Merge remote-tracking branch 'pmaydell/arm-devs.next' into staging

# By Peter Crosthwaite (20) and others
# Via Peter Maydell
* pmaydell/arm-devs.next: (24 commits)
  i.MX: Improve EPIT timer code.
  exynos4210.c: register rom_mem for memory migration
  hw/arm/exynos4210.c: convert chipid_and_omr to an mmio region
  i.MX: split GPT and EPIT timer implementation
  sd/sd.c: Fix "inquiry" ACMD41
  sd/sdhci:ADMA: fix interrupt
  sd/sdhci.c: Fix bdata_read DPRINT message
  sd/sdhci: Fix Buffer Write Ready interrupt
  sd/sdhci.c: Only reset data_count on new commands
  xilinx_spips: lqspi: Fix byte/misaligned access
  xilinx_spips: lqspi: Push more data to tx-fifo
  xilinx_spips: Multiple debug verbosity levels
  xilinx_spips: Debug msgs for Snoop state
  xilinx_spips: Fix striping behaviour
  xilinx_spips: Fix CTRL register RW bits
  xilinx_spips: lqspi: Dont touch config register
  xilinx_spips: Implement automatic CS
  xilinx_spips: Add automatic start support
  xilinx_spips: Trash LQ page cache on mode change
  xilinx_spips: Fix QSPI FIFO size
  ...

Message-id: 1370277021-26129-1-git-send-email-peter.maydell@linaro.org
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
Anthony Liguori 2013-06-03 13:24:25 -05:00
commit 0ded1fe5f3
8 changed files with 736 additions and 456 deletions

View File

@ -79,6 +79,28 @@
static uint8_t chipid_and_omr[] = { 0x11, 0x02, 0x21, 0x43, static uint8_t chipid_and_omr[] = { 0x11, 0x02, 0x21, 0x43,
0x09, 0x00, 0x00, 0x00 }; 0x09, 0x00, 0x00, 0x00 };
static uint64_t exynos4210_chipid_and_omr_read(void *opaque, hwaddr offset,
unsigned size)
{
assert(offset < sizeof(chipid_and_omr));
return chipid_and_omr[offset];
}
static void exynos4210_chipid_and_omr_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
return;
}
static const MemoryRegionOps exynos4210_chipid_and_omr_ops = {
.read = exynos4210_chipid_and_omr_read,
.write = exynos4210_chipid_and_omr_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.max_access_size = 1,
}
};
void exynos4210_write_secondary(ARMCPU *cpu, void exynos4210_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info) const struct arm_boot_info *info)
{ {
@ -219,15 +241,15 @@ Exynos4210State *exynos4210_init(MemoryRegion *system_mem,
/*** Memory ***/ /*** Memory ***/
/* Chip-ID and OMR */ /* Chip-ID and OMR */
memory_region_init_ram_ptr(&s->chipid_mem, "exynos4210.chipid", memory_region_init_io(&s->chipid_mem, &exynos4210_chipid_and_omr_ops,
sizeof(chipid_and_omr), chipid_and_omr); NULL, "exynos4210.chipid", sizeof(chipid_and_omr));
memory_region_set_readonly(&s->chipid_mem, true);
memory_region_add_subregion(system_mem, EXYNOS4210_CHIPID_ADDR, memory_region_add_subregion(system_mem, EXYNOS4210_CHIPID_ADDR,
&s->chipid_mem); &s->chipid_mem);
/* Internal ROM */ /* Internal ROM */
memory_region_init_ram(&s->irom_mem, "exynos4210.irom", memory_region_init_ram(&s->irom_mem, "exynos4210.irom",
EXYNOS4210_IROM_SIZE); EXYNOS4210_IROM_SIZE);
vmstate_register_ram_global(&s->irom_mem);
memory_region_set_readonly(&s->irom_mem, true); memory_region_set_readonly(&s->irom_mem, true);
memory_region_add_subregion(system_mem, EXYNOS4210_IROM_BASE_ADDR, memory_region_add_subregion(system_mem, EXYNOS4210_IROM_BASE_ADDR,
&s->irom_mem); &s->irom_mem);

View File

@ -66,7 +66,7 @@ static inline void zynq_init_spi_flashes(uint32_t base_addr, qemu_irq irq,
int num_busses = is_qspi ? NUM_QSPI_BUSSES : 1; int num_busses = is_qspi ? NUM_QSPI_BUSSES : 1;
int num_ss = is_qspi ? NUM_QSPI_FLASHES : NUM_SPI_FLASHES; int num_ss = is_qspi ? NUM_QSPI_FLASHES : NUM_SPI_FLASHES;
dev = qdev_create(NULL, "xilinx,spips"); dev = qdev_create(NULL, is_qspi ? "xlnx.ps7-qspi" : "xlnx.ps7-spi");
qdev_prop_set_uint8(dev, "num-txrx-bytes", is_qspi ? 4 : 1); qdev_prop_set_uint8(dev, "num-txrx-bytes", is_qspi ? 4 : 1);
qdev_prop_set_uint8(dev, "num-ss-bits", num_ss); qdev_prop_set_uint8(dev, "num-ss-bits", num_ss);
qdev_prop_set_uint8(dev, "num-busses", num_busses); qdev_prop_set_uint8(dev, "num-busses", num_busses);

View File

@ -43,6 +43,8 @@ do { fprintf(stderr, "SD: " fmt , ## __VA_ARGS__); } while (0)
#define DPRINTF(fmt, ...) do {} while(0) #define DPRINTF(fmt, ...) do {} while(0)
#endif #endif
#define ACMD41_ENQUIRY_MASK 0x00ffffff
typedef enum { typedef enum {
sd_r0 = 0, /* no response */ sd_r0 = 0, /* no response */
sd_r1, /* normal response command */ sd_r1, /* normal response command */
@ -1277,9 +1279,14 @@ static sd_rsp_type_t sd_app_command(SDState *sd,
} }
switch (sd->state) { switch (sd->state) {
case sd_idle_state: case sd_idle_state:
/* We accept any voltage. 10000 V is nothing. */ /* We accept any voltage. 10000 V is nothing.
if (req.arg) *
* We don't model init delay so just advance straight to ready state
* unless it's an enquiry ACMD41 (bits 23:0 == 0).
*/
if (req.arg & ACMD41_ENQUIRY_MASK) {
sd->state = sd_ready_state; sd->state = sd_ready_state;
}
return sd_r3; return sd_r3;

View File

@ -260,6 +260,7 @@ static void sdhci_send_command(SDHCIState *s)
sdhci_update_irq(s); sdhci_update_irq(s);
if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) { if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
s->data_count = 0;
sdhci_do_data_transfer(s); sdhci_do_data_transfer(s);
} }
} }
@ -404,15 +405,14 @@ static void sdhci_write_block_to_card(SDHCIState *s)
/* Next data can be written through BUFFER DATORT register */ /* Next data can be written through BUFFER DATORT register */
s->prnsts |= SDHC_SPACE_AVAILABLE; s->prnsts |= SDHC_SPACE_AVAILABLE;
if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
/* Finish transfer if that was the last block of data */ /* Finish transfer if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) && ((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) { (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
SDHCI_GET_CLASS(s)->end_data_transfer(s); SDHCI_GET_CLASS(s)->end_data_transfer(s);
} else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
} }
/* Generate Block Gap Event if requested and if not the last block */ /* Generate Block Gap Event if requested and if not the last block */
@ -730,6 +730,15 @@ static void sdhci_do_adma(SDHCIState *s)
break; break;
} }
if (dscr.attr & SDHC_ADMA_ATTR_INT) {
DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr);
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
/* ADMA transfer terminates if blkcnt == 0 or by END attribute */ /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
(s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) { (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
@ -752,15 +761,6 @@ static void sdhci_do_adma(SDHCIState *s)
return; return;
} }
if (dscr.attr & SDHC_ADMA_ATTR_INT) {
DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr);
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
return;
}
} }
/* we have unfinished business - reschedule to continue ADMA */ /* we have unfinished business - reschedule to continue ADMA */
@ -773,7 +773,6 @@ static void sdhci_do_adma(SDHCIState *s)
static void sdhci_data_transfer(SDHCIState *s) static void sdhci_data_transfer(SDHCIState *s)
{ {
SDHCIClass *k = SDHCI_GET_CLASS(s); SDHCIClass *k = SDHCI_GET_CLASS(s);
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_DMA) { if (s->trnmod & SDHC_TRNS_DMA) {
switch (SDHC_DMA_TYPE(s->hostctl)) { switch (SDHC_DMA_TYPE(s->hostctl)) {
@ -881,7 +880,8 @@ static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
case SDHC_BDATA: case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
ret = SDHCI_GET_CLASS(s)->bdata_read(s, size); ret = SDHCI_GET_CLASS(s)->bdata_read(s, size);
DPRINT_L2("read %ub: addr[0x%04x] -> %u\n", size, offset, ret); DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset,
ret, ret);
return ret; return ret;
} }
break; break;

View File

@ -30,15 +30,17 @@
#include "hw/ssi.h" #include "hw/ssi.h"
#include "qemu/bitops.h" #include "qemu/bitops.h"
#ifdef XILINX_SPIPS_ERR_DEBUG #ifndef XILINX_SPIPS_ERR_DEBUG
#define DB_PRINT(...) do { \ #define XILINX_SPIPS_ERR_DEBUG 0
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0);
#else
#define DB_PRINT(...)
#endif #endif
#define DB_PRINT_L(level, ...) do { \
if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} \
} while (0);
/* config register */ /* config register */
#define R_CONFIG (0x00 / 4) #define R_CONFIG (0x00 / 4)
#define IFMODE (1 << 31) #define IFMODE (1 << 31)
@ -56,6 +58,7 @@
#define CLK_PH (1 << 2) #define CLK_PH (1 << 2)
#define CLK_POL (1 << 1) #define CLK_POL (1 << 1)
#define MODE_SEL (1 << 0) #define MODE_SEL (1 << 0)
#define R_CONFIG_RSVD (0x7bf40000)
/* interrupt mechanism */ /* interrupt mechanism */
#define R_INTR_STATUS (0x04 / 4) #define R_INTR_STATUS (0x04 / 4)
@ -106,6 +109,9 @@
#define RXFF_A 32 #define RXFF_A 32
#define TXFF_A 32 #define TXFF_A 32
#define RXFF_A_Q (64 * 4)
#define TXFF_A_Q (64 * 4)
/* 16MB per linear region */ /* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24 #define LQSPI_ADDRESS_BITS 24
/* Bite off 4k chunks at a time */ /* Bite off 4k chunks at a time */
@ -129,7 +135,8 @@ typedef enum {
} FlashCMD; } FlashCMD;
typedef struct { typedef struct {
SysBusDevice busdev; SysBusDevice parent_obj;
MemoryRegion iomem; MemoryRegion iomem;
MemoryRegion mmlqspi; MemoryRegion mmlqspi;
@ -149,15 +156,36 @@ typedef struct {
uint8_t num_txrx_bytes; uint8_t num_txrx_bytes;
uint32_t regs[R_MAX]; uint32_t regs[R_MAX];
uint32_t lqspi_buf[LQSPI_CACHE_SIZE];
hwaddr lqspi_cached_addr;
} XilinxSPIPS; } XilinxSPIPS;
#define TYPE_XILINX_SPIPS "xilinx,spips" typedef struct {
XilinxSPIPS parent_obj;
uint8_t lqspi_buf[LQSPI_CACHE_SIZE];
hwaddr lqspi_cached_addr;
} XilinxQSPIPS;
typedef struct XilinxSPIPSClass {
SysBusDeviceClass parent_class;
const MemoryRegionOps *reg_ops;
uint32_t rx_fifo_size;
uint32_t tx_fifo_size;
} XilinxSPIPSClass;
#define TYPE_XILINX_SPIPS "xlnx.ps7-spi"
#define TYPE_XILINX_QSPIPS "xlnx.ps7-qspi"
#define XILINX_SPIPS(obj) \ #define XILINX_SPIPS(obj) \
OBJECT_CHECK(XilinxSPIPS, (obj), TYPE_XILINX_SPIPS) OBJECT_CHECK(XilinxSPIPS, (obj), TYPE_XILINX_SPIPS)
#define XILINX_SPIPS_CLASS(klass) \
OBJECT_CLASS_CHECK(XilinxSPIPSClass, (klass), TYPE_XILINX_SPIPS)
#define XILINX_SPIPS_GET_CLASS(obj) \
OBJECT_GET_CLASS(XilinxSPIPSClass, (obj), TYPE_XILINX_SPIPS)
#define XILINX_QSPIPS(obj) \
OBJECT_CHECK(XilinxQSPIPS, (obj), TYPE_XILINX_QSPIPS)
static inline int num_effective_busses(XilinxSPIPS *s) static inline int num_effective_busses(XilinxSPIPS *s)
{ {
@ -165,6 +193,12 @@ static inline int num_effective_busses(XilinxSPIPS *s)
s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1; s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
} }
static inline bool xilinx_spips_cs_is_set(XilinxSPIPS *s, int i, int field)
{
return ~field & (1 << i) && (s->regs[R_CONFIG] & MANUAL_CS
|| !fifo8_is_empty(&s->tx_fifo));
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{ {
int i, j; int i, j;
@ -177,24 +211,29 @@ static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
int cs_to_set = (j * s->num_cs + i + upage) % int cs_to_set = (j * s->num_cs + i + upage) %
(s->num_cs * s->num_busses); (s->num_cs * s->num_busses);
if (~field & (1 << i) && !found) { if (xilinx_spips_cs_is_set(s, i, field) && !found) {
DB_PRINT("selecting slave %d\n", i); DB_PRINT_L(0, "selecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 0); qemu_set_irq(s->cs_lines[cs_to_set], 0);
} else { } else {
DB_PRINT_L(0, "deselecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 1); qemu_set_irq(s->cs_lines[cs_to_set], 1);
} }
} }
if (~field & (1 << i)) { if (xilinx_spips_cs_is_set(s, i, field)) {
found = true; found = true;
} }
} }
if (!found) { if (!found) {
s->snoop_state = SNOOP_CHECKING; s->snoop_state = SNOOP_CHECKING;
DB_PRINT_L(1, "moving to snoop check state\n");
} }
} }
static void xilinx_spips_update_ixr(XilinxSPIPS *s) static void xilinx_spips_update_ixr(XilinxSPIPS *s)
{ {
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
return;
}
/* These are set/cleared as they occur */ /* These are set/cleared as they occur */
s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW | s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
IXR_TX_FIFO_MODE_FAIL); IXR_TX_FIFO_MODE_FAIL);
@ -237,35 +276,83 @@ static void xilinx_spips_reset(DeviceState *d)
xilinx_spips_update_cs_lines(s); xilinx_spips_update_cs_lines(s);
} }
/* N way (num) in place bit striper. Lay out row wise bits (LSB to MSB)
* column wise (from element 0 to N-1). num is the length of x, and dir
* reverses the direction of the transform. Best illustrated by example:
* Each digit in the below array is a single bit (num == 3):
*
* {{ 76543210, } ----- stripe (dir == false) -----> {{ FCheb630, }
* { hgfedcba, } { GDAfc741, }
* { HGFEDCBA, }} <---- upstripe (dir == true) ----- { HEBgda52, }}
*/
static inline void stripe8(uint8_t *x, int num, bool dir)
{
uint8_t r[num];
memset(r, 0, sizeof(uint8_t) * num);
int idx[2] = {0, 0};
int bit[2] = {0, 0};
int d = dir;
for (idx[0] = 0; idx[0] < num; ++idx[0]) {
for (bit[0] = 0; bit[0] < 8; ++bit[0]) {
r[idx[d]] |= x[idx[!d]] & 1 << bit[!d] ? 1 << bit[d] : 0;
idx[1] = (idx[1] + 1) % num;
if (!idx[1]) {
bit[1]++;
}
}
}
memcpy(x, r, sizeof(uint8_t) * num);
}
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{ {
int debug_level = 0;
for (;;) { for (;;) {
int i; int i;
uint8_t rx;
uint8_t tx = 0; uint8_t tx = 0;
uint8_t tx_rx[num_effective_busses(s)];
for (i = 0; i < num_effective_busses(s); ++i) { if (fifo8_is_empty(&s->tx_fifo)) {
if (!i || s->snoop_state == SNOOP_STRIPING) { if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
if (fifo8_is_empty(&s->tx_fifo)) { s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
xilinx_spips_update_ixr(s);
return;
} else {
tx = fifo8_pop(&s->tx_fifo);
}
} }
rx = ssi_transfer(s->spi[i], (uint32_t)tx); xilinx_spips_update_ixr(s);
DB_PRINT("tx = %02x rx = %02x\n", tx, rx); return;
if (!i || s->snoop_state == SNOOP_STRIPING) { } else if (s->snoop_state == SNOOP_STRIPING) {
if (fifo8_is_full(&s->rx_fifo)) { for (i = 0; i < num_effective_busses(s); ++i) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; tx_rx[i] = fifo8_pop(&s->tx_fifo);
DB_PRINT("rx FIFO overflow"); }
} else { stripe8(tx_rx, num_effective_busses(s), false);
fifo8_push(&s->rx_fifo, (uint8_t)rx); } else {
} tx = fifo8_pop(&s->tx_fifo);
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = tx;
} }
} }
for (i = 0; i < num_effective_busses(s); ++i) {
DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
tx_rx[i] = ssi_transfer(s->spi[i], (uint32_t)tx_rx[i]);
DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
}
if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT_L(0, "rx FIFO overflow");
} else if (s->snoop_state == SNOOP_STRIPING) {
stripe8(tx_rx, num_effective_busses(s), true);
for (i = 0; i < num_effective_busses(s); ++i) {
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
}
} else {
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
}
DB_PRINT_L(debug_level, "initial snoop state: %x\n",
(unsigned)s->snoop_state);
switch (s->snoop_state) { switch (s->snoop_state) {
case (SNOOP_CHECKING): case (SNOOP_CHECKING):
switch (tx) { /* new instruction code */ switch (tx) { /* new instruction code */
@ -290,21 +377,26 @@ static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
break; break;
case (SNOOP_STRIPING): case (SNOOP_STRIPING):
case (SNOOP_NONE): case (SNOOP_NONE):
/* Once we hit the boring stuff - squelch debug noise */
if (!debug_level) {
DB_PRINT_L(0, "squelching debug info ....\n");
debug_level = 1;
}
break; break;
default: default:
s->snoop_state--; s->snoop_state--;
} }
DB_PRINT_L(debug_level, "final snoop state: %x\n",
(unsigned)s->snoop_state);
} }
} }
static inline void rx_data_bytes(XilinxSPIPS *s, uint32_t *value, int max) static inline void rx_data_bytes(XilinxSPIPS *s, uint8_t *value, int max)
{ {
int i; int i;
*value = 0;
for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) { for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
uint32_t next = fifo8_pop(&s->rx_fifo) & 0xFF; value[i] = fifo8_pop(&s->rx_fifo);
*value |= next << 8 * (s->regs[R_CONFIG] & ENDIAN ? 3-i : i);
} }
} }
@ -314,13 +406,18 @@ static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
XilinxSPIPS *s = opaque; XilinxSPIPS *s = opaque;
uint32_t mask = ~0; uint32_t mask = ~0;
uint32_t ret; uint32_t ret;
uint8_t rx_buf[4];
addr >>= 2; addr >>= 2;
switch (addr) { switch (addr) {
case R_CONFIG: case R_CONFIG:
mask = 0x0002FFFF; mask = ~(R_CONFIG_RSVD | MAN_START_COM);
break; break;
case R_INTR_STATUS: case R_INTR_STATUS:
ret = s->regs[addr] & IXR_ALL;
s->regs[addr] = 0;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
return ret;
case R_INTR_MASK: case R_INTR_MASK:
mask = IXR_ALL; mask = IXR_ALL;
break; break;
@ -339,12 +436,16 @@ static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
mask = 0; mask = 0;
break; break;
case R_RX_DATA: case R_RX_DATA:
rx_data_bytes(s, &ret, s->num_txrx_bytes); memset(rx_buf, 0, sizeof(rx_buf));
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); rx_data_bytes(s, rx_buf, s->num_txrx_bytes);
ret = s->regs[R_CONFIG] & ENDIAN ? cpu_to_be32(*(uint32_t *)rx_buf)
: cpu_to_le32(*(uint32_t *)rx_buf);
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s); xilinx_spips_update_ixr(s);
return ret; return ret;
} }
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, s->regs[addr] & mask); DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
s->regs[addr] & mask);
return s->regs[addr] & mask; return s->regs[addr] & mask;
} }
@ -370,11 +471,11 @@ static void xilinx_spips_write(void *opaque, hwaddr addr,
int man_start_com = 0; int man_start_com = 0;
XilinxSPIPS *s = opaque; XilinxSPIPS *s = opaque;
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value); DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
addr >>= 2; addr >>= 2;
switch (addr) { switch (addr) {
case R_CONFIG: case R_CONFIG:
mask = 0x0002FFFF; mask = ~(R_CONFIG_RSVD | MAN_START_COM);
if (value & MAN_START_COM) { if (value & MAN_START_COM) {
man_start_com = 1; man_start_com = 1;
} }
@ -417,11 +518,13 @@ static void xilinx_spips_write(void *opaque, hwaddr addr,
} }
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
no_reg_update: no_reg_update:
if (man_start_com) { xilinx_spips_update_cs_lines(s);
if ((man_start_com && s->regs[R_CONFIG] & MAN_START_EN) ||
(fifo8_is_empty(&s->tx_fifo) && s->regs[R_CONFIG] & MAN_START_EN)) {
xilinx_spips_flush_txfifo(s); xilinx_spips_flush_txfifo(s);
} }
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s); xilinx_spips_update_cs_lines(s);
xilinx_spips_update_ixr(s);
} }
static const MemoryRegionOps spips_ops = { static const MemoryRegionOps spips_ops = {
@ -430,37 +533,63 @@ static const MemoryRegionOps spips_ops = {
.endianness = DEVICE_LITTLE_ENDIAN, .endianness = DEVICE_LITTLE_ENDIAN,
}; };
static void xilinx_qspips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
xilinx_spips_write(opaque, addr, value, size);
addr >>= 2;
if (addr == R_LQSPI_CFG) {
q->lqspi_cached_addr = ~0ULL;
}
}
static const MemoryRegionOps qspips_ops = {
.read = xilinx_spips_read,
.write = xilinx_qspips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define LQSPI_CACHE_SIZE 1024 #define LQSPI_CACHE_SIZE 1024
static uint64_t static uint64_t
lqspi_read(void *opaque, hwaddr addr, unsigned int size) lqspi_read(void *opaque, hwaddr addr, unsigned int size)
{ {
int i; int i;
XilinxQSPIPS *q = opaque;
XilinxSPIPS *s = opaque; XilinxSPIPS *s = opaque;
uint32_t ret;
if (addr >= s->lqspi_cached_addr && if (addr >= q->lqspi_cached_addr &&
addr <= s->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
return s->lqspi_buf[(addr - s->lqspi_cached_addr) >> 2]; uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
ret = cpu_to_le32(*(uint32_t *)retp);
DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr,
(unsigned)ret);
return ret;
} else { } else {
int flash_addr = (addr / num_effective_busses(s)); int flash_addr = (addr / num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS; int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0; int cache_entry = 0;
uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
DB_PRINT("config reg status: %08x\n", s->regs[R_LQSPI_CFG]); s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo); fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo); fifo8_reset(&s->rx_fifo);
s->regs[R_CONFIG] &= ~CS;
s->regs[R_CONFIG] |= (~(1 << slave) << CS_SHIFT) & CS;
xilinx_spips_update_cs_lines(s);
/* instruction */ /* instruction */
DB_PRINT("pushing read instruction: %02x\n", DB_PRINT_L(0, "pushing read instruction: %02x\n",
(uint8_t)(s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE)); (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE); fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */ /* read address */
DB_PRINT("pushing read address %06x\n", flash_addr); DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16)); fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8)); fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr); fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
@ -473,25 +602,30 @@ lqspi_read(void *opaque, hwaddr addr, unsigned int size)
/* dummy bytes */ /* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT, for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) { LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT("pushing dummy byte\n"); DB_PRINT_L(0, "pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0); fifo8_push(&s->tx_fifo, 0);
} }
xilinx_spips_update_cs_lines(s);
xilinx_spips_flush_txfifo(s); xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo); fifo8_reset(&s->rx_fifo);
DB_PRINT("starting QSPI data read\n"); DB_PRINT_L(0, "starting QSPI data read\n");
for (i = 0; i < LQSPI_CACHE_SIZE / 4; ++i) { while (cache_entry < LQSPI_CACHE_SIZE) {
tx_data_bytes(s, 0, 4); for (i = 0; i < 64; ++i) {
tx_data_bytes(s, 0, 1);
}
xilinx_spips_flush_txfifo(s); xilinx_spips_flush_txfifo(s);
rx_data_bytes(s, &s->lqspi_buf[cache_entry], 4); for (i = 0; i < 64; ++i) {
cache_entry++; rx_data_bytes(s, &q->lqspi_buf[cache_entry++], 1);
}
} }
s->regs[R_CONFIG] |= CS; s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= u_page_save;
xilinx_spips_update_cs_lines(s); xilinx_spips_update_cs_lines(s);
s->lqspi_cached_addr = addr; q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
return lqspi_read(opaque, addr, size); return lqspi_read(opaque, addr, size);
} }
} }
@ -500,7 +634,7 @@ static const MemoryRegionOps lqspi_ops = {
.read = lqspi_read, .read = lqspi_read,
.endianness = DEVICE_NATIVE_ENDIAN, .endianness = DEVICE_NATIVE_ENDIAN,
.valid = { .valid = {
.min_access_size = 4, .min_access_size = 1,
.max_access_size = 4 .max_access_size = 4
} }
}; };
@ -509,9 +643,10 @@ static void xilinx_spips_realize(DeviceState *dev, Error **errp)
{ {
XilinxSPIPS *s = XILINX_SPIPS(dev); XilinxSPIPS *s = XILINX_SPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
int i; int i;
DB_PRINT("inited device model\n"); DB_PRINT_L(0, "realized spips\n");
s->spi = g_new(SSIBus *, s->num_busses); s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) { for (i = 0; i < s->num_busses; ++i) {
@ -528,18 +663,33 @@ static void xilinx_spips_realize(DeviceState *dev, Error **errp)
sysbus_init_irq(sbd, &s->cs_lines[i]); sysbus_init_irq(sbd, &s->cs_lines[i]);
} }
memory_region_init_io(&s->iomem, &spips_ops, s, "spi", R_MAX*4); memory_region_init_io(&s->iomem, xsc->reg_ops, s, "spi", R_MAX*4);
sysbus_init_mmio(sbd, &s->iomem); sysbus_init_mmio(sbd, &s->iomem);
s->irqline = -1;
fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
}
static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
XilinxQSPIPS *q = XILINX_QSPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
DB_PRINT_L(0, "realized qspips\n");
s->num_busses = 2;
s->num_cs = 2;
s->num_txrx_bytes = 4;
xilinx_spips_realize(dev, errp);
memory_region_init_io(&s->mmlqspi, &lqspi_ops, s, "lqspi", memory_region_init_io(&s->mmlqspi, &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2); (1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(sbd, &s->mmlqspi); sysbus_init_mmio(sbd, &s->mmlqspi);
s->irqline = -1; q->lqspi_cached_addr = ~0ULL;
s->lqspi_cached_addr = ~0ULL;
fifo8_create(&s->rx_fifo, RXFF_A);
fifo8_create(&s->tx_fifo, TXFF_A);
} }
static int xilinx_spips_post_load(void *opaque, int version_id) static int xilinx_spips_post_load(void *opaque, int version_id)
@ -570,14 +720,31 @@ static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(), DEFINE_PROP_END_OF_LIST(),
}; };
static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_qspips_realize;
xsc->reg_ops = &qspips_ops;
xsc->rx_fifo_size = RXFF_A_Q;
xsc->tx_fifo_size = TXFF_A_Q;
}
static void xilinx_spips_class_init(ObjectClass *klass, void *data) static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_spips_realize; dc->realize = xilinx_spips_realize;
dc->reset = xilinx_spips_reset; dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties; dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips; dc->vmsd = &vmstate_xilinx_spips;
xsc->reg_ops = &spips_ops;
xsc->rx_fifo_size = RXFF_A;
xsc->tx_fifo_size = TXFF_A;
} }
static const TypeInfo xilinx_spips_info = { static const TypeInfo xilinx_spips_info = {
@ -585,11 +752,20 @@ static const TypeInfo xilinx_spips_info = {
.parent = TYPE_SYS_BUS_DEVICE, .parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxSPIPS), .instance_size = sizeof(XilinxSPIPS),
.class_init = xilinx_spips_class_init, .class_init = xilinx_spips_class_init,
.class_size = sizeof(XilinxSPIPSClass),
};
static const TypeInfo xilinx_qspips_info = {
.name = TYPE_XILINX_QSPIPS,
.parent = TYPE_XILINX_SPIPS,
.instance_size = sizeof(XilinxQSPIPS),
.class_init = xilinx_qspips_class_init,
}; };
static void xilinx_spips_register_types(void) static void xilinx_spips_register_types(void)
{ {
type_register_static(&xilinx_spips_info); type_register_static(&xilinx_spips_info);
type_register_static(&xilinx_qspips_info);
} }
type_init(xilinx_spips_register_types) type_init(xilinx_spips_register_types)

View File

@ -11,7 +11,8 @@ common-obj-$(CONFIG_XILINX) += xilinx_timer.o
common-obj-$(CONFIG_SLAVIO) += slavio_timer.o common-obj-$(CONFIG_SLAVIO) += slavio_timer.o
common-obj-$(CONFIG_ETRAXFS) += etraxfs_timer.o common-obj-$(CONFIG_ETRAXFS) += etraxfs_timer.o
common-obj-$(CONFIG_GRLIB) += grlib_gptimer.o common-obj-$(CONFIG_GRLIB) += grlib_gptimer.o
common-obj-$(CONFIG_IMX) += imx_timer.o common-obj-$(CONFIG_IMX) += imx_epit.o
common-obj-$(CONFIG_IMX) += imx_gpt.o
common-obj-$(CONFIG_LM32) += lm32_timer.o common-obj-$(CONFIG_LM32) += lm32_timer.o
common-obj-$(CONFIG_MILKYMIST) += milkymist-sysctl.o common-obj-$(CONFIG_MILKYMIST) += milkymist-sysctl.o

432
hw/timer/imx_epit.c Normal file
View File

@ -0,0 +1,432 @@
/*
* IMX EPIT Timer
*
* Copyright (c) 2008 OK Labs
* Copyright (c) 2011 NICTA Pty Ltd
* Originally written by Hans Jiang
* Updated by Peter Chubb
* Updated by Jean-Christophe Dubois
*
* This code is licensed under GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
*/
#include "hw/hw.h"
#include "qemu/bitops.h"
#include "qemu/timer.h"
#include "hw/ptimer.h"
#include "hw/sysbus.h"
#include "hw/arm/imx.h"
#define TYPE_IMX_EPIT "imx.epit"
#define DEBUG_TIMER 0
#if DEBUG_TIMER
static char const *imx_epit_reg_name(uint32_t reg)
{
switch (reg) {
case 0:
return "CR";
case 1:
return "SR";
case 2:
return "LR";
case 3:
return "CMP";
case 4:
return "CNT";
default:
return "[?]";
}
}
# define DPRINTF(fmt, args...) \
do { printf("%s: " fmt , __func__, ##args); } while (0)
#else
# define DPRINTF(fmt, args...) do {} while (0)
#endif
/*
* Define to 1 for messages about attempts to
* access unimplemented registers or similar.
*/
#define DEBUG_IMPLEMENTATION 1
#if DEBUG_IMPLEMENTATION
# define IPRINTF(fmt, args...) \
do { fprintf(stderr, "%s: " fmt, __func__, ##args); } while (0)
#else
# define IPRINTF(fmt, args...) do {} while (0)
#endif
#define IMX_EPIT(obj) \
OBJECT_CHECK(IMXEPITState, (obj), TYPE_IMX_EPIT)
/*
* EPIT: Enhanced periodic interrupt timer
*/
#define CR_EN (1 << 0)
#define CR_ENMOD (1 << 1)
#define CR_OCIEN (1 << 2)
#define CR_RLD (1 << 3)
#define CR_PRESCALE_SHIFT (4)
#define CR_PRESCALE_MASK (0xfff)
#define CR_SWR (1 << 16)
#define CR_IOVW (1 << 17)
#define CR_DBGEN (1 << 18)
#define CR_WAITEN (1 << 19)
#define CR_DOZEN (1 << 20)
#define CR_STOPEN (1 << 21)
#define CR_CLKSRC_SHIFT (24)
#define CR_CLKSRC_MASK (0x3 << CR_CLKSRC_SHIFT)
#define TIMER_MAX 0XFFFFFFFFUL
/*
* Exact clock frequencies vary from board to board.
* These are typical.
*/
static const IMXClk imx_epit_clocks[] = {
0, /* 00 disabled */
IPG, /* 01 ipg_clk, ~532MHz */
IPG, /* 10 ipg_clk_highfreq */
CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */
};
typedef struct {
SysBusDevice busdev;
ptimer_state *timer_reload;
ptimer_state *timer_cmp;
MemoryRegion iomem;
DeviceState *ccm;
uint32_t cr;
uint32_t sr;
uint32_t lr;
uint32_t cmp;
uint32_t cnt;
uint32_t freq;
qemu_irq irq;
} IMXEPITState;
/*
* Update interrupt status
*/
static void imx_epit_update_int(IMXEPITState *s)
{
if (s->sr && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void imx_epit_set_freq(IMXEPITState *s)
{
uint32_t clksrc;
uint32_t prescaler;
uint32_t freq;
clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, 2);
prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, 12);
freq = imx_clock_frequency(s->ccm, imx_epit_clocks[clksrc]) / prescaler;
s->freq = freq;
DPRINTF("Setting ptimer frequency to %u\n", freq);
if (freq) {
ptimer_set_freq(s->timer_reload, freq);
ptimer_set_freq(s->timer_cmp, freq);
}
}
static void imx_epit_reset(DeviceState *dev)
{
IMXEPITState *s = IMX_EPIT(dev);
/*
* Soft reset doesn't touch some bits; hard reset clears them
*/
s->cr &= ~(CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN);
s->sr = 0;
s->lr = TIMER_MAX;
s->cmp = 0;
s->cnt = 0;
/* stop both timers */
ptimer_stop(s->timer_cmp);
ptimer_stop(s->timer_reload);
/* compute new frequency */
imx_epit_set_freq(s);
/* init both timers to TIMER_MAX */
ptimer_set_limit(s->timer_cmp, TIMER_MAX, 1);
ptimer_set_limit(s->timer_reload, TIMER_MAX, 1);
if (s->freq && (s->cr & CR_EN)) {
/* if the timer is still enabled, restart it */
ptimer_run(s->timer_reload, 1);
}
}
static uint32_t imx_epit_update_count(IMXEPITState *s)
{
s->cnt = ptimer_get_count(s->timer_reload);
return s->cnt;
}
static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size)
{
IMXEPITState *s = IMX_EPIT(opaque);
uint32_t reg_value = 0;
uint32_t reg = offset >> 2;
switch (reg) {
case 0: /* Control Register */
reg_value = s->cr;
break;
case 1: /* Status Register */
reg_value = s->sr;
break;
case 2: /* LR - ticks*/
reg_value = s->lr;
break;
case 3: /* CMP */
reg_value = s->cmp;
break;
case 4: /* CNT */
imx_epit_update_count(s);
reg_value = s->cnt;
break;
default:
IPRINTF("Bad offset %x\n", reg);
break;
}
DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(reg), reg_value);
return reg_value;
}
static void imx_epit_reload_compare_timer(IMXEPITState *s)
{
if ((s->cr & CR_OCIEN) && s->cmp) {
/* if the compare feature is on */
uint32_t tmp = imx_epit_update_count(s);
if (tmp > s->cmp) {
/* reinit the cmp timer if required */
ptimer_set_count(s->timer_cmp, tmp - s->cmp);
if ((s->cr & CR_EN)) {
/* Restart the cmp timer if required */
ptimer_run(s->timer_cmp, 0);
}
}
}
}
static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMXEPITState *s = IMX_EPIT(opaque);
uint32_t reg = offset >> 2;
DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(reg), (uint32_t)value);
switch (reg) {
case 0: /* CR */
s->cr = value & 0x03ffffff;
if (s->cr & CR_SWR) {
/* handle the reset */
imx_epit_reset(DEVICE(s));
} else {
imx_epit_set_freq(s);
}
if (s->freq && (s->cr & CR_EN)) {
if (s->cr & CR_ENMOD) {
if (s->cr & CR_RLD) {
ptimer_set_limit(s->timer_reload, s->lr, 1);
} else {
ptimer_set_limit(s->timer_reload, TIMER_MAX, 1);
}
}
imx_epit_reload_compare_timer(s);
ptimer_run(s->timer_reload, 1);
} else {
/* stop both timers */
ptimer_stop(s->timer_reload);
ptimer_stop(s->timer_cmp);
}
break;
case 1: /* SR - ACK*/
/* writing 1 to OCIF clear the OCIF bit */
if (value & 0x01) {
s->sr = 0;
imx_epit_update_int(s);
}
break;
case 2: /* LR - set ticks */
s->lr = value;
if (s->cr & CR_RLD) {
/* Also set the limit if the LRD bit is set */
/* If IOVW bit is set then set the timer value */
ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW);
} else if (s->cr & CR_IOVW) {
/* If IOVW bit is set then set the timer value */
ptimer_set_count(s->timer_reload, s->lr);
}
imx_epit_reload_compare_timer(s);
break;
case 3: /* CMP */
s->cmp = value;
imx_epit_reload_compare_timer(s);
break;
default:
IPRINTF("Bad offset %x\n", reg);
break;
}
}
static void imx_epit_timeout(void *opaque)
{
IMXEPITState *s = IMX_EPIT(opaque);
DPRINTF("\n");
if (!(s->cr & CR_EN)) {
return;
}
if (s->cr & CR_RLD) {
ptimer_set_limit(s->timer_reload, s->lr, 1);
} else {
ptimer_set_limit(s->timer_reload, TIMER_MAX, 1);
}
if (s->cr & CR_OCIEN) {
/* if compare register is 0 then we handle the interrupt here */
if (s->cmp == 0) {
s->sr = 1;
imx_epit_update_int(s);
} else if (s->cmp <= s->lr) {
/* We should launch the compare register */
ptimer_set_count(s->timer_cmp, s->lr - s->cmp);
ptimer_run(s->timer_cmp, 0);
} else {
IPRINTF("s->lr < s->cmp\n");
}
}
}
static void imx_epit_cmp(void *opaque)
{
IMXEPITState *s = IMX_EPIT(opaque);
DPRINTF("\n");
ptimer_stop(s->timer_cmp);
/* compare register is not 0 */
if (s->cmp) {
s->sr = 1;
imx_epit_update_int(s);
}
}
void imx_timerp_create(const hwaddr addr, qemu_irq irq, DeviceState *ccm)
{
IMXEPITState *pp;
DeviceState *dev;
dev = sysbus_create_simple(TYPE_IMX_EPIT, addr, irq);
pp = IMX_EPIT(dev);
pp->ccm = ccm;
}
static const MemoryRegionOps imx_epit_ops = {
.read = imx_epit_read,
.write = imx_epit_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_imx_timer_epit = {
.name = TYPE_IMX_EPIT,
.version_id = 2,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXEPITState),
VMSTATE_UINT32(sr, IMXEPITState),
VMSTATE_UINT32(lr, IMXEPITState),
VMSTATE_UINT32(cmp, IMXEPITState),
VMSTATE_UINT32(cnt, IMXEPITState),
VMSTATE_UINT32(freq, IMXEPITState),
VMSTATE_PTIMER(timer_reload, IMXEPITState),
VMSTATE_PTIMER(timer_cmp, IMXEPITState),
VMSTATE_END_OF_LIST()
}
};
static void imx_epit_realize(DeviceState *dev, Error **errp)
{
IMXEPITState *s = IMX_EPIT(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
QEMUBH *bh;
DPRINTF("\n");
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, &imx_epit_ops, s, TYPE_IMX_EPIT,
0x00001000);
sysbus_init_mmio(sbd, &s->iomem);
bh = qemu_bh_new(imx_epit_timeout, s);
s->timer_reload = ptimer_init(bh);
bh = qemu_bh_new(imx_epit_cmp, s);
s->timer_cmp = ptimer_init(bh);
}
static void imx_epit_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = imx_epit_realize;
dc->reset = imx_epit_reset;
dc->vmsd = &vmstate_imx_timer_epit;
dc->desc = "i.MX periodic timer";
}
static const TypeInfo imx_epit_info = {
.name = TYPE_IMX_EPIT,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXEPITState),
.class_init = imx_epit_class_init,
};
static void imx_epit_register_types(void)
{
type_register_static(&imx_epit_info);
}
type_init(imx_epit_register_types)

View File

@ -1,5 +1,5 @@
/* /*
* IMX31 Timer * IMX GPT Timer
* *
* Copyright (c) 2008 OK Labs * Copyright (c) 2008 OK Labs
* Copyright (c) 2011 NICTA Pty Ltd * Copyright (c) 2011 NICTA Pty Ltd
@ -12,6 +12,7 @@
*/ */
#include "hw/hw.h" #include "hw/hw.h"
#include "qemu/bitops.h"
#include "qemu/timer.h" #include "qemu/timer.h"
#include "hw/ptimer.h" #include "hw/ptimer.h"
#include "hw/sysbus.h" #include "hw/sysbus.h"
@ -54,7 +55,6 @@
* (free-running timer from 0 to OCR1 or TIMER_MAX) . * (free-running timer from 0 to OCR1 or TIMER_MAX) .
*/ */
#define TIMER_MAX 0XFFFFFFFFUL #define TIMER_MAX 0XFFFFFFFFUL
/* Control register. Not all of these bits have any effect (yet) */ /* Control register. Not all of these bits have any effect (yet) */
@ -148,6 +148,7 @@ static void imx_timerg_set_freq(IMXTimerGState *s)
freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr); freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr);
DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq); DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq);
if (freq) { if (freq) {
ptimer_set_freq(s->timer, freq); ptimer_set_freq(s->timer, freq);
} }
@ -206,7 +207,7 @@ static uint64_t imx_timerg_read(void *opaque, hwaddr offset,
{ {
IMXTimerGState *s = (IMXTimerGState *)opaque; IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("g-read(offset=%x)", offset >> 2); DPRINTF("g-read(offset=%x)", (unsigned int)(offset >> 2));
switch (offset >> 2) { switch (offset >> 2) {
case 0: /* Control Register */ case 0: /* Control Register */
DPRINTF(" cr = %x\n", s->cr); DPRINTF(" cr = %x\n", s->cr);
@ -427,347 +428,6 @@ static int imx_timerg_init(SysBusDevice *dev)
return 0; return 0;
} }
/*
* EPIT: Enhanced periodic interrupt timer
*/
#define CR_EN (1 << 0)
#define CR_ENMOD (1 << 1)
#define CR_OCIEN (1 << 2)
#define CR_RLD (1 << 3)
#define CR_PRESCALE_SHIFT (4)
#define CR_PRESCALE_MASK (0xfff)
#define CR_SWR (1 << 16)
#define CR_IOVW (1 << 17)
#define CR_DBGEN (1 << 18)
#define CR_WAITEN (1 << 19)
#define CR_DOZEN (1 << 20)
#define CR_STOPEN (1 << 21)
#define CR_CLKSRC_SHIFT (24)
#define CR_CLKSRC_MASK (0x3 << CR_CLKSRC_SHIFT)
/*
* Exact clock frequencies vary from board to board.
* These are typical.
*/
static const IMXClk imx_timerp_clocks[] = {
0, /* 00 disabled */
IPG, /* 01 ipg_clk, ~532MHz */
IPG, /* 10 ipg_clk_highfreq */
CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */
};
typedef struct {
SysBusDevice busdev;
ptimer_state *timer_reload;
ptimer_state *timer_cmp;
MemoryRegion iomem;
DeviceState *ccm;
uint32_t cr;
uint32_t sr;
uint32_t lr;
uint32_t cmp;
uint32_t cnt;
uint32_t freq;
qemu_irq irq;
} IMXTimerPState;
/*
* Update interrupt status
*/
static void imx_timerp_update(IMXTimerPState *s)
{
if (s->sr && (s->cr & CR_OCIEN)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void set_timerp_freq(IMXTimerPState *s)
{
int clksrc;
unsigned prescaler;
uint32_t freq;
clksrc = (s->cr & CR_CLKSRC_MASK) >> CR_CLKSRC_SHIFT;
prescaler = 1 + ((s->cr >> CR_PRESCALE_SHIFT) & CR_PRESCALE_MASK);
freq = imx_clock_frequency(s->ccm, imx_timerp_clocks[clksrc]) / prescaler;
s->freq = freq;
DPRINTF("Setting ptimer frequency to %u\n", freq);
if (freq) {
ptimer_set_freq(s->timer_reload, freq);
ptimer_set_freq(s->timer_cmp, freq);
}
}
static void imx_timerp_reset(DeviceState *dev)
{
IMXTimerPState *s = container_of(dev, IMXTimerPState, busdev.qdev);
/*
* Soft reset doesn't touch some bits; hard reset clears them
*/
s->cr &= ~(CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN);
s->sr = 0;
s->lr = TIMER_MAX;
s->cmp = 0;
s->cnt = 0;
/* stop both timers */
ptimer_stop(s->timer_cmp);
ptimer_stop(s->timer_reload);
/* compute new frequency */
set_timerp_freq(s);
/* init both timers to TIMER_MAX */
ptimer_set_limit(s->timer_cmp, TIMER_MAX, 1);
ptimer_set_limit(s->timer_reload, TIMER_MAX, 1);
if (s->freq && (s->cr & CR_EN)) {
/* if the timer is still enabled, restart it */
ptimer_run(s->timer_reload, 1);
}
}
static uint32_t imx_timerp_update_counts(IMXTimerPState *s)
{
s->cnt = ptimer_get_count(s->timer_reload);
return s->cnt;
}
static uint64_t imx_timerp_read(void *opaque, hwaddr offset,
unsigned size)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("p-read(offset=%x)", offset >> 2);
switch (offset >> 2) {
case 0: /* Control Register */
DPRINTF("cr %x\n", s->cr);
return s->cr;
case 1: /* Status Register */
DPRINTF("sr %x\n", s->sr);
return s->sr;
case 2: /* LR - ticks*/
DPRINTF("lr %x\n", s->lr);
return s->lr;
case 3: /* CMP */
DPRINTF("cmp %x\n", s->cmp);
return s->cmp;
case 4: /* CNT */
imx_timerp_update_counts(s);
DPRINTF(" cnt = %x\n", s->cnt);
return s->cnt;
}
IPRINTF("imx_timerp_read: Bad offset %x\n",
(int)offset >> 2);
return 0;
}
static void imx_reload_compare_timer(IMXTimerPState *s)
{
if ((s->cr & CR_OCIEN) && s->cmp) {
/* if the compare feature is on */
uint32_t tmp = imx_timerp_update_counts(s);
if (tmp > s->cmp) {
/* reinit the cmp timer if required */
ptimer_set_count(s->timer_cmp, tmp - s->cmp);
if ((s->cr & CR_EN)) {
/* Restart the cmp timer if required */
ptimer_run(s->timer_cmp, 0);
}
}
}
}
static void imx_timerp_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("p-write(offset=%x, value = %x)\n", (unsigned int)offset >> 2,
(unsigned int)value);
switch (offset >> 2) {
case 0: /* CR */
s->cr = value & 0x03ffffff;
if (s->cr & CR_SWR) {
/* handle the reset */
imx_timerp_reset(&s->busdev.qdev);
} else {
set_timerp_freq(s);
}
if (s->freq && (s->cr & CR_EN)) {
if (s->cr & CR_ENMOD) {
if (s->cr & CR_RLD) {
ptimer_set_limit(s->timer_reload, s->lr, 1);
} else {
ptimer_set_limit(s->timer_reload, TIMER_MAX, 1);
}
}
imx_reload_compare_timer(s);
ptimer_run(s->timer_reload, 1);
} else {
/* stop both timers */
ptimer_stop(s->timer_reload);
ptimer_stop(s->timer_cmp);
}
break;
case 1: /* SR - ACK*/
/* writing 1 to OCIF clear the OCIF bit */
if (value & 0x01) {
s->sr = 0;
imx_timerp_update(s);
}
break;
case 2: /* LR - set ticks */
s->lr = value;
if (s->cr & CR_RLD) {
/* Also set the limit if the LRD bit is set */
/* If IOVW bit is set then set the timer value */
ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW);
} else if (s->cr & CR_IOVW) {
/* If IOVW bit is set then set the timer value */
ptimer_set_count(s->timer_reload, s->lr);
}
imx_reload_compare_timer(s);
break;
case 3: /* CMP */
s->cmp = value;
imx_reload_compare_timer(s);
break;
default:
IPRINTF("imx_timerp_write: Bad offset %x\n",
(int)offset >> 2);
}
}
static void imx_timerp_reload(void *opaque)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("imxp reload\n");
if (!(s->cr & CR_EN)) {
return;
}
if (s->cr & CR_RLD) {
ptimer_set_limit(s->timer_reload, s->lr, 1);
} else {
ptimer_set_limit(s->timer_reload, TIMER_MAX, 1);
}
if (s->cr & CR_OCIEN) {
/* if compare register is 0 then we handle the interrupt here */
if (s->cmp == 0) {
s->sr = 1;
imx_timerp_update(s);
} else if (s->cmp <= s->lr) {
/* We should launch the compare register */
ptimer_set_count(s->timer_cmp, s->lr - s->cmp);
ptimer_run(s->timer_cmp, 0);
} else {
IPRINTF("imxp reload: s->lr < s->cmp\n");
}
}
}
static void imx_timerp_cmp(void *opaque)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("imxp compare\n");
ptimer_stop(s->timer_cmp);
/* compare register is not 0 */
if (s->cmp) {
s->sr = 1;
imx_timerp_update(s);
}
}
void imx_timerp_create(const hwaddr addr,
qemu_irq irq,
DeviceState *ccm)
{
IMXTimerPState *pp;
DeviceState *dev;
dev = sysbus_create_simple("imx_timerp", addr, irq);
pp = container_of(dev, IMXTimerPState, busdev.qdev);
pp->ccm = ccm;
}
static const MemoryRegionOps imx_timerp_ops = {
.read = imx_timerp_read,
.write = imx_timerp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_imx_timerp = {
.name = "imx-timerp",
.version_id = 2,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXTimerPState),
VMSTATE_UINT32(sr, IMXTimerPState),
VMSTATE_UINT32(lr, IMXTimerPState),
VMSTATE_UINT32(cmp, IMXTimerPState),
VMSTATE_UINT32(cnt, IMXTimerPState),
VMSTATE_UINT32(freq, IMXTimerPState),
VMSTATE_PTIMER(timer_reload, IMXTimerPState),
VMSTATE_PTIMER(timer_cmp, IMXTimerPState),
VMSTATE_END_OF_LIST()
}
};
static int imx_timerp_init(SysBusDevice *dev)
{
IMXTimerPState *s = FROM_SYSBUS(IMXTimerPState, dev);
QEMUBH *bh;
DPRINTF("imx_timerp_init\n");
sysbus_init_irq(dev, &s->irq);
memory_region_init_io(&s->iomem, &imx_timerp_ops,
s, "imxp-timer",
0x00001000);
sysbus_init_mmio(dev, &s->iomem);
bh = qemu_bh_new(imx_timerp_reload, s);
s->timer_reload = ptimer_init(bh);
bh = qemu_bh_new(imx_timerp_cmp, s);
s->timer_cmp = ptimer_init(bh);
return 0;
}
void imx_timerg_create(const hwaddr addr, void imx_timerg_create(const hwaddr addr,
qemu_irq irq, qemu_irq irq,
DeviceState *ccm) DeviceState *ccm)
@ -790,23 +450,6 @@ static void imx_timerg_class_init(ObjectClass *klass, void *data)
dc->desc = "i.MX general timer"; dc->desc = "i.MX general timer";
} }
static void imx_timerp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_timerp_init;
dc->vmsd = &vmstate_imx_timerp;
dc->reset = imx_timerp_reset;
dc->desc = "i.MX periodic timer";
}
static const TypeInfo imx_timerp_info = {
.name = "imx_timerp",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXTimerPState),
.class_init = imx_timerp_class_init,
};
static const TypeInfo imx_timerg_info = { static const TypeInfo imx_timerg_info = {
.name = "imx_timerg", .name = "imx_timerg",
.parent = TYPE_SYS_BUS_DEVICE, .parent = TYPE_SYS_BUS_DEVICE,
@ -816,7 +459,6 @@ static const TypeInfo imx_timerg_info = {
static void imx_timer_register_types(void) static void imx_timer_register_types(void)
{ {
type_register_static(&imx_timerp_info);
type_register_static(&imx_timerg_info); type_register_static(&imx_timerg_info);
} }