hw/block/nvme: end-to-end data protection

Add support for namespaces formatted with protection information. The
type of end-to-end data protection (i.e. Type 1, Type 2 or Type 3) is
selected with the `pi` nvme-ns device parameter. If the number of
metadata bytes is larger than 8, the `pil` nvme-ns device parameter may
be used to control the location of the 8-byte DIF tuple. The default
`pil` value of '0', causes the DIF tuple to be transferred as the last
8 bytes of the metadata. Set to 1 to store this in the first eight bytes
instead.

Co-authored-by: Gollu Appalanaidu <anaidu.gollu@samsung.com>
Signed-off-by: Gollu Appalanaidu <anaidu.gollu@samsung.com>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Reviewed-by: Keith Busch <kbusch@kernel.org>
This commit is contained in:
Klaus Jensen 2021-02-04 09:55:48 +01:00
parent bc3a65e992
commit 146f720c55
9 changed files with 857 additions and 47 deletions

View File

@ -13,7 +13,7 @@ softmmu_ss.add(when: 'CONFIG_SSI_M25P80', if_true: files('m25p80.c'))
softmmu_ss.add(when: 'CONFIG_SWIM', if_true: files('swim.c'))
softmmu_ss.add(when: 'CONFIG_XEN', if_true: files('xen-block.c'))
softmmu_ss.add(when: 'CONFIG_TC58128', if_true: files('tc58128.c'))
softmmu_ss.add(when: 'CONFIG_NVME_PCI', if_true: files('nvme.c', 'nvme-ns.c', 'nvme-subsys.c'))
softmmu_ss.add(when: 'CONFIG_NVME_PCI', if_true: files('nvme.c', 'nvme-ns.c', 'nvme-subsys.c', 'nvme-dif.c'))
specific_ss.add(when: 'CONFIG_VIRTIO_BLK', if_true: files('virtio-blk.c'))
specific_ss.add(when: 'CONFIG_VHOST_USER_BLK', if_true: files('vhost-user-blk.c'))

508
hw/block/nvme-dif.c Normal file
View File

@ -0,0 +1,508 @@
#include "qemu/osdep.h"
#include "hw/block/block.h"
#include "sysemu/dma.h"
#include "sysemu/block-backend.h"
#include "qapi/error.h"
#include "trace.h"
#include "nvme.h"
#include "nvme-dif.h"
uint16_t nvme_check_prinfo(NvmeNamespace *ns, uint16_t ctrl, uint64_t slba,
uint32_t reftag)
{
if ((NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) == NVME_ID_NS_DPS_TYPE_1) &&
(ctrl & NVME_RW_PRINFO_PRCHK_REF) && (slba & 0xffffffff) != reftag) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
return NVME_SUCCESS;
}
/* from Linux kernel (crypto/crct10dif_common.c) */
static uint16_t crc_t10dif(uint16_t crc, const unsigned char *buffer,
size_t len)
{
unsigned int i;
for (i = 0; i < len; i++) {
crc = (crc << 8) ^ t10_dif_crc_table[((crc >> 8) ^ buffer[i]) & 0xff];
}
return crc;
}
void nvme_dif_pract_generate_dif(NvmeNamespace *ns, uint8_t *buf, size_t len,
uint8_t *mbuf, size_t mlen, uint16_t apptag,
uint32_t reftag)
{
uint8_t *end = buf + len;
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
int16_t pil = 0;
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
}
trace_pci_nvme_dif_pract_generate_dif(len, lsize, lsize + pil, apptag,
reftag);
for (; buf < end; buf += lsize, mbuf += msize) {
NvmeDifTuple *dif = (NvmeDifTuple *)(mbuf + pil);
uint16_t crc = crc_t10dif(0x0, buf, lsize);
if (pil) {
crc = crc_t10dif(crc, mbuf, pil);
}
dif->guard = cpu_to_be16(crc);
dif->apptag = cpu_to_be16(apptag);
dif->reftag = cpu_to_be32(reftag);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) != NVME_ID_NS_DPS_TYPE_3) {
reftag++;
}
}
}
static uint16_t nvme_dif_prchk(NvmeNamespace *ns, NvmeDifTuple *dif,
uint8_t *buf, uint8_t *mbuf, size_t pil,
uint16_t ctrl, uint16_t apptag,
uint16_t appmask, uint32_t reftag)
{
switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
case NVME_ID_NS_DPS_TYPE_3:
if (be32_to_cpu(dif->reftag) != 0xffffffff) {
break;
}
/* fallthrough */
case NVME_ID_NS_DPS_TYPE_1:
case NVME_ID_NS_DPS_TYPE_2:
if (be16_to_cpu(dif->apptag) != 0xffff) {
break;
}
trace_pci_nvme_dif_prchk_disabled(be16_to_cpu(dif->apptag),
be32_to_cpu(dif->reftag));
return NVME_SUCCESS;
}
if (ctrl & NVME_RW_PRINFO_PRCHK_GUARD) {
uint16_t crc = crc_t10dif(0x0, buf, nvme_lsize(ns));
if (pil) {
crc = crc_t10dif(crc, mbuf, pil);
}
trace_pci_nvme_dif_prchk_guard(be16_to_cpu(dif->guard), crc);
if (be16_to_cpu(dif->guard) != crc) {
return NVME_E2E_GUARD_ERROR;
}
}
if (ctrl & NVME_RW_PRINFO_PRCHK_APP) {
trace_pci_nvme_dif_prchk_apptag(be16_to_cpu(dif->apptag), apptag,
appmask);
if ((be16_to_cpu(dif->apptag) & appmask) != (apptag & appmask)) {
return NVME_E2E_APP_ERROR;
}
}
if (ctrl & NVME_RW_PRINFO_PRCHK_REF) {
trace_pci_nvme_dif_prchk_reftag(be32_to_cpu(dif->reftag), reftag);
if (be32_to_cpu(dif->reftag) != reftag) {
return NVME_E2E_REF_ERROR;
}
}
return NVME_SUCCESS;
}
uint16_t nvme_dif_check(NvmeNamespace *ns, uint8_t *buf, size_t len,
uint8_t *mbuf, size_t mlen, uint16_t ctrl,
uint64_t slba, uint16_t apptag,
uint16_t appmask, uint32_t reftag)
{
uint8_t *end = buf + len;
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
int16_t pil = 0;
uint16_t status;
status = nvme_check_prinfo(ns, ctrl, slba, reftag);
if (status) {
return status;
}
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
}
trace_pci_nvme_dif_check(NVME_RW_PRINFO(ctrl), lsize + pil);
for (; buf < end; buf += lsize, mbuf += msize) {
NvmeDifTuple *dif = (NvmeDifTuple *)(mbuf + pil);
status = nvme_dif_prchk(ns, dif, buf, mbuf, pil, ctrl, apptag,
appmask, reftag);
if (status) {
return status;
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) != NVME_ID_NS_DPS_TYPE_3) {
reftag++;
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_dif_mangle_mdata(NvmeNamespace *ns, uint8_t *mbuf,
size_t mlen, uint64_t slba)
{
BlockBackend *blk = ns->blkconf.blk;
BlockDriverState *bs = blk_bs(blk);
size_t msize = nvme_msize(ns);
size_t lsize = nvme_lsize(ns);
int64_t moffset = 0, offset = nvme_l2b(ns, slba);
uint8_t *mbufp, *end;
bool zeroed;
int16_t pil = 0;
int64_t bytes = (mlen / msize) * lsize;
int64_t pnum = 0;
Error *err = NULL;
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
}
do {
int ret;
bytes -= pnum;
ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
if (ret < 0) {
error_setg_errno(&err, -ret, "unable to get block status");
error_report_err(err);
return NVME_INTERNAL_DEV_ERROR;
}
zeroed = !!(ret & BDRV_BLOCK_ZERO);
trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
if (zeroed) {
mbufp = mbuf + moffset;
mlen = (pnum / lsize) * msize;
end = mbufp + mlen;
for (; mbufp < end; mbufp += msize) {
memset(mbufp + pil, 0xff, sizeof(NvmeDifTuple));
}
}
moffset += (pnum / lsize) * msize;
offset += pnum;
} while (pnum != bytes);
return NVME_SUCCESS;
}
static void nvme_dif_rw_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_dif_rw_cb(nvme_cid(req), blk_name(blk));
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_rw_complete_cb(req, ret);
}
static void nvme_dif_rw_check_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeCtrl *n = nvme_ctrl(req);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
uint16_t status;
trace_pci_nvme_dif_rw_check_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag,
appmask, reftag);
if (ret) {
goto out;
}
status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, ctx->mdata.iov.size,
slba);
if (status) {
req->status = status;
goto out;
}
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
slba, apptag, appmask, reftag);
if (status) {
req->status = status;
goto out;
}
status = nvme_bounce_data(n, ctx->data.bounce, ctx->data.iov.size,
NVME_TX_DIRECTION_FROM_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8) {
goto out;
}
status = nvme_bounce_mdata(n, ctx->mdata.bounce, ctx->mdata.iov.size,
NVME_TX_DIRECTION_FROM_DEVICE, req);
if (status) {
req->status = status;
}
out:
nvme_dif_rw_cb(ctx, ret);
}
static void nvme_dif_rw_mdata_in_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_dif_rw_mdata_in_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_reset(&ctx->mdata.iov);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_dif_rw_check_cb, ctx);
return;
out:
nvme_dif_rw_cb(ctx, ret);
}
static void nvme_dif_rw_mdata_out_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_dif_rw_mdata_out_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
req->aiocb = blk_aio_pwritev(blk, offset, &ctx->mdata.iov, 0,
nvme_dif_rw_cb, ctx);
return;
out:
nvme_dif_rw_cb(ctx, ret);
}
uint16_t nvme_dif_rw(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
bool wrz = rw->opcode == NVME_CMD_WRITE_ZEROES;
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
uint64_t slba = le64_to_cpu(rw->slba);
size_t len = nvme_l2b(ns, nlb);
size_t mlen = nvme_m2b(ns, nlb);
size_t mapped_len = len;
int64_t offset = nvme_l2b(ns, slba);
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
bool pract = !!(ctrl & NVME_RW_PRINFO_PRACT);
NvmeBounceContext *ctx;
uint16_t status;
trace_pci_nvme_dif_rw(pract, NVME_RW_PRINFO(ctrl));
ctx = g_new0(NvmeBounceContext, 1);
ctx->req = req;
if (wrz) {
BdrvRequestFlags flags = BDRV_REQ_MAY_UNMAP;
if (ctrl & NVME_RW_PRINFO_PRCHK_MASK) {
status = NVME_INVALID_PROT_INFO | NVME_DNR;
goto err;
}
if (pract) {
uint8_t *mbuf, *end;
size_t msize = nvme_msize(ns);
int16_t pil = msize - sizeof(NvmeDifTuple);
status = nvme_check_prinfo(ns, ctrl, slba, reftag);
if (status) {
goto err;
}
flags = 0;
ctx->mdata.bounce = g_malloc0(mlen);
qemu_iovec_init(&ctx->mdata.iov, 1);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
mbuf = ctx->mdata.bounce;
end = mbuf + mlen;
if (ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT) {
pil = 0;
}
for (; mbuf < end; mbuf += msize) {
NvmeDifTuple *dif = (NvmeDifTuple *)(mbuf + pil);
dif->apptag = cpu_to_be16(apptag);
dif->reftag = cpu_to_be32(reftag);
switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
case NVME_ID_NS_DPS_TYPE_1:
case NVME_ID_NS_DPS_TYPE_2:
reftag++;
}
}
}
req->aiocb = blk_aio_pwrite_zeroes(blk, offset, len, flags,
nvme_dif_rw_mdata_out_cb, ctx);
return NVME_NO_COMPLETE;
}
if (nvme_ns_ext(ns) && !(pract && nvme_msize(ns) == 8)) {
mapped_len += mlen;
}
status = nvme_map_dptr(n, &req->sg, mapped_len, &req->cmd);
if (status) {
return status;
}
ctx->data.bounce = g_malloc(len);
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
if (req->cmd.opcode == NVME_CMD_READ) {
block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
nvme_dif_rw_mdata_in_cb, ctx);
return NVME_NO_COMPLETE;
}
status = nvme_bounce_data(n, ctx->data.bounce, ctx->data.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
goto err;
}
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_init(&ctx->mdata.iov, 1);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
if (!(pract && nvme_msize(ns) == 8)) {
status = nvme_bounce_mdata(n, ctx->mdata.bounce, ctx->mdata.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
goto err;
}
}
status = nvme_check_prinfo(ns, ctrl, slba, reftag);
if (status) {
goto err;
}
if (pract) {
/* splice generated protection information into the buffer */
nvme_dif_pract_generate_dif(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size,
apptag, reftag);
} else {
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
slba, apptag, appmask, reftag);
if (status) {
goto err;
}
}
block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
BLOCK_ACCT_WRITE);
req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &ctx->data.iov, 0,
nvme_dif_rw_mdata_out_cb, ctx);
return NVME_NO_COMPLETE;
err:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
return status;
}

51
hw/block/nvme-dif.h Normal file
View File

@ -0,0 +1,51 @@
#ifndef HW_NVME_DIF_H
#define HW_NVME_DIF_H
/* from Linux kernel (crypto/crct10dif_common.c) */
static const uint16_t t10_dif_crc_table[256] = {
0x0000, 0x8BB7, 0x9CD9, 0x176E, 0xB205, 0x39B2, 0x2EDC, 0xA56B,
0xEFBD, 0x640A, 0x7364, 0xF8D3, 0x5DB8, 0xD60F, 0xC161, 0x4AD6,
0x54CD, 0xDF7A, 0xC814, 0x43A3, 0xE6C8, 0x6D7F, 0x7A11, 0xF1A6,
0xBB70, 0x30C7, 0x27A9, 0xAC1E, 0x0975, 0x82C2, 0x95AC, 0x1E1B,
0xA99A, 0x222D, 0x3543, 0xBEF4, 0x1B9F, 0x9028, 0x8746, 0x0CF1,
0x4627, 0xCD90, 0xDAFE, 0x5149, 0xF422, 0x7F95, 0x68FB, 0xE34C,
0xFD57, 0x76E0, 0x618E, 0xEA39, 0x4F52, 0xC4E5, 0xD38B, 0x583C,
0x12EA, 0x995D, 0x8E33, 0x0584, 0xA0EF, 0x2B58, 0x3C36, 0xB781,
0xD883, 0x5334, 0x445A, 0xCFED, 0x6A86, 0xE131, 0xF65F, 0x7DE8,
0x373E, 0xBC89, 0xABE7, 0x2050, 0x853B, 0x0E8C, 0x19E2, 0x9255,
0x8C4E, 0x07F9, 0x1097, 0x9B20, 0x3E4B, 0xB5FC, 0xA292, 0x2925,
0x63F3, 0xE844, 0xFF2A, 0x749D, 0xD1F6, 0x5A41, 0x4D2F, 0xC698,
0x7119, 0xFAAE, 0xEDC0, 0x6677, 0xC31C, 0x48AB, 0x5FC5, 0xD472,
0x9EA4, 0x1513, 0x027D, 0x89CA, 0x2CA1, 0xA716, 0xB078, 0x3BCF,
0x25D4, 0xAE63, 0xB90D, 0x32BA, 0x97D1, 0x1C66, 0x0B08, 0x80BF,
0xCA69, 0x41DE, 0x56B0, 0xDD07, 0x786C, 0xF3DB, 0xE4B5, 0x6F02,
0x3AB1, 0xB106, 0xA668, 0x2DDF, 0x88B4, 0x0303, 0x146D, 0x9FDA,
0xD50C, 0x5EBB, 0x49D5, 0xC262, 0x6709, 0xECBE, 0xFBD0, 0x7067,
0x6E7C, 0xE5CB, 0xF2A5, 0x7912, 0xDC79, 0x57CE, 0x40A0, 0xCB17,
0x81C1, 0x0A76, 0x1D18, 0x96AF, 0x33C4, 0xB873, 0xAF1D, 0x24AA,
0x932B, 0x189C, 0x0FF2, 0x8445, 0x212E, 0xAA99, 0xBDF7, 0x3640,
0x7C96, 0xF721, 0xE04F, 0x6BF8, 0xCE93, 0x4524, 0x524A, 0xD9FD,
0xC7E6, 0x4C51, 0x5B3F, 0xD088, 0x75E3, 0xFE54, 0xE93A, 0x628D,
0x285B, 0xA3EC, 0xB482, 0x3F35, 0x9A5E, 0x11E9, 0x0687, 0x8D30,
0xE232, 0x6985, 0x7EEB, 0xF55C, 0x5037, 0xDB80, 0xCCEE, 0x4759,
0x0D8F, 0x8638, 0x9156, 0x1AE1, 0xBF8A, 0x343D, 0x2353, 0xA8E4,
0xB6FF, 0x3D48, 0x2A26, 0xA191, 0x04FA, 0x8F4D, 0x9823, 0x1394,
0x5942, 0xD2F5, 0xC59B, 0x4E2C, 0xEB47, 0x60F0, 0x779E, 0xFC29,
0x4BA8, 0xC01F, 0xD771, 0x5CC6, 0xF9AD, 0x721A, 0x6574, 0xEEC3,
0xA415, 0x2FA2, 0x38CC, 0xB37B, 0x1610, 0x9DA7, 0x8AC9, 0x017E,
0x1F65, 0x94D2, 0x83BC, 0x080B, 0xAD60, 0x26D7, 0x31B9, 0xBA0E,
0xF0D8, 0x7B6F, 0x6C01, 0xE7B6, 0x42DD, 0xC96A, 0xDE04, 0x55B3
};
uint16_t nvme_check_prinfo(NvmeNamespace *ns, uint16_t ctrl, uint64_t slba,
uint32_t reftag);
void nvme_dif_pract_generate_dif(NvmeNamespace *ns, uint8_t *buf, size_t len,
uint8_t *mbuf, size_t mlen, uint16_t apptag,
uint32_t reftag);
uint16_t nvme_dif_check(NvmeNamespace *ns, uint8_t *buf, size_t len,
uint8_t *mbuf, size_t mlen, uint16_t ctrl,
uint64_t slba, uint16_t apptag,
uint16_t appmask, uint32_t reftag);
uint16_t nvme_dif_rw(NvmeCtrl *n, NvmeRequest *req);
#endif /* HW_NVME_DIF_H */

View File

@ -39,7 +39,7 @@ static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
int lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
int npdg, nlbas;
ns->id_ns.dlfeat = 0x9;
ns->id_ns.dlfeat = 0x1;
id_ns->lbaf[lba_index].ds = 31 - clz32(ns->blkconf.logical_block_size);
id_ns->lbaf[lba_index].ms = ns->params.ms;
@ -50,6 +50,9 @@ static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
if (ns->params.mset) {
id_ns->flbas |= 0x10;
}
id_ns->dpc = 0x1f;
id_ns->dps = ((ns->params.pil & 0x1) << 3) | ns->params.pi;
}
nlbas = nvme_ns_nlbas(ns);
@ -338,6 +341,12 @@ static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp)
return -1;
}
if (ns->params.pi && !ns->params.ms) {
error_setg(errp, "at least 8 bytes of metadata required to enable "
"protection information");
return -1;
}
return 0;
}
@ -416,6 +425,8 @@ static Property nvme_ns_props[] = {
DEFINE_PROP_UUID("uuid", NvmeNamespace, params.uuid),
DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0),
DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0),
DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0),
DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0),
DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128),
DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128),
DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127),

View File

@ -15,6 +15,8 @@
#ifndef NVME_NS_H
#define NVME_NS_H
#include "qemu/uuid.h"
#define TYPE_NVME_NS "nvme-ns"
#define NVME_NS(obj) \
OBJECT_CHECK(NvmeNamespace, (obj), TYPE_NVME_NS)
@ -32,6 +34,8 @@ typedef struct NvmeNamespaceParams {
uint16_t ms;
uint8_t mset;
uint8_t pi;
uint8_t pil;
uint16_t mssrl;
uint32_t mcl;

View File

@ -144,6 +144,7 @@
#include "trace.h"
#include "nvme.h"
#include "nvme-ns.h"
#include "nvme-dif.h"
#define NVME_MAX_IOQPAIRS 0xffff
#define NVME_DB_SIZE 4
@ -226,15 +227,6 @@ static const uint32_t nvme_cse_iocs_zoned[256] = {
static void nvme_process_sq(void *opaque);
static uint16_t nvme_cid(NvmeRequest *req)
{
if (!req) {
return 0xffff;
}
return le16_to_cpu(req->cqe.cid);
}
static uint16_t nvme_sqid(NvmeRequest *req)
{
return le16_to_cpu(req->sq->sqid);
@ -933,8 +925,8 @@ unmap:
return status;
}
static uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
uint64_t prp1, prp2;
@ -986,9 +978,16 @@ static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
size_t len = nvme_l2b(ns, nlb);
uint16_t status;
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
goto out;
}
if (nvme_ns_ext(ns)) {
NvmeSg sg;
@ -1006,6 +1005,7 @@ static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
return NVME_SUCCESS;
}
out:
return nvme_map_dptr(n, &req->sg, len, &req->cmd);
}
@ -1035,11 +1035,6 @@ static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
return nvme_map_mptr(n, &req->sg, len, &req->cmd);
}
typedef enum NvmeTxDirection {
NVME_TX_DIRECTION_TO_DEVICE = 0,
NVME_TX_DIRECTION_FROM_DEVICE = 1,
} NvmeTxDirection;
static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
uint32_t len, uint32_t bytes,
int32_t skip_bytes, int64_t offset,
@ -1164,12 +1159,15 @@ static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
}
static uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
if (nvme_ns_ext(ns)) {
if (nvme_ns_ext(ns) &&
!(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
@ -1180,8 +1178,8 @@ static uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
return nvme_tx(n, &req->sg, ptr, len, dir);
}
static uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
uint16_t status;
@ -1777,7 +1775,7 @@ static void nvme_misc_cb(void *opaque, int ret)
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_rw_complete_cb(void *opaque, int ret)
void nvme_rw_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
@ -1984,11 +1982,13 @@ struct nvme_copy_ctx {
uint8_t *bounce;
uint8_t *mbounce;
uint32_t nlb;
NvmeCopySourceRange *ranges;
};
struct nvme_copy_in_ctx {
NvmeRequest *req;
QEMUIOVector iov;
NvmeCopySourceRange *range;
};
static void nvme_copy_complete_cb(void *opaque, int ret)
@ -2062,6 +2062,70 @@ static void nvme_copy_in_complete(NvmeRequest *req)
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint16_t prinfor = (copy->control[0] >> 4) & 0xf;
uint16_t prinfow = (copy->control[2] >> 2) & 0xf;
uint16_t nr = copy->nr + 1;
NvmeCopySourceRange *range;
uint64_t slba;
uint32_t nlb;
uint16_t apptag, appmask;
uint32_t reftag;
uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce;
size_t len, mlen;
int i;
/*
* The dif helpers expects prinfo to be similar to the control field of
* the NvmeRwCmd, so shift by 10 to fake it.
*/
prinfor = prinfor << 10;
prinfow = prinfow << 10;
for (i = 0; i < nr; i++) {
range = &ctx->ranges[i];
slba = le64_to_cpu(range->slba);
nlb = le16_to_cpu(range->nlb) + 1;
len = nvme_l2b(ns, nlb);
mlen = nvme_m2b(ns, nlb);
apptag = le16_to_cpu(range->apptag);
appmask = le16_to_cpu(range->appmask);
reftag = le32_to_cpu(range->reftag);
status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba,
apptag, appmask, reftag);
if (status) {
goto invalid;
}
buf += len;
mbuf += mlen;
}
apptag = le16_to_cpu(copy->apptag);
appmask = le16_to_cpu(copy->appmask);
reftag = le32_to_cpu(copy->reftag);
if (prinfow & NVME_RW_PRINFO_PRACT) {
size_t len = nvme_l2b(ns, ctx->nlb);
size_t mlen = nvme_m2b(ns, ctx->nlb);
status = nvme_check_prinfo(ns, prinfow, sdlba, reftag);
if (status) {
goto invalid;
}
nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce,
mlen, apptag, reftag);
} else {
status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen,
prinfow, sdlba, apptag, appmask, reftag);
if (status) {
goto invalid;
}
}
}
status = nvme_check_bounds(ns, sdlba, ctx->nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(sdlba, ctx->nlb, ns->id_ns.nsze);
@ -2156,7 +2220,13 @@ struct nvme_compare_ctx {
static void nvme_compare_mdata_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
NvmeCtrl *n = nvme_ctrl(req);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
uint16_t status = NVME_SUCCESS;
@ -2172,6 +2242,40 @@ static void nvme_compare_mdata_cb(void *opaque, int ret)
goto out;
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t *bufp;
uint8_t *mbufp = ctx->mdata.bounce;
uint8_t *end = mbufp + ctx->mdata.iov.size;
size_t msize = nvme_msize(ns);
int16_t pil = 0;
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
slba, apptag, appmask, reftag);
if (status) {
req->status = status;
goto out;
}
/*
* When formatted with protection information, do not compare the DIF
* tuple.
*/
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
}
for (bufp = buf; mbufp < end; bufp += msize, mbufp += msize) {
if (memcmp(bufp + pil, mbufp + pil, msize - pil)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
}
goto out;
}
if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
@ -2331,12 +2435,18 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
g_autofree NvmeCopySourceRange *range = NULL;
uint16_t nr = copy->nr + 1;
uint8_t format = copy->control[0] & 0xf;
uint32_t nlb = 0;
/*
* Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
* NVME_RW_PRINFO constants.
*/
uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10;
uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10;
uint32_t nlb = 0;
uint8_t *bounce = NULL, *bouncep = NULL;
uint8_t *mbounce = NULL, *mbouncep = NULL;
struct nvme_copy_ctx *ctx;
@ -2345,6 +2455,11 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!(n->id_ctrl.ocfs & (1 << format))) {
trace_pci_nvme_err_copy_invalid_format(format);
return NVME_INVALID_FIELD | NVME_DNR;
@ -2354,39 +2469,41 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
}
range = g_new(NvmeCopySourceRange, nr);
ctx = g_new(struct nvme_copy_ctx, 1);
ctx->ranges = g_new(NvmeCopySourceRange, nr);
status = nvme_h2c(n, (uint8_t *)range, nr * sizeof(NvmeCopySourceRange),
req);
status = nvme_h2c(n, (uint8_t *)ctx->ranges,
nr * sizeof(NvmeCopySourceRange), req);
if (status) {
return status;
goto out;
}
for (i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(range[i].slba);
uint32_t _nlb = le16_to_cpu(range[i].nlb) + 1;
uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto out;
}
status = nvme_check_bounds(ns, slba, _nlb);
if (status) {
trace_pci_nvme_err_invalid_lba_range(slba, _nlb, ns->id_ns.nsze);
return status;
goto out;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, _nlb);
if (status) {
return status;
goto out;
}
}
if (ns->params.zoned) {
status = nvme_check_zone_read(ns, slba, _nlb);
if (status) {
return status;
goto out;
}
}
@ -2394,7 +2511,8 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
}
if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto out;
}
bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
@ -2405,8 +2523,6 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_READ);
ctx = g_new(struct nvme_copy_ctx, 1);
ctx->bounce = bounce;
ctx->mbounce = mbounce;
ctx->nlb = nlb;
@ -2415,8 +2531,8 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
req->opaque = ctx;
for (i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(range[i].slba);
uint32_t nlb = le16_to_cpu(range[i].nlb) + 1;
uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
@ -2463,6 +2579,12 @@ static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
}
return NVME_NO_COMPLETE;
out:
g_free(ctx->ranges);
g_free(ctx);
return status;
}
static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
@ -2472,6 +2594,7 @@ static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
size_t data_len = nvme_l2b(ns, nlb);
size_t len = data_len;
int64_t offset = nvme_l2b(ns, slba);
@ -2480,6 +2603,10 @@ static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
if (nvme_ns_ext(ns)) {
len += nvme_m2b(ns, nlb);
}
@ -2582,6 +2709,7 @@ static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
@ -2590,6 +2718,14 @@ static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
if (nvme_ns_ext(ns)) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = ctrl & NVME_RW_PRINFO_PRACT;
if (pract && nvme_msize(ns) == 8) {
mapped_size = data_size;
}
}
}
trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
@ -2620,6 +2756,10 @@ static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
}
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
@ -2644,6 +2784,7 @@ static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
@ -2654,6 +2795,14 @@ static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
if (nvme_ns_ext(ns)) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = ctrl & NVME_RW_PRINFO_PRACT;
if (pract && nvme_msize(ns) == 8) {
mapped_size -= nvme_m2b(ns, nlb);
}
}
}
trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
@ -2676,6 +2825,8 @@ static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
zone = nvme_get_zone_by_slba(ns, slba);
if (append) {
bool piremap = !!(ctrl & NVME_RW_PIREMAP);
if (unlikely(slba != zone->d.zslba)) {
trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
status = NVME_INVALID_FIELD;
@ -2689,7 +2840,32 @@ static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
}
slba = zone->w_ptr;
rw->slba = cpu_to_le64(slba);
res->slba = cpu_to_le64(slba);
switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
case NVME_ID_NS_DPS_TYPE_1:
if (!piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
/* fallthrough */
case NVME_ID_NS_DPS_TYPE_2:
if (piremap) {
uint32_t reftag = le32_to_cpu(rw->reftag);
rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
}
break;
case NVME_ID_NS_DPS_TYPE_3:
if (piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
break;
}
}
status = nvme_check_zone_write(ns, zone, slba, nlb);
@ -2707,6 +2883,10 @@ static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
data_offset = nvme_l2b(ns, slba);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
if (!wrz) {
status = nvme_map_data(n, nlb, req);
if (status) {

View File

@ -2,6 +2,7 @@
#define HW_NVME_H
#include "block/nvme.h"
#include "hw/pci/pci.h"
#include "nvme-subsys.h"
#include "nvme-ns.h"
@ -62,6 +63,15 @@ typedef struct NvmeRequest {
QTAILQ_ENTRY(NvmeRequest)entry;
} NvmeRequest;
typedef struct NvmeBounceContext {
NvmeRequest *req;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data, mdata;
} NvmeBounceContext;
static inline const char *nvme_adm_opc_str(uint8_t opc)
{
switch (opc) {
@ -264,6 +274,27 @@ static inline NvmeCtrl *nvme_ctrl(NvmeRequest *req)
return sq->ctrl;
}
static inline uint16_t nvme_cid(NvmeRequest *req)
{
if (!req) {
return 0xffff;
}
return le16_to_cpu(req->cqe.cid);
}
typedef enum NvmeTxDirection {
NVME_TX_DIRECTION_TO_DEVICE = 0,
NVME_TX_DIRECTION_FROM_DEVICE = 1,
} NvmeTxDirection;
int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp);
uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
void nvme_rw_complete_cb(void *opaque, int ret);
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd);
#endif /* HW_NVME_H */

View File

@ -45,6 +45,17 @@ pci_nvme_read(uint16_t cid, uint32_t nsid, uint32_t nlb, uint64_t count, uint64_
pci_nvme_write(uint16_t cid, const char *verb, uint32_t nsid, uint32_t nlb, uint64_t count, uint64_t lba) "cid %"PRIu16" opname '%s' nsid %"PRIu32" nlb %"PRIu32" count %"PRIu64" lba 0x%"PRIx64""
pci_nvme_rw_cb(uint16_t cid, const char *blkname) "cid %"PRIu16" blk '%s'"
pci_nvme_misc_cb(uint16_t cid, const char *blkname) "cid %"PRIu16" blk '%s'"
pci_nvme_dif_rw(uint8_t pract, uint8_t prinfo) "pract 0x%"PRIx8" prinfo 0x%"PRIx8""
pci_nvme_dif_rw_cb(uint16_t cid, const char *blkname) "cid %"PRIu16" blk '%s'"
pci_nvme_dif_rw_mdata_in_cb(uint16_t cid, const char *blkname) "cid %"PRIu16" blk '%s'"
pci_nvme_dif_rw_mdata_out_cb(uint16_t cid, const char *blkname) "cid %"PRIu16" blk '%s'"
pci_nvme_dif_rw_check_cb(uint16_t cid, uint8_t prinfo, uint16_t apptag, uint16_t appmask, uint32_t reftag) "cid %"PRIu16" prinfo 0x%"PRIx8" apptag 0x%"PRIx16" appmask 0x%"PRIx16" reftag 0x%"PRIx32""
pci_nvme_dif_pract_generate_dif(size_t len, size_t lba_size, size_t chksum_len, uint16_t apptag, uint32_t reftag) "len %zu lba_size %zu chksum_len %zu apptag 0x%"PRIx16" reftag 0x%"PRIx32""
pci_nvme_dif_check(uint8_t prinfo, uint16_t chksum_len) "prinfo 0x%"PRIx8" chksum_len %"PRIu16""
pci_nvme_dif_prchk_disabled(uint16_t apptag, uint32_t reftag) "apptag 0x%"PRIx16" reftag 0x%"PRIx32""
pci_nvme_dif_prchk_guard(uint16_t guard, uint16_t crc) "guard 0x%"PRIx16" crc 0x%"PRIx16""
pci_nvme_dif_prchk_apptag(uint16_t apptag, uint16_t elbat, uint16_t elbatm) "apptag 0x%"PRIx16" elbat 0x%"PRIx16" elbatm 0x%"PRIx16""
pci_nvme_dif_prchk_reftag(uint32_t reftag, uint32_t elbrt) "reftag 0x%"PRIx32" elbrt 0x%"PRIx32""
pci_nvme_copy(uint16_t cid, uint32_t nsid, uint16_t nr, uint8_t format) "cid %"PRIu16" nsid %"PRIu32" nr %"PRIu16" format 0x%"PRIx8""
pci_nvme_copy_source_range(uint64_t slba, uint32_t nlb) "slba 0x%"PRIx64" nlb %"PRIu32""
pci_nvme_copy_in_complete(uint16_t cid) "cid %"PRIu16""

View File

@ -696,12 +696,17 @@ enum {
NVME_RW_DSM_LATENCY_LOW = 3 << 4,
NVME_RW_DSM_SEQ_REQ = 1 << 6,
NVME_RW_DSM_COMPRESSED = 1 << 7,
NVME_RW_PIREMAP = 1 << 9,
NVME_RW_PRINFO_PRACT = 1 << 13,
NVME_RW_PRINFO_PRCHK_GUARD = 1 << 12,
NVME_RW_PRINFO_PRCHK_APP = 1 << 11,
NVME_RW_PRINFO_PRCHK_REF = 1 << 10,
NVME_RW_PRINFO_PRCHK_MASK = 7 << 10,
};
#define NVME_RW_PRINFO(control) ((control >> 10) & 0xf)
typedef struct QEMU_PACKED NvmeDsmCmd {
uint8_t opcode;
uint8_t flags;
@ -1324,14 +1329,22 @@ typedef struct QEMU_PACKED NvmeIdNsZoned {
#define NVME_ID_NS_DPC_TYPE_MASK 0x7
enum NvmeIdNsDps {
DPS_TYPE_NONE = 0,
DPS_TYPE_1 = 1,
DPS_TYPE_2 = 2,
DPS_TYPE_3 = 3,
DPS_TYPE_MASK = 0x7,
DPS_FIRST_EIGHT = 8,
NVME_ID_NS_DPS_TYPE_NONE = 0,
NVME_ID_NS_DPS_TYPE_1 = 1,
NVME_ID_NS_DPS_TYPE_2 = 2,
NVME_ID_NS_DPS_TYPE_3 = 3,
NVME_ID_NS_DPS_TYPE_MASK = 0x7,
NVME_ID_NS_DPS_FIRST_EIGHT = 8,
};
#define NVME_ID_NS_DPS_TYPE(dps) (dps & NVME_ID_NS_DPS_TYPE_MASK)
typedef struct NvmeDifTuple {
uint16_t guard;
uint16_t apptag;
uint32_t reftag;
} NvmeDifTuple;
enum NvmeZoneAttr {
NVME_ZA_FINISHED_BY_CTLR = 1 << 0,
NVME_ZA_FINISH_RECOMMENDED = 1 << 1,
@ -1428,5 +1441,6 @@ static inline void _nvme_check_size(void)
QEMU_BUILD_BUG_ON(sizeof(NvmeSglDescriptor) != 16);
QEMU_BUILD_BUG_ON(sizeof(NvmeIdNsDescr) != 4);
QEMU_BUILD_BUG_ON(sizeof(NvmeZoneDescr) != 64);
QEMU_BUILD_BUG_ON(sizeof(NvmeDifTuple) != 8);
}
#endif