cputlb: move TLB handling to a separate file
Move TLB handling and softmmu code load helpers to cputlb.c, compile only for softmmu targets. Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
This commit is contained in:
parent
e554861766
commit
0cac1b66c8
@ -191,7 +191,7 @@ obj-$(CONFIG_REALLY_VIRTFS) += 9pfs/virtio-9p-device.o
|
||||
obj-$(CONFIG_KVM) += kvm.o kvm-all.o
|
||||
obj-$(CONFIG_NO_KVM) += kvm-stub.o
|
||||
obj-$(CONFIG_VGA) += vga.o
|
||||
obj-y += memory.o savevm.o
|
||||
obj-y += memory.o savevm.o cputlb.o
|
||||
LIBS+=-lz
|
||||
|
||||
obj-i386-$(CONFIG_KVM) += hyperv.o
|
||||
|
362
cputlb.c
Normal file
362
cputlb.c
Normal file
@ -0,0 +1,362 @@
|
||||
/*
|
||||
* Common CPU TLB handling
|
||||
*
|
||||
* Copyright (c) 2003 Fabrice Bellard
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "config.h"
|
||||
#include "cpu.h"
|
||||
#include "exec-all.h"
|
||||
#include "memory.h"
|
||||
|
||||
#include "cputlb.h"
|
||||
|
||||
#define WANT_EXEC_OBSOLETE
|
||||
#include "exec-obsolete.h"
|
||||
|
||||
//#define DEBUG_TLB
|
||||
//#define DEBUG_TLB_CHECK
|
||||
|
||||
/* statistics */
|
||||
int tlb_flush_count;
|
||||
|
||||
static const CPUTLBEntry s_cputlb_empty_entry = {
|
||||
.addr_read = -1,
|
||||
.addr_write = -1,
|
||||
.addr_code = -1,
|
||||
.addend = -1,
|
||||
};
|
||||
|
||||
/* NOTE:
|
||||
* If flush_global is true (the usual case), flush all tlb entries.
|
||||
* If flush_global is false, flush (at least) all tlb entries not
|
||||
* marked global.
|
||||
*
|
||||
* Since QEMU doesn't currently implement a global/not-global flag
|
||||
* for tlb entries, at the moment tlb_flush() will also flush all
|
||||
* tlb entries in the flush_global == false case. This is OK because
|
||||
* CPU architectures generally permit an implementation to drop
|
||||
* entries from the TLB at any time, so flushing more entries than
|
||||
* required is only an efficiency issue, not a correctness issue.
|
||||
*/
|
||||
void tlb_flush(CPUArchState *env, int flush_global)
|
||||
{
|
||||
int i;
|
||||
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_flush:\n");
|
||||
#endif
|
||||
/* must reset current TB so that interrupts cannot modify the
|
||||
links while we are modifying them */
|
||||
env->current_tb = NULL;
|
||||
|
||||
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
||||
int mmu_idx;
|
||||
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
|
||||
}
|
||||
}
|
||||
|
||||
memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
||||
|
||||
env->tlb_flush_addr = -1;
|
||||
env->tlb_flush_mask = 0;
|
||||
tlb_flush_count++;
|
||||
}
|
||||
|
||||
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
||||
{
|
||||
if (addr == (tlb_entry->addr_read &
|
||||
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
||||
addr == (tlb_entry->addr_write &
|
||||
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
||||
addr == (tlb_entry->addr_code &
|
||||
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
||||
*tlb_entry = s_cputlb_empty_entry;
|
||||
}
|
||||
}
|
||||
|
||||
void tlb_flush_page(CPUArchState *env, target_ulong addr)
|
||||
{
|
||||
int i;
|
||||
int mmu_idx;
|
||||
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
||||
#endif
|
||||
/* Check if we need to flush due to large pages. */
|
||||
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_flush_page: forced full flush ("
|
||||
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
||||
env->tlb_flush_addr, env->tlb_flush_mask);
|
||||
#endif
|
||||
tlb_flush(env, 1);
|
||||
return;
|
||||
}
|
||||
/* must reset current TB so that interrupts cannot modify the
|
||||
links while we are modifying them */
|
||||
env->current_tb = NULL;
|
||||
|
||||
addr &= TARGET_PAGE_MASK;
|
||||
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
||||
}
|
||||
|
||||
tb_flush_jmp_cache(env, addr);
|
||||
}
|
||||
|
||||
/* update the TLBs so that writes to code in the virtual page 'addr'
|
||||
can be detected */
|
||||
void tlb_protect_code(ram_addr_t ram_addr)
|
||||
{
|
||||
cpu_physical_memory_reset_dirty(ram_addr,
|
||||
ram_addr + TARGET_PAGE_SIZE,
|
||||
CODE_DIRTY_FLAG);
|
||||
}
|
||||
|
||||
/* update the TLB so that writes in physical page 'phys_addr' are no longer
|
||||
tested for self modifying code */
|
||||
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
|
||||
target_ulong vaddr)
|
||||
{
|
||||
cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
|
||||
}
|
||||
|
||||
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
|
||||
{
|
||||
return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
|
||||
}
|
||||
|
||||
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
|
||||
uintptr_t length)
|
||||
{
|
||||
uintptr_t addr;
|
||||
|
||||
if (tlb_is_dirty_ram(tlb_entry)) {
|
||||
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
||||
if ((addr - start) < length) {
|
||||
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
|
||||
{
|
||||
ram_addr_t ram_addr;
|
||||
void *p;
|
||||
|
||||
if (tlb_is_dirty_ram(tlb_entry)) {
|
||||
p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
|
||||
+ tlb_entry->addend);
|
||||
ram_addr = qemu_ram_addr_from_host_nofail(p);
|
||||
if (!cpu_physical_memory_is_dirty(ram_addr)) {
|
||||
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
|
||||
{
|
||||
CPUArchState *env;
|
||||
|
||||
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
||||
int mmu_idx;
|
||||
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
||||
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
||||
start1, length);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
||||
{
|
||||
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
||||
tlb_entry->addr_write = vaddr;
|
||||
}
|
||||
}
|
||||
|
||||
/* update the TLB corresponding to virtual page vaddr
|
||||
so that it is no longer dirty */
|
||||
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
|
||||
{
|
||||
int i;
|
||||
int mmu_idx;
|
||||
|
||||
vaddr &= TARGET_PAGE_MASK;
|
||||
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
||||
}
|
||||
}
|
||||
|
||||
/* Our TLB does not support large pages, so remember the area covered by
|
||||
large pages and trigger a full TLB flush if these are invalidated. */
|
||||
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
||||
target_ulong size)
|
||||
{
|
||||
target_ulong mask = ~(size - 1);
|
||||
|
||||
if (env->tlb_flush_addr == (target_ulong)-1) {
|
||||
env->tlb_flush_addr = vaddr & mask;
|
||||
env->tlb_flush_mask = mask;
|
||||
return;
|
||||
}
|
||||
/* Extend the existing region to include the new page.
|
||||
This is a compromise between unnecessary flushes and the cost
|
||||
of maintaining a full variable size TLB. */
|
||||
mask &= env->tlb_flush_mask;
|
||||
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
||||
mask <<= 1;
|
||||
}
|
||||
env->tlb_flush_addr &= mask;
|
||||
env->tlb_flush_mask = mask;
|
||||
}
|
||||
|
||||
/* Add a new TLB entry. At most one entry for a given virtual address
|
||||
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
||||
supplied size is only used by tlb_flush_page. */
|
||||
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
|
||||
target_phys_addr_t paddr, int prot,
|
||||
int mmu_idx, target_ulong size)
|
||||
{
|
||||
MemoryRegionSection *section;
|
||||
unsigned int index;
|
||||
target_ulong address;
|
||||
target_ulong code_address;
|
||||
uintptr_t addend;
|
||||
CPUTLBEntry *te;
|
||||
target_phys_addr_t iotlb;
|
||||
|
||||
assert(size >= TARGET_PAGE_SIZE);
|
||||
if (size != TARGET_PAGE_SIZE) {
|
||||
tlb_add_large_page(env, vaddr, size);
|
||||
}
|
||||
section = phys_page_find(paddr >> TARGET_PAGE_BITS);
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
||||
" prot=%x idx=%d pd=0x%08lx\n",
|
||||
vaddr, paddr, prot, mmu_idx, pd);
|
||||
#endif
|
||||
|
||||
address = vaddr;
|
||||
if (!is_ram_rom_romd(section)) {
|
||||
/* IO memory case (romd handled later) */
|
||||
address |= TLB_MMIO;
|
||||
}
|
||||
if (is_ram_rom_romd(section)) {
|
||||
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
|
||||
+ section_addr(section, paddr);
|
||||
} else {
|
||||
addend = 0;
|
||||
}
|
||||
iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
|
||||
&address);
|
||||
|
||||
code_address = address;
|
||||
|
||||
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
env->iotlb[mmu_idx][index] = iotlb - vaddr;
|
||||
te = &env->tlb_table[mmu_idx][index];
|
||||
te->addend = addend - vaddr;
|
||||
if (prot & PAGE_READ) {
|
||||
te->addr_read = address;
|
||||
} else {
|
||||
te->addr_read = -1;
|
||||
}
|
||||
|
||||
if (prot & PAGE_EXEC) {
|
||||
te->addr_code = code_address;
|
||||
} else {
|
||||
te->addr_code = -1;
|
||||
}
|
||||
if (prot & PAGE_WRITE) {
|
||||
if ((memory_region_is_ram(section->mr) && section->readonly)
|
||||
|| is_romd(section)) {
|
||||
/* Write access calls the I/O callback. */
|
||||
te->addr_write = address | TLB_MMIO;
|
||||
} else if (memory_region_is_ram(section->mr)
|
||||
&& !cpu_physical_memory_is_dirty(
|
||||
section->mr->ram_addr
|
||||
+ section_addr(section, paddr))) {
|
||||
te->addr_write = address | TLB_NOTDIRTY;
|
||||
} else {
|
||||
te->addr_write = address;
|
||||
}
|
||||
} else {
|
||||
te->addr_write = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* NOTE: this function can trigger an exception */
|
||||
/* NOTE2: the returned address is not exactly the physical address: it
|
||||
is the offset relative to phys_ram_base */
|
||||
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
|
||||
{
|
||||
int mmu_idx, page_index, pd;
|
||||
void *p;
|
||||
MemoryRegion *mr;
|
||||
|
||||
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
mmu_idx = cpu_mmu_index(env1);
|
||||
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
|
||||
(addr & TARGET_PAGE_MASK))) {
|
||||
#ifdef CONFIG_TCG_PASS_AREG0
|
||||
cpu_ldub_code(env1, addr);
|
||||
#else
|
||||
ldub_code(addr);
|
||||
#endif
|
||||
}
|
||||
pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
|
||||
mr = iotlb_to_region(pd);
|
||||
if (memory_region_is_unassigned(mr)) {
|
||||
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
|
||||
cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
|
||||
#else
|
||||
cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
|
||||
TARGET_FMT_lx "\n", addr);
|
||||
#endif
|
||||
}
|
||||
p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
|
||||
return qemu_ram_addr_from_host_nofail(p);
|
||||
}
|
||||
|
||||
#define MMUSUFFIX _cmmu
|
||||
#undef GETPC
|
||||
#define GETPC() ((uintptr_t)0)
|
||||
#define env cpu_single_env
|
||||
#define SOFTMMU_CODE_ACCESS
|
||||
|
||||
#define SHIFT 0
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#define SHIFT 1
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#define SHIFT 2
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#define SHIFT 3
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#undef env
|
63
cputlb.h
Normal file
63
cputlb.h
Normal file
@ -0,0 +1,63 @@
|
||||
/*
|
||||
* Common CPU TLB handling
|
||||
*
|
||||
* Copyright (c) 2003 Fabrice Bellard
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef CPUTLB_H
|
||||
#define CPUTLB_H
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
/* cputlb.c */
|
||||
void tlb_protect_code(ram_addr_t ram_addr);
|
||||
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
|
||||
target_ulong vaddr);
|
||||
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
|
||||
uintptr_t length);
|
||||
MemoryRegionSection *phys_page_find(target_phys_addr_t index);
|
||||
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length);
|
||||
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr);
|
||||
extern int tlb_flush_count;
|
||||
|
||||
/* exec.c */
|
||||
target_phys_addr_t section_addr(MemoryRegionSection *section,
|
||||
target_phys_addr_t addr);
|
||||
void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr);
|
||||
target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
|
||||
MemoryRegionSection *section,
|
||||
target_ulong vaddr,
|
||||
target_phys_addr_t paddr,
|
||||
int prot,
|
||||
target_ulong *address);
|
||||
bool memory_region_is_unassigned(MemoryRegion *mr);
|
||||
|
||||
static inline bool is_ram_rom(MemoryRegionSection *s)
|
||||
{
|
||||
return memory_region_is_ram(s->mr);
|
||||
}
|
||||
|
||||
static inline bool is_romd(MemoryRegionSection *s)
|
||||
{
|
||||
MemoryRegion *mr = s->mr;
|
||||
|
||||
return mr->rom_device && mr->readable;
|
||||
}
|
||||
static inline bool is_ram_rom_romd(MemoryRegionSection *s)
|
||||
{
|
||||
return is_ram_rom(s) || is_romd(s);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
12
exec-all.h
12
exec-all.h
@ -96,13 +96,22 @@ void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1);
|
||||
int page_unprotect(target_ulong address, uintptr_t pc, void *puc);
|
||||
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
|
||||
int is_cpu_write_access);
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
/* cputlb.c */
|
||||
void tlb_flush_page(CPUArchState *env, target_ulong addr);
|
||||
void tlb_flush(CPUArchState *env, int flush_global);
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
|
||||
target_phys_addr_t paddr, int prot,
|
||||
int mmu_idx, target_ulong size);
|
||||
void tb_invalidate_phys_addr(target_phys_addr_t addr);
|
||||
#else
|
||||
static inline void tlb_flush_page(CPUArchState *env, target_ulong addr)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void tlb_flush(CPUArchState *env, int flush_global)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
|
||||
@ -340,6 +349,7 @@ static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong
|
||||
return addr;
|
||||
}
|
||||
#else
|
||||
/* cputlb.c */
|
||||
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
|
||||
#endif
|
||||
|
||||
|
380
exec.c
380
exec.c
@ -57,17 +57,17 @@
|
||||
#include "trace.h"
|
||||
#endif
|
||||
|
||||
#include "cputlb.h"
|
||||
|
||||
#define WANT_EXEC_OBSOLETE
|
||||
#include "exec-obsolete.h"
|
||||
|
||||
//#define DEBUG_TB_INVALIDATE
|
||||
//#define DEBUG_FLUSH
|
||||
//#define DEBUG_TLB
|
||||
//#define DEBUG_UNASSIGNED
|
||||
|
||||
/* make various TB consistency checks */
|
||||
//#define DEBUG_TB_CHECK
|
||||
//#define DEBUG_TLB_CHECK
|
||||
|
||||
//#define DEBUG_IOPORT
|
||||
//#define DEBUG_SUBPAGE
|
||||
@ -227,9 +227,6 @@ int loglevel;
|
||||
static int log_append = 0;
|
||||
|
||||
/* statistics */
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
static int tlb_flush_count;
|
||||
#endif
|
||||
static int tb_flush_count;
|
||||
static int tb_phys_invalidate_count;
|
||||
|
||||
@ -479,7 +476,7 @@ static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
|
||||
phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
||||
}
|
||||
|
||||
static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
|
||||
MemoryRegionSection *phys_page_find(target_phys_addr_t index)
|
||||
{
|
||||
PhysPageEntry lp = phys_map;
|
||||
PhysPageEntry *p;
|
||||
@ -499,7 +496,6 @@ not_found:
|
||||
return &phys_sections[s_index];
|
||||
}
|
||||
|
||||
static
|
||||
bool memory_region_is_unassigned(MemoryRegion *mr)
|
||||
{
|
||||
return mr != &io_mem_ram && mr != &io_mem_rom
|
||||
@ -507,17 +503,14 @@ bool memory_region_is_unassigned(MemoryRegion *mr)
|
||||
&& mr != &io_mem_watch;
|
||||
}
|
||||
|
||||
static target_phys_addr_t section_addr(MemoryRegionSection *section,
|
||||
target_phys_addr_t addr)
|
||||
target_phys_addr_t section_addr(MemoryRegionSection *section,
|
||||
target_phys_addr_t addr)
|
||||
{
|
||||
addr -= section->offset_within_address_space;
|
||||
addr += section->offset_within_region;
|
||||
return addr;
|
||||
}
|
||||
|
||||
static void tlb_protect_code(ram_addr_t ram_addr);
|
||||
static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
|
||||
target_ulong vaddr);
|
||||
#define mmap_lock() do { } while(0)
|
||||
#define mmap_unlock() do { } while(0)
|
||||
#endif
|
||||
@ -1926,8 +1919,7 @@ CPUArchState *cpu_copy(CPUArchState *env)
|
||||
}
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
|
||||
static inline void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
|
||||
void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
@ -1942,147 +1934,6 @@ static inline void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
|
||||
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
||||
}
|
||||
|
||||
static const CPUTLBEntry s_cputlb_empty_entry = {
|
||||
.addr_read = -1,
|
||||
.addr_write = -1,
|
||||
.addr_code = -1,
|
||||
.addend = -1,
|
||||
};
|
||||
|
||||
/* NOTE:
|
||||
* If flush_global is true (the usual case), flush all tlb entries.
|
||||
* If flush_global is false, flush (at least) all tlb entries not
|
||||
* marked global.
|
||||
*
|
||||
* Since QEMU doesn't currently implement a global/not-global flag
|
||||
* for tlb entries, at the moment tlb_flush() will also flush all
|
||||
* tlb entries in the flush_global == false case. This is OK because
|
||||
* CPU architectures generally permit an implementation to drop
|
||||
* entries from the TLB at any time, so flushing more entries than
|
||||
* required is only an efficiency issue, not a correctness issue.
|
||||
*/
|
||||
void tlb_flush(CPUArchState *env, int flush_global)
|
||||
{
|
||||
int i;
|
||||
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_flush:\n");
|
||||
#endif
|
||||
/* must reset current TB so that interrupts cannot modify the
|
||||
links while we are modifying them */
|
||||
env->current_tb = NULL;
|
||||
|
||||
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
||||
int mmu_idx;
|
||||
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
|
||||
}
|
||||
}
|
||||
|
||||
memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
||||
|
||||
env->tlb_flush_addr = -1;
|
||||
env->tlb_flush_mask = 0;
|
||||
tlb_flush_count++;
|
||||
}
|
||||
|
||||
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
||||
{
|
||||
if (addr == (tlb_entry->addr_read &
|
||||
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
||||
addr == (tlb_entry->addr_write &
|
||||
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
||||
addr == (tlb_entry->addr_code &
|
||||
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
||||
*tlb_entry = s_cputlb_empty_entry;
|
||||
}
|
||||
}
|
||||
|
||||
void tlb_flush_page(CPUArchState *env, target_ulong addr)
|
||||
{
|
||||
int i;
|
||||
int mmu_idx;
|
||||
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
||||
#endif
|
||||
/* Check if we need to flush due to large pages. */
|
||||
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_flush_page: forced full flush ("
|
||||
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
||||
env->tlb_flush_addr, env->tlb_flush_mask);
|
||||
#endif
|
||||
tlb_flush(env, 1);
|
||||
return;
|
||||
}
|
||||
/* must reset current TB so that interrupts cannot modify the
|
||||
links while we are modifying them */
|
||||
env->current_tb = NULL;
|
||||
|
||||
addr &= TARGET_PAGE_MASK;
|
||||
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
||||
}
|
||||
|
||||
tb_flush_jmp_cache(env, addr);
|
||||
}
|
||||
|
||||
/* update the TLBs so that writes to code in the virtual page 'addr'
|
||||
can be detected */
|
||||
static void tlb_protect_code(ram_addr_t ram_addr)
|
||||
{
|
||||
cpu_physical_memory_reset_dirty(ram_addr,
|
||||
ram_addr + TARGET_PAGE_SIZE,
|
||||
CODE_DIRTY_FLAG);
|
||||
}
|
||||
|
||||
/* update the TLB so that writes in physical page 'phys_addr' are no longer
|
||||
tested for self modifying code */
|
||||
static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
|
||||
target_ulong vaddr)
|
||||
{
|
||||
cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
|
||||
}
|
||||
|
||||
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
|
||||
{
|
||||
return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
|
||||
}
|
||||
|
||||
static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
|
||||
uintptr_t start, uintptr_t length)
|
||||
{
|
||||
uintptr_t addr;
|
||||
|
||||
if (tlb_is_dirty_ram(tlb_entry)) {
|
||||
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
||||
if ((addr - start) < length) {
|
||||
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
|
||||
{
|
||||
CPUArchState *env;
|
||||
|
||||
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
||||
int mmu_idx;
|
||||
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
||||
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
||||
start1, length);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Note: start and end must be within the same ram block. */
|
||||
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
||||
int dirty_flags)
|
||||
@ -2116,83 +1967,6 @@ int cpu_physical_memory_set_dirty_tracking(int enable)
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
|
||||
{
|
||||
ram_addr_t ram_addr;
|
||||
void *p;
|
||||
|
||||
if (tlb_is_dirty_ram(tlb_entry)) {
|
||||
p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
|
||||
+ tlb_entry->addend);
|
||||
ram_addr = qemu_ram_addr_from_host_nofail(p);
|
||||
if (!cpu_physical_memory_is_dirty(ram_addr)) {
|
||||
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
||||
{
|
||||
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
||||
tlb_entry->addr_write = vaddr;
|
||||
}
|
||||
}
|
||||
|
||||
/* update the TLB corresponding to virtual page vaddr
|
||||
so that it is no longer dirty */
|
||||
static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
|
||||
{
|
||||
int i;
|
||||
int mmu_idx;
|
||||
|
||||
vaddr &= TARGET_PAGE_MASK;
|
||||
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
||||
tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
||||
}
|
||||
}
|
||||
|
||||
/* Our TLB does not support large pages, so remember the area covered by
|
||||
large pages and trigger a full TLB flush if these are invalidated. */
|
||||
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
||||
target_ulong size)
|
||||
{
|
||||
target_ulong mask = ~(size - 1);
|
||||
|
||||
if (env->tlb_flush_addr == (target_ulong)-1) {
|
||||
env->tlb_flush_addr = vaddr & mask;
|
||||
env->tlb_flush_mask = mask;
|
||||
return;
|
||||
}
|
||||
/* Extend the existing region to include the new page.
|
||||
This is a compromise between unnecessary flushes and the cost
|
||||
of maintaining a full variable size TLB. */
|
||||
mask &= env->tlb_flush_mask;
|
||||
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
||||
mask <<= 1;
|
||||
}
|
||||
env->tlb_flush_addr &= mask;
|
||||
env->tlb_flush_mask = mask;
|
||||
}
|
||||
|
||||
static bool is_ram_rom(MemoryRegionSection *s)
|
||||
{
|
||||
return memory_region_is_ram(s->mr);
|
||||
}
|
||||
|
||||
static bool is_romd(MemoryRegionSection *s)
|
||||
{
|
||||
MemoryRegion *mr = s->mr;
|
||||
|
||||
return mr->rom_device && mr->readable;
|
||||
}
|
||||
|
||||
static bool is_ram_rom_romd(MemoryRegionSection *s)
|
||||
{
|
||||
return is_ram_rom(s) || is_romd(s);
|
||||
}
|
||||
|
||||
static
|
||||
target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
|
||||
MemoryRegionSection *section,
|
||||
target_ulong vaddr,
|
||||
@ -2239,91 +2013,7 @@ target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
|
||||
return iotlb;
|
||||
}
|
||||
|
||||
/* Add a new TLB entry. At most one entry for a given virtual address
|
||||
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
||||
supplied size is only used by tlb_flush_page. */
|
||||
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
|
||||
target_phys_addr_t paddr, int prot,
|
||||
int mmu_idx, target_ulong size)
|
||||
{
|
||||
MemoryRegionSection *section;
|
||||
unsigned int index;
|
||||
target_ulong address;
|
||||
target_ulong code_address;
|
||||
uintptr_t addend;
|
||||
CPUTLBEntry *te;
|
||||
target_phys_addr_t iotlb;
|
||||
|
||||
assert(size >= TARGET_PAGE_SIZE);
|
||||
if (size != TARGET_PAGE_SIZE) {
|
||||
tlb_add_large_page(env, vaddr, size);
|
||||
}
|
||||
section = phys_page_find(paddr >> TARGET_PAGE_BITS);
|
||||
#if defined(DEBUG_TLB)
|
||||
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
||||
" prot=%x idx=%d pd=0x%08lx\n",
|
||||
vaddr, paddr, prot, mmu_idx, pd);
|
||||
#endif
|
||||
|
||||
address = vaddr;
|
||||
if (!is_ram_rom_romd(section)) {
|
||||
/* IO memory case (romd handled later) */
|
||||
address |= TLB_MMIO;
|
||||
}
|
||||
if (is_ram_rom_romd(section)) {
|
||||
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
|
||||
+ section_addr(section, paddr);
|
||||
} else {
|
||||
addend = 0;
|
||||
}
|
||||
iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
|
||||
&address);
|
||||
|
||||
code_address = address;
|
||||
|
||||
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
env->iotlb[mmu_idx][index] = iotlb - vaddr;
|
||||
te = &env->tlb_table[mmu_idx][index];
|
||||
te->addend = addend - vaddr;
|
||||
if (prot & PAGE_READ) {
|
||||
te->addr_read = address;
|
||||
} else {
|
||||
te->addr_read = -1;
|
||||
}
|
||||
|
||||
if (prot & PAGE_EXEC) {
|
||||
te->addr_code = code_address;
|
||||
} else {
|
||||
te->addr_code = -1;
|
||||
}
|
||||
if (prot & PAGE_WRITE) {
|
||||
if ((memory_region_is_ram(section->mr) && section->readonly)
|
||||
|| is_romd(section)) {
|
||||
/* Write access calls the I/O callback. */
|
||||
te->addr_write = address | TLB_MMIO;
|
||||
} else if (memory_region_is_ram(section->mr)
|
||||
&& !cpu_physical_memory_is_dirty(
|
||||
section->mr->ram_addr
|
||||
+ section_addr(section, paddr))) {
|
||||
te->addr_write = address | TLB_NOTDIRTY;
|
||||
} else {
|
||||
te->addr_write = address;
|
||||
}
|
||||
} else {
|
||||
te->addr_write = -1;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void tlb_flush(CPUArchState *env, int flush_global)
|
||||
{
|
||||
}
|
||||
|
||||
void tlb_flush_page(CPUArchState *env, target_ulong addr)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
* Walks guest process memory "regions" one by one
|
||||
* and calls callback function 'fn' for each region.
|
||||
@ -2580,11 +2270,6 @@ int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
|
||||
mmap_unlock();
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void tlb_set_dirty(CPUArchState *env,
|
||||
uintptr_t addr, target_ulong vaddr)
|
||||
{
|
||||
}
|
||||
#endif /* defined(CONFIG_USER_ONLY) */
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
@ -4621,39 +4306,6 @@ void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
|
||||
tcg_dump_info(f, cpu_fprintf);
|
||||
}
|
||||
|
||||
/* NOTE: this function can trigger an exception */
|
||||
/* NOTE2: the returned address is not exactly the physical address: it
|
||||
is the offset relative to phys_ram_base */
|
||||
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
|
||||
{
|
||||
int mmu_idx, page_index, pd;
|
||||
void *p;
|
||||
MemoryRegion *mr;
|
||||
|
||||
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
||||
mmu_idx = cpu_mmu_index(env1);
|
||||
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
|
||||
(addr & TARGET_PAGE_MASK))) {
|
||||
#ifdef CONFIG_TCG_PASS_AREG0
|
||||
cpu_ldub_code(env1, addr);
|
||||
#else
|
||||
ldub_code(addr);
|
||||
#endif
|
||||
}
|
||||
pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
|
||||
mr = iotlb_to_region(pd);
|
||||
if (memory_region_is_unassigned(mr)) {
|
||||
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
|
||||
cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
|
||||
#else
|
||||
cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
|
||||
TARGET_FMT_lx "\n", addr);
|
||||
#endif
|
||||
}
|
||||
p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
|
||||
return qemu_ram_addr_from_host_nofail(p);
|
||||
}
|
||||
|
||||
/*
|
||||
* A helper function for the _utterly broken_ virtio device model to find out if
|
||||
* it's running on a big endian machine. Don't do this at home kids!
|
||||
@ -4668,24 +4320,4 @@ bool virtio_is_big_endian(void)
|
||||
#endif
|
||||
}
|
||||
|
||||
#define MMUSUFFIX _cmmu
|
||||
#undef GETPC
|
||||
#define GETPC() ((uintptr_t)0)
|
||||
#define env cpu_single_env
|
||||
#define SOFTMMU_CODE_ACCESS
|
||||
|
||||
#define SHIFT 0
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#define SHIFT 1
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#define SHIFT 2
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#define SHIFT 3
|
||||
#include "softmmu_template.h"
|
||||
|
||||
#undef env
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user