intptr_t offset = tcg_pcrel_diff(s, (s->tb_jmp_target_addr + a0)) >> 2;
tcg_out_insn(s, 3305, LDR, offset, TCG_REG_TMP);
tcg_debug_assert(s->tb_jmp_insn_offset != NULL);
/*
* Ensure that ADRP+ADD are 8-byte aligned so that an atomic
* write can be used to patch the target address.
*/
if ((uintptr_t)s->code_ptr & 7) {
tcg_out32(s, NOP);
}
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
/*
* actual branch destination will be patched by
* tb_target_set_jmp_target later
*/
tcg_out_insn(s, 3406, ADRP, TCG_REG_TMP, 0);
tcg_out_insn(s, 3401, ADDI, TCG_TYPE_I64, TCG_REG_TMP, TCG_REG_TMP, 0);
tcg_out_insn(s, 3207, BR, TCG_REG_TMP);
set_jmp_reset_offset(s, a0);
break;

View File

@ -1031,6 +1031,36 @@ static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args)
#endif
}
/* LoongArch uses `andi zero, zero, 0` as NOP. */
#define NOP OPC_ANDI
static void tcg_out_nop(TCGContext *s)
{
tcg_out32(s, NOP);
}
void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
uintptr_t jmp_rw, uintptr_t addr)
{
tcg_insn_unit i1, i2;
ptrdiff_t upper, lower;
ptrdiff_t offset = (ptrdiff_t)(addr - jmp_rx) >> 2;
if (offset == sextreg(offset, 0, 26)) {
i1 = encode_sd10k16_insn(OPC_B, offset);
i2 = NOP;
} else {
tcg_debug_assert(offset == sextreg(offset, 0, 36));
lower = (int16_t)offset;
upper = (offset - lower) >> 16;
i1 = encode_dsj20_insn(OPC_PCADDU18I, TCG_REG_TMP0, upper);
i2 = encode_djsk16_insn(OPC_JIRL, TCG_REG_ZERO, TCG_REG_TMP0, lower);
}
uint64_t pair = ((uint64_t)i2 << 32) | i1;
qatomic_set((uint64_t *)jmp_rw, pair);
flush_idcache_range(jmp_rx, jmp_rw, 8);
}
/*
* Entry-points
*/
@ -1058,10 +1088,20 @@ static void tcg_out_op(TCGContext *s, TCGOpcode opc,
break;
case INDEX_op_goto_tb:
assert(s->tb_jmp_insn_offset == 0);
/* indirect jump method */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP0, TCG_REG_ZERO,
(uintptr_t)(s->tb_jmp_target_addr + a0));
tcg_debug_assert(s->tb_jmp_insn_offset != NULL);
/*
* Ensure that patch area is 8-byte aligned so that an
* atomic write can be used to patch the target address.
*/
if ((uintptr_t)s->code_ptr & 7) {
tcg_out_nop(s);
}
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
/*
* actual branch destination will be patched by
* tb_target_set_jmp_target later
*/
tcg_out_opc_pcaddu18i(s, TCG_REG_TMP0, 0);
tcg_out_opc_jirl(s, TCG_REG_ZERO, TCG_REG_TMP0, 0);
set_jmp_reset_offset(s, a0);
break;

View File

@ -42,7 +42,11 @@
#define TCG_TARGET_INSN_UNIT_SIZE 4
#define TCG_TARGET_NB_REGS 32
#define MAX_CODE_GEN_BUFFER_SIZE SIZE_MAX
/*
* PCADDU18I + JIRL sequence can give 20 + 16 + 2 = 38 bits
* signed offset, which is +/- 128 GiB.
*/
#define MAX_CODE_GEN_BUFFER_SIZE (128 * GiB)
typedef enum {
TCG_REG_ZERO,
@ -123,7 +127,7 @@ typedef enum {
#define TCG_TARGET_HAS_clz_i32 1
#define TCG_TARGET_HAS_ctz_i32 1
#define TCG_TARGET_HAS_ctpop_i32 0
#define TCG_TARGET_HAS_direct_jump 0
#define TCG_TARGET_HAS_direct_jump 1
#define TCG_TARGET_HAS_brcond2 0
#define TCG_TARGET_HAS_setcond2 0
#define TCG_TARGET_HAS_qemu_st8_i32 0
@ -166,7 +170,6 @@ typedef enum {
#define TCG_TARGET_HAS_muluh_i64 1
#define TCG_TARGET_HAS_mulsh_i64 1
/* not defined -- call should be eliminated at compile time */
void tb_target_set_jmp_target(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
#define TCG_TARGET_DEFAULT_MO (0)