cpu: Make first_cpu and next_cpu CPUState

Move next_cpu from CPU_COMMON to CPUState.
Move first_cpu variable to qom/cpu.h.

gdbstub needs to use CPUState::env_ptr for now.
cpu_copy() no longer needs to save and restore cpu_next.

Acked-by: Paolo Bonzini <pbonzini@redhat.com>
[AF: Rebased, simplified cpu_copy()]
Signed-off-by: Andreas Färber <afaerber@suse.de>
This commit is contained in:
Andreas Färber 2013-05-29 22:29:20 +02:00
parent 9b056fcc5b
commit 182735efaf
39 changed files with 266 additions and 234 deletions

126
cpus.c
View File

@ -60,7 +60,7 @@
#endif /* CONFIG_LINUX */
static CPUArchState *next_cpu;
static CPUState *next_cpu;
static bool cpu_thread_is_idle(CPUState *cpu)
{
@ -79,10 +79,10 @@ static bool cpu_thread_is_idle(CPUState *cpu)
static bool all_cpu_threads_idle(void)
{
CPUArchState *env;
CPUState *cpu;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (!cpu_thread_is_idle(ENV_GET_CPU(env))) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
if (!cpu_thread_is_idle(cpu)) {
return false;
}
}
@ -388,15 +388,13 @@ void configure_icount(const char *option)
void hw_error(const char *fmt, ...)
{
va_list ap;
CPUArchState *env;
CPUState *cpu;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
}
@ -406,28 +404,28 @@ void hw_error(const char *fmt, ...)
void cpu_synchronize_all_states(void)
{
CPUArchState *env;
CPUState *cpu;
for (env = first_cpu; env; env = env->next_cpu) {
cpu_synchronize_state(ENV_GET_CPU(env));
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_state(cpu);
}
}
void cpu_synchronize_all_post_reset(void)
{
CPUArchState *cpu;
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_reset(ENV_GET_CPU(cpu));
cpu_synchronize_post_reset(cpu);
}
}
void cpu_synchronize_all_post_init(void)
{
CPUArchState *cpu;
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_init(ENV_GET_CPU(cpu));
cpu_synchronize_post_init(cpu);
}
}
@ -698,7 +696,7 @@ static void qemu_wait_io_event_common(CPUState *cpu)
static void qemu_tcg_wait_io_event(void)
{
CPUArchState *env;
CPUState *cpu;
while (all_cpu_threads_idle()) {
/* Start accounting real time to the virtual clock if the CPUs
@ -711,8 +709,8 @@ static void qemu_tcg_wait_io_event(void)
qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
qemu_wait_io_event_common(ENV_GET_CPU(env));
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
qemu_wait_io_event_common(cpu);
}
}
@ -814,7 +812,6 @@ static void tcg_signal_cpu_creation(CPUState *cpu, void *data)
static void *qemu_tcg_cpu_thread_fn(void *arg)
{
CPUState *cpu = arg;
CPUArchState *env;
qemu_tcg_init_cpu_signals();
qemu_thread_get_self(cpu->thread);
@ -824,12 +821,12 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
qemu_cond_signal(&qemu_cpu_cond);
/* wait for initial kick-off after machine start */
while (ENV_GET_CPU(first_cpu)->stopped) {
while (first_cpu->stopped) {
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
/* process any pending work */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
qemu_wait_io_event_common(ENV_GET_CPU(env));
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
qemu_wait_io_event_common(cpu);
}
}
@ -923,7 +920,7 @@ void qemu_mutex_lock_iothread(void)
} else {
iothread_requesting_mutex = true;
if (qemu_mutex_trylock(&qemu_global_mutex)) {
qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
qemu_cpu_kick_thread(first_cpu);
qemu_mutex_lock(&qemu_global_mutex);
}
iothread_requesting_mutex = false;
@ -938,14 +935,13 @@ void qemu_mutex_unlock_iothread(void)
static int all_vcpus_paused(void)
{
CPUArchState *penv = first_cpu;
CPUState *cpu = first_cpu;
while (penv) {
CPUState *pcpu = ENV_GET_CPU(penv);
if (!pcpu->stopped) {
while (cpu) {
if (!cpu->stopped) {
return 0;
}
penv = penv->next_cpu;
cpu = cpu->next_cpu;
}
return 1;
@ -953,25 +949,23 @@ static int all_vcpus_paused(void)
void pause_all_vcpus(void)
{
CPUArchState *penv = first_cpu;
CPUState *cpu = first_cpu;
qemu_clock_enable(vm_clock, false);
while (penv) {
CPUState *pcpu = ENV_GET_CPU(penv);
pcpu->stop = true;
qemu_cpu_kick(pcpu);
penv = penv->next_cpu;
while (cpu) {
cpu->stop = true;
qemu_cpu_kick(cpu);
cpu = cpu->next_cpu;
}
if (qemu_in_vcpu_thread()) {
cpu_stop_current();
if (!kvm_enabled()) {
penv = first_cpu;
while (penv) {
CPUState *pcpu = ENV_GET_CPU(penv);
pcpu->stop = false;
pcpu->stopped = true;
penv = penv->next_cpu;
cpu = first_cpu;
while (cpu) {
cpu->stop = false;
cpu->stopped = true;
cpu = cpu->next_cpu;
}
return;
}
@ -979,10 +973,10 @@ void pause_all_vcpus(void)
while (!all_vcpus_paused()) {
qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
penv = first_cpu;
while (penv) {
qemu_cpu_kick(ENV_GET_CPU(penv));
penv = penv->next_cpu;
cpu = first_cpu;
while (cpu) {
qemu_cpu_kick(cpu);
cpu = cpu->next_cpu;
}
}
}
@ -996,13 +990,12 @@ void cpu_resume(CPUState *cpu)
void resume_all_vcpus(void)
{
CPUArchState *penv = first_cpu;
CPUState *cpu = first_cpu;
qemu_clock_enable(vm_clock, true);
while (penv) {
CPUState *pcpu = ENV_GET_CPU(penv);
cpu_resume(pcpu);
penv = penv->next_cpu;
while (cpu) {
cpu_resume(cpu);
cpu = cpu->next_cpu;
}
}
@ -1151,8 +1144,8 @@ static void tcg_exec_all(void)
next_cpu = first_cpu;
}
for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
CPUArchState *env = next_cpu;
CPUState *cpu = ENV_GET_CPU(env);
CPUState *cpu = next_cpu;
CPUArchState *env = cpu->env_ptr;
qemu_clock_enable(vm_clock,
(env->singlestep_enabled & SSTEP_NOTIMER) == 0);
@ -1172,12 +1165,10 @@ static void tcg_exec_all(void)
void set_numa_modes(void)
{
CPUArchState *env;
CPUState *cpu;
int i;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
for (i = 0; i < nb_numa_nodes; i++) {
if (test_bit(cpu->cpu_index, node_cpumask[i])) {
cpu->numa_node = i;
@ -1197,18 +1188,30 @@ void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
CpuInfoList *qmp_query_cpus(Error **errp)
{
CpuInfoList *head = NULL, *cur_item = NULL;
CPUArchState *env;
CPUState *cpu;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
CPUState *cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CpuInfoList *info;
#if defined(TARGET_I386)
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
#elif defined(TARGET_PPC)
PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
CPUPPCState *env = &ppc_cpu->env;
#elif defined(TARGET_SPARC)
SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
CPUSPARCState *env = &sparc_cpu->env;
#elif defined(TARGET_MIPS)
MIPSCPU *mips_cpu = MIPS_CPU(cpu);
CPUMIPSState *env = &mips_cpu->env;
#endif
cpu_synchronize_state(cpu);
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->CPU = cpu->cpu_index;
info->value->current = (env == first_cpu);
info->value->current = (cpu == first_cpu);
info->value->halted = cpu->halted;
info->value->thread_id = cpu->thread_id;
#if defined(TARGET_I386)
@ -1316,11 +1319,14 @@ exit:
void qmp_inject_nmi(Error **errp)
{
#if defined(TARGET_I386)
CPUArchState *env;
CPUState *cs;
for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (!env->apic_state) {
cpu_interrupt(CPU(x86_env_get_cpu(env)), CPU_INTERRUPT_NMI);
cpu_interrupt(cs, CPU_INTERRUPT_NMI);
} else {
apic_deliver_nmi(env->apic_state);
}

View File

@ -186,11 +186,13 @@ static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
{
CPUState *cpu;
CPUArchState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
int mmu_idx;
env = cpu->env_ptr;
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
unsigned int i;

16
dump.c
View File

@ -275,13 +275,11 @@ static inline int cpu_index(CPUState *cpu)
static int write_elf64_notes(DumpState *s)
{
CPUArchState *env;
CPUState *cpu;
int ret;
int id;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
id = cpu_index(cpu);
ret = cpu_write_elf64_note(fd_write_vmcore, cpu, id, s);
if (ret < 0) {
@ -290,7 +288,7 @@ static int write_elf64_notes(DumpState *s)
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
ret = cpu_write_elf64_qemunote(fd_write_vmcore, cpu, s);
if (ret < 0) {
dump_error(s, "dump: failed to write CPU status.\n");
@ -327,13 +325,11 @@ static int write_elf32_note(DumpState *s)
static int write_elf32_notes(DumpState *s)
{
CPUArchState *env;
CPUState *cpu;
int ret;
int id;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
id = cpu_index(cpu);
ret = cpu_write_elf32_note(fd_write_vmcore, cpu, id, s);
if (ret < 0) {
@ -342,7 +338,7 @@ static int write_elf32_notes(DumpState *s)
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
ret = cpu_write_elf32_qemunote(fd_write_vmcore, cpu, s);
if (ret < 0) {
dump_error(s, "dump: failed to write CPU status.\n");
@ -705,7 +701,7 @@ static ram_addr_t get_start_block(DumpState *s)
static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
int64_t begin, int64_t length, Error **errp)
{
CPUArchState *env;
CPUState *cpu;
int nr_cpus;
Error *err = NULL;
int ret;
@ -738,7 +734,7 @@ static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
*/
cpu_synchronize_all_states();
nr_cpus = 0;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
nr_cpus++;
}

43
exec.c
View File

@ -69,7 +69,7 @@ static MemoryRegion io_mem_unassigned;
#endif
CPUArchState *first_cpu;
CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
DEFINE_TLS(CPUState *, current_cpu);
@ -351,27 +351,26 @@ const VMStateDescription vmstate_cpu_common = {
CPUState *qemu_get_cpu(int index)
{
CPUArchState *env = first_cpu;
CPUState *cpu = NULL;
CPUState *cpu = first_cpu;
while (env) {
cpu = ENV_GET_CPU(env);
while (cpu) {
if (cpu->cpu_index == index) {
break;
}
env = env->next_cpu;
cpu = cpu->next_cpu;
}
return env ? cpu : NULL;
return cpu;
}
void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
{
CPUArchState *env = first_cpu;
CPUState *cpu;
while (env) {
func(ENV_GET_CPU(env), data);
env = env->next_cpu;
cpu = first_cpu;
while (cpu) {
func(cpu, data);
cpu = cpu->next_cpu;
}
}
@ -379,17 +378,17 @@ void cpu_exec_init(CPUArchState *env)
{
CPUState *cpu = ENV_GET_CPU(env);
CPUClass *cc = CPU_GET_CLASS(cpu);
CPUArchState **penv;
CPUState **pcpu;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
cpu_list_lock();
#endif
env->next_cpu = NULL;
penv = &first_cpu;
cpu->next_cpu = NULL;
pcpu = &first_cpu;
cpu_index = 0;
while (*penv != NULL) {
penv = &(*penv)->next_cpu;
while (*pcpu != NULL) {
pcpu = &(*pcpu)->next_cpu;
cpu_index++;
}
cpu->cpu_index = cpu_index;
@ -399,7 +398,7 @@ void cpu_exec_init(CPUArchState *env)
#ifndef CONFIG_USER_ONLY
cpu->thread_id = qemu_get_thread_id();
#endif
*penv = env;
*pcpu = cpu;
#if defined(CONFIG_USER_ONLY)
cpu_list_unlock();
#endif
@ -638,7 +637,6 @@ void cpu_abort(CPUArchState *env, const char *fmt, ...)
CPUArchState *cpu_copy(CPUArchState *env)
{
CPUArchState *new_env = cpu_init(env->cpu_model_str);
CPUArchState *next_cpu = new_env->next_cpu;
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
CPUWatchpoint *wp;
@ -646,9 +644,6 @@ CPUArchState *cpu_copy(CPUArchState *env)
memcpy(new_env, env, sizeof(CPUArchState));
/* Preserve chaining. */
new_env->next_cpu = next_cpu;
/* Clone all break/watchpoints.
Note: Once we support ptrace with hw-debug register access, make sure
BP_CPU break/watchpoints are handled correctly on clone. */
@ -1757,12 +1752,14 @@ static void core_commit(MemoryListener *listener)
static void tcg_commit(MemoryListener *listener)
{
CPUArchState *env;
CPUState *cpu;
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
/* XXX: slow ! */
for(env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CPUArchState *env = cpu->env_ptr;
tlb_flush(env, 1);
}
}

View File

@ -1839,6 +1839,7 @@ static const char *get_feature_xml(const char *p, const char **newp)
/* Generate the XML description for this CPU. */
if (!target_xml[0]) {
GDBRegisterState *r;
CPUArchState *env = first_cpu->env_ptr;
snprintf(target_xml, sizeof(target_xml),
"<?xml version=\"1.0\"?>"
@ -1847,7 +1848,7 @@ static const char *get_feature_xml(const char *p, const char **newp)
"<xi:include href=\"%s\"/>",
GDB_CORE_XML);
for (r = first_cpu->gdb_regs; r; r = r->next) {
for (r = env->gdb_regs; r; r = r->next) {
pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
pstrcat(target_xml, sizeof(target_xml), r->xml);
pstrcat(target_xml, sizeof(target_xml), "\"/>");
@ -1949,6 +1950,7 @@ static const int xlat_gdb_type[] = {
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
{
CPUState *cpu;
CPUArchState *env;
int err = 0;
@ -1958,7 +1960,8 @@ static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
env = cpu->env_ptr;
err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
if (err)
break;
@ -1968,7 +1971,8 @@ static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_ACCESS:
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
env = cpu->env_ptr;
err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
NULL);
if (err)
@ -1983,6 +1987,7 @@ static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
{
CPUState *cpu;
CPUArchState *env;
int err = 0;
@ -1992,7 +1997,8 @@ static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
env = cpu->env_ptr;
err = cpu_breakpoint_remove(env, addr, BP_GDB);
if (err)
break;
@ -2002,7 +2008,8 @@ static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_ACCESS:
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
env = cpu->env_ptr;
err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
if (err)
break;
@ -2016,6 +2023,7 @@ static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
static void gdb_breakpoint_remove_all(void)
{
CPUState *cpu;
CPUArchState *env;
if (kvm_enabled()) {
@ -2023,7 +2031,8 @@ static void gdb_breakpoint_remove_all(void)
return;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
env = cpu->env_ptr;
cpu_breakpoint_remove_all(env, BP_GDB);
#ifndef CONFIG_USER_ONLY
cpu_watchpoint_remove_all(env, BP_GDB);
@ -2071,13 +2080,11 @@ static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
static CPUArchState *find_cpu(uint32_t thread_id)
{
CPUArchState *env;
CPUState *cpu;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
if (cpu_index(cpu) == thread_id) {
return env;
return cpu->env_ptr;
}
}
@ -2394,7 +2401,7 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
put_packet(s, "QC1");
break;
} else if (strcmp(p,"fThreadInfo") == 0) {
s->query_cpu = first_cpu;
s->query_cpu = first_cpu->env_ptr;
goto report_cpuinfo;
} else if (strcmp(p,"sThreadInfo") == 0) {
report_cpuinfo:
@ -2402,7 +2409,7 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
snprintf(buf, sizeof(buf), "m%x",
cpu_index(ENV_GET_CPU(s->query_cpu)));
put_packet(s, buf);
s->query_cpu = s->query_cpu->next_cpu;
s->query_cpu = ENV_GET_CPU(s->query_cpu)->next_cpu->env_ptr;
} else
put_packet(s, "l");
break;
@ -2869,8 +2876,8 @@ static void gdb_accept(void)
socket_set_nodelay(fd);
s = g_malloc0(sizeof(GDBState));
s->c_cpu = first_cpu;
s->g_cpu = first_cpu;
s->c_cpu = first_cpu->env_ptr;
s->g_cpu = first_cpu->env_ptr;
s->fd = fd;
gdb_has_xml = 0;
@ -3054,8 +3061,8 @@ int gdbserver_start(const char *device)
mon_chr = s->mon_chr;
memset(s, 0, sizeof(GDBState));
}
s->c_cpu = first_cpu;
s->g_cpu = first_cpu;
s->c_cpu = first_cpu->env_ptr;
s->g_cpu = first_cpu->env_ptr;
s->chr = chr;
s->state = chr ? RS_IDLE : RS_INACTIVE;
s->mon_chr = mon_chr;

View File

@ -333,7 +333,7 @@ static void do_cpu_reset(void *opaque)
env->regs[15] = info->entry & 0xfffffffe;
env->thumb = info->entry & 1;
} else {
if (env == first_cpu) {
if (CPU(cpu) == first_cpu) {
env->regs[15] = info->loader_start;
if (!info->dtb_filename) {
if (old_param) {
@ -351,7 +351,7 @@ static void do_cpu_reset(void *opaque)
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
int kernel_size;
int initrd_size;
int n;
@ -476,9 +476,9 @@ void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
}
info->is_linux = is_linux;
for (; env; env = env->next_cpu) {
cpu = arm_env_get_cpu(env);
env->boot_info = info;
for (; cs; cs = cs->next_cpu) {
cpu = ARM_CPU(cs);
cpu->env.boot_info = info;
qemu_register_reset(do_cpu_reset, cpu);
}
}

View File

@ -131,7 +131,7 @@ static void nuri_init(QEMUMachineInitArgs *args)
{
exynos4_boards_init_common(args, EXYNOS4_BOARD_NURI);
arm_load_kernel(arm_env_get_cpu(first_cpu), &exynos4_board_binfo);
arm_load_kernel(ARM_CPU(first_cpu), &exynos4_board_binfo);
}
static void smdkc210_init(QEMUMachineInitArgs *args)
@ -141,7 +141,7 @@ static void smdkc210_init(QEMUMachineInitArgs *args)
lan9215_init(SMDK_LAN9118_BASE_ADDR,
qemu_irq_invert(s->irq_table[exynos4210_get_irq(37, 1)]));
arm_load_kernel(arm_env_get_cpu(first_cpu), &exynos4_board_binfo);
arm_load_kernel(ARM_CPU(first_cpu), &exynos4_board_binfo);
}
static QEMUMachine exynos4_machines[EXYNOS4_NUM_OF_BOARDS] = {

View File

@ -321,7 +321,7 @@ static void highbank_init(QEMUMachineInitArgs *args)
highbank_binfo.loader_start = 0;
highbank_binfo.write_secondary_boot = hb_write_secondary;
highbank_binfo.secondary_cpu_reset_hook = hb_reset_secondary;
arm_load_kernel(arm_env_get_cpu(first_cpu), &highbank_binfo);
arm_load_kernel(ARM_CPU(first_cpu), &highbank_binfo);
}
static QEMUMachine highbank_machine = {

View File

@ -331,7 +331,7 @@ static void realview_init(QEMUMachineInitArgs *args,
realview_binfo.nb_cpus = smp_cpus;
realview_binfo.board_id = realview_board_id[board_type];
realview_binfo.loader_start = (board_type == BOARD_PB_A8 ? 0x70000000 : 0);
arm_load_kernel(arm_env_get_cpu(first_cpu), &realview_binfo);
arm_load_kernel(ARM_CPU(first_cpu), &realview_binfo);
}
static void realview_eb_init(QEMUMachineInitArgs *args)

View File

@ -519,7 +519,7 @@ static void vexpress_common_init(const VEDBoardInfo *daughterboard,
vexpress_binfo.smp_loader_start = map[VE_SRAM];
vexpress_binfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30;
vexpress_binfo.gic_cpu_if_addr = daughterboard->gic_cpu_if_addr;
arm_load_kernel(arm_env_get_cpu(first_cpu), &vexpress_binfo);
arm_load_kernel(ARM_CPU(first_cpu), &vexpress_binfo);
}
static void vexpress_a9_init(QEMUMachineInitArgs *args)

View File

@ -226,7 +226,7 @@ static void zynq_init(QEMUMachineInitArgs *args)
zynq_binfo.nb_cpus = 1;
zynq_binfo.board_id = 0xd32;
zynq_binfo.loader_start = 0;
arm_load_kernel(arm_env_get_cpu(first_cpu), &zynq_binfo);
arm_load_kernel(ARM_CPU(first_cpu), &zynq_binfo);
}
static QEMUMachine zynq_machine = {

View File

@ -33,7 +33,7 @@ static void kvmclock_vm_state_change(void *opaque, int running,
RunState state)
{
KVMClockState *s = opaque;
CPUArchState *penv = first_cpu;
CPUState *cpu = first_cpu;
int cap_clock_ctrl = kvm_check_extension(kvm_state, KVM_CAP_KVMCLOCK_CTRL);
int ret;
@ -53,8 +53,8 @@ static void kvmclock_vm_state_change(void *opaque, int running,
if (!cap_clock_ctrl) {
return;
}
for (penv = first_cpu; penv != NULL; penv = penv->next_cpu) {
ret = kvm_vcpu_ioctl(ENV_GET_CPU(penv), KVM_KVMCLOCK_CTRL, 0);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
ret = kvm_vcpu_ioctl(cpu, KVM_KVMCLOCK_CTRL, 0);
if (ret) {
if (ret != -EINVAL) {
fprintf(stderr, "%s: %s\n", __func__, strerror(-ret));
@ -124,8 +124,10 @@ static const TypeInfo kvmclock_info = {
/* Note: Must be called after VCPU initialization. */
void kvmclock_create(void)
{
X86CPU *cpu = X86_CPU(first_cpu);
if (kvm_enabled() &&
first_cpu->features[FEAT_KVM] & ((1ULL << KVM_FEATURE_CLOCKSOURCE) |
cpu->env.features[FEAT_KVM] & ((1ULL << KVM_FEATURE_CLOCKSOURCE) |
(1ULL << KVM_FEATURE_CLOCKSOURCE2))) {
sysbus_create_simple("kvmclock", -1, NULL);
}

View File

@ -490,13 +490,15 @@ static void vapic_enable_tpr_reporting(bool enable)
VAPICEnableTPRReporting info = {
.enable = enable,
};
CPUState *cs;
X86CPU *cpu;
CPUX86State *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = x86_env_get_cpu(env);
for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
cpu = X86_CPU(cs);
env = &cpu->env;
info.apic = env->apic_state;
run_on_cpu(CPU(cpu), vapic_do_enable_tpr_reporting, &info);
run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
}
}
@ -719,8 +721,9 @@ static int vapic_init(SysBusDevice *dev)
static void do_vapic_enable(void *data)
{
VAPICROMState *s = data;
X86CPU *cpu = X86_CPU(first_cpu);
vapic_enable(s, first_cpu);
vapic_enable(s, &cpu->env);
}
static int vapic_post_load(void *opaque, int version_id)
@ -743,7 +746,7 @@ static int vapic_post_load(void *opaque, int version_id)
}
if (s->state == VAPIC_ACTIVE) {
if (smp_cpus == 1) {
run_on_cpu(ENV_GET_CPU(first_cpu), do_vapic_enable, s);
run_on_cpu(first_cpu, do_vapic_enable, s);
} else {
zero = g_malloc0(s->rom_state.vapic_size);
cpu_physical_memory_rw(s->vapic_paddr, zero,

View File

@ -160,8 +160,9 @@ void cpu_smm_register(cpu_set_smm_t callback, void *arg)
void cpu_smm_update(CPUX86State *env)
{
if (smm_set && smm_arg && env == first_cpu)
if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
}
}
@ -185,18 +186,21 @@ int cpu_get_pic_interrupt(CPUX86State *env)
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUX86State *env = first_cpu;
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
if (env->apic_state) {
while (env) {
while (cs) {
cpu = X86_CPU(cs);
env = &cpu->env;
if (apic_accept_pic_intr(env->apic_state)) {
apic_deliver_pic_intr(env->apic_state, level);
}
env = env->next_cpu;
cs = cs->next_cpu;
}
} else {
CPUState *cs = CPU(x86_env_get_cpu(env));
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
@ -1274,8 +1278,7 @@ void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
}
}
a20_line = qemu_allocate_irqs(handle_a20_line_change,
x86_env_get_cpu(first_cpu), 2);
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042 = isa_create_simple(isa_bus, "i8042");
i8042_setup_a20_line(i8042, &a20_line[0]);
if (!no_vmport) {

View File

@ -229,8 +229,7 @@ static void pc_init1(MemoryRegion *system_memory,
if (pci_enabled && acpi_enabled) {
i2c_bus *smbus;
smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt,
x86_env_get_cpu(first_cpu), 1);
smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
/* TODO: Populate SPD eeprom data. */
smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
gsi[9], *smi_irq,

View File

@ -42,16 +42,15 @@ void sh_intc_toggle_source(struct intc_source *source,
pending_changed = 1;
if (pending_changed) {
CPUState *cpu = CPU(sh_env_get_cpu(first_cpu));
if (source->pending) {
source->parent->pending++;
if (source->parent->pending == 1) {
cpu_interrupt(cpu, CPU_INTERRUPT_HARD);
cpu_interrupt(first_cpu, CPU_INTERRUPT_HARD);
}
} else {
source->parent->pending--;
if (source->parent->pending == 0) {
cpu_reset_interrupt(cpu, CPU_INTERRUPT_HARD);
cpu_reset_interrupt(first_cpu, CPU_INTERRUPT_HARD);
}
}
}

View File

@ -380,7 +380,7 @@ static void ich9_apm_ctrl_changed(uint32_t val, void *arg)
/* SMI_EN = PMBASE + 30. SMI control and enable register */
if (lpc->pm.smi_en & ICH9_PMIO_SMI_EN_APMC_EN) {
cpu_interrupt(CPU(x86_env_get_cpu(first_cpu)), CPU_INTERRUPT_SMI);
cpu_interrupt(first_cpu, CPU_INTERRUPT_SMI);
}
}

View File

@ -844,7 +844,8 @@ void mips_malta_init(QEMUMachineInitArgs *args)
cpu_mips_clock_init(env);
qemu_register_reset(main_cpu_reset, cpu);
}
env = first_cpu;
cpu = MIPS_CPU(first_cpu);
env = &cpu->env;
/* allocate RAM */
if (ram_size > (256 << 20)) {

View File

@ -500,7 +500,6 @@ static DeviceState *ppce500_init_mpic_kvm(PPCE500Params *params,
qemu_irq **irqs)
{
DeviceState *dev;
CPUPPCState *env;
CPUState *cs;
int r;
@ -512,9 +511,7 @@ static DeviceState *ppce500_init_mpic_kvm(PPCE500Params *params,
return NULL;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cs = ENV_GET_CPU(env);
for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
if (kvm_openpic_connect_vcpu(dev, cs)) {
fprintf(stderr, "%s: failed to connect vcpu to irqchip\n",
__func__);

View File

@ -440,15 +440,14 @@ void ppce500_irq_init(CPUPPCState *env)
/* Enable or Disable the E500 EPR capability */
void ppce500_set_mpic_proxy(bool enabled)
{
CPUPPCState *env;
CPUState *cs;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
PowerPCCPU *cpu = ppc_env_get_cpu(env);
CPUState *cs = CPU(cpu);
for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
env->mpic_proxy = enabled;
cpu->env.mpic_proxy = enabled;
if (kvm_enabled()) {
kvmppc_set_mpic_proxy(POWERPC_CPU(cs), enabled);
kvmppc_set_mpic_proxy(cpu, enabled);
}
}
}

View File

@ -605,8 +605,9 @@ static void ppc_prep_init(QEMUMachineInitArgs *args)
/* PCI -> ISA bridge */
pci = pci_create_simple(pci_bus, PCI_DEVFN(1, 0), "i82378");
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
cpu = POWERPC_CPU(first_cpu);
qdev_connect_gpio_out(&pci->qdev, 0,
first_cpu->irq_inputs[PPC6xx_INPUT_INT]);
cpu->env.irq_inputs[PPC6xx_INPUT_INT]);
qdev_connect_gpio_out(&pci->qdev, 1, *cpu_exit_irq);
sysbus_connect_irq(&pcihost->busdev, 0, qdev_get_gpio_in(&pci->qdev, 9));
sysbus_connect_irq(&pcihost->busdev, 1, qdev_get_gpio_in(&pci->qdev, 11));
@ -651,7 +652,8 @@ static void ppc_prep_init(QEMUMachineInitArgs *args)
}
isa_create_simple(isa_bus, "i8042");
sysctrl->reset_irq = first_cpu->irq_inputs[PPC6xx_INPUT_HRESET];
cpu = POWERPC_CPU(first_cpu);
sysctrl->reset_irq = cpu->env.irq_inputs[PPC6xx_INPUT_HRESET];
portio_list_init(port_list, NULL, prep_portio_list, sysctrl, "prep");
portio_list_add(port_list, get_system_io(), 0x0);

View File

@ -131,7 +131,6 @@ int spapr_allocate_irq_block(int num, bool lsi)
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
{
int ret = 0, offset;
CPUPPCState *env;
CPUState *cpu;
char cpu_model[32];
int smt = kvmppc_smt_threads();
@ -139,8 +138,7 @@ static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
assert(spapr->cpu_model);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = CPU(ppc_env_get_cpu(env));
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
uint32_t associativity[] = {cpu_to_be32(0x5),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
@ -231,7 +229,7 @@ static void *spapr_create_fdt_skel(const char *cpu_model,
uint32_t epow_irq)
{
void *fdt;
CPUPPCState *env;
CPUState *cs;
uint32_t start_prop = cpu_to_be32(initrd_base);
uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
@ -304,10 +302,11 @@ static void *spapr_create_fdt_skel(const char *cpu_model,
/* This is needed during FDT finalization */
spapr->cpu_model = g_strdup(modelname);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
CPUState *cpu = CPU(ppc_env_get_cpu(env));
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
int index = cpu->cpu_index;
for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
int index = cs->cpu_index;
uint32_t servers_prop[smp_threads];
uint32_t gservers_prop[smp_threads * 2];
char *nodename;
@ -632,7 +631,7 @@ static void spapr_reset_htab(sPAPREnvironment *spapr)
static void ppc_spapr_reset(void)
{
CPUState *first_cpu_cpu;
PowerPCCPU *first_ppc_cpu;
/* Reset the hash table & recalc the RMA */
spapr_reset_htab(spapr);
@ -644,11 +643,11 @@ static void ppc_spapr_reset(void)
spapr->rtas_size);
/* Set up the entry state */
first_cpu_cpu = ENV_GET_CPU(first_cpu);
first_cpu->gpr[3] = spapr->fdt_addr;
first_cpu->gpr[5] = 0;
first_cpu_cpu->halted = 0;
first_cpu->nip = spapr->entry_point;
first_ppc_cpu = POWERPC_CPU(first_cpu);
first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
first_ppc_cpu->env.gpr[5] = 0;
first_cpu->halted = 0;
first_ppc_cpu->env.nip = spapr->entry_point;
}

View File

@ -356,7 +356,6 @@ CPUArchState *cpu_copy(CPUArchState *env);
void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
GCC_FMT_ATTR(2, 3);
extern CPUArchState *first_cpu;
/* Flags for use in ENV->INTERRUPT_PENDING.

View File

@ -181,7 +181,6 @@ typedef struct CPUWatchpoint {
sigjmp_buf jmp_env; \
int exception_index; \
\
CPUArchState *next_cpu; /* next CPU sharing TB cache */ \
/* user data */ \
void *opaque; \
\

View File

@ -114,6 +114,7 @@ struct kvm_run;
* CPU and return to its top level loop.
* @env_ptr: Pointer to subclass-specific CPUArchState field.
* @current_tb: Currently executing TB.
* @next_cpu: Next CPU sharing TB cache.
* @kvm_fd: vCPU file descriptor for KVM.
*
* State of one CPU core or thread.
@ -146,6 +147,7 @@ struct CPUState {
void *env_ptr; /* CPUArchState */
struct TranslationBlock *current_tb;
CPUState *next_cpu;
int kvm_fd;
bool kvm_vcpu_dirty;
@ -157,6 +159,8 @@ struct CPUState {
uint32_t halted; /* used by alpha, cris, ppc TCG */
};
extern CPUState *first_cpu;
DECLARE_TLS(CPUState *, current_cpu);
#define current_cpu tls_var(current_cpu)

View File

@ -1938,7 +1938,9 @@ int kvm_insert_breakpoint(CPUArchState *env, target_ulong addr,
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CPUArchState *env = cpu->env_ptr;
err = kvm_update_guest_debug(env, 0);
if (err) {
return err;
@ -1979,7 +1981,9 @@ int kvm_remove_breakpoint(CPUArchState *env, target_ulong addr,
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CPUArchState *env = cpu->env_ptr;
err = kvm_update_guest_debug(env, 0);
if (err) {
return err;
@ -1992,13 +1996,11 @@ void kvm_remove_all_breakpoints(CPUState *cpu)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = cpu->kvm_state;
CPUArchState *env;
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
break;
}
@ -2009,7 +2011,9 @@ void kvm_remove_all_breakpoints(CPUState *cpu)
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CPUArchState *env = cpu->env_ptr;
kvm_update_guest_debug(env, 0);
}
}

View File

@ -2628,7 +2628,7 @@ static int fill_note_info(struct elf_note_info *info,
long signr, const CPUArchState *env)
{
#define NUMNOTES 3
CPUArchState *cpu = NULL;
CPUState *cpu = NULL;
TaskState *ts = (TaskState *)env->opaque;
int i;
@ -2667,9 +2667,10 @@ static int fill_note_info(struct elf_note_info *info,
/* read and fill status of all threads */
cpu_list_lock();
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
if (cpu == thread_env)
if (cpu == ENV_GET_CPU(thread_env)) {
continue;
fill_thread_info(info, cpu);
}
fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
}
cpu_list_unlock();

View File

@ -120,8 +120,8 @@ void fork_end(int child)
if (child) {
/* Child processes created by fork() only have a single thread.
Discard information about the parent threads. */
first_cpu = thread_env;
thread_env->next_cpu = NULL;
first_cpu = ENV_GET_CPU(thread_env);
first_cpu->next_cpu = NULL;
pending_cpus = 0;
pthread_mutex_init(&exclusive_lock, NULL);
pthread_mutex_init(&cpu_list_mutex, NULL);
@ -148,7 +148,6 @@ static inline void exclusive_idle(void)
Must only be called from outside cpu_arm_exec. */
static inline void start_exclusive(void)
{
CPUArchState *other;
CPUState *other_cpu;
pthread_mutex_lock(&exclusive_lock);
@ -156,8 +155,7 @@ static inline void start_exclusive(void)
pending_cpus = 1;
/* Make all other cpus stop executing. */
for (other = first_cpu; other; other = other->next_cpu) {
other_cpu = ENV_GET_CPU(other);
for (other_cpu = first_cpu; other_cpu; other_cpu = other_cpu->next_cpu) {
if (other_cpu->running) {
pending_cpus++;
cpu_exit(other_cpu);

View File

@ -5030,6 +5030,9 @@ abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8)
{
#ifdef CONFIG_USE_NPTL
CPUState *cpu = ENV_GET_CPU(cpu_env);
#endif
abi_long ret;
struct stat st;
struct statfs stfs;
@ -5052,13 +5055,13 @@ abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
be disabling signals. */
if (first_cpu->next_cpu) {
TaskState *ts;
CPUArchState **lastp;
CPUArchState *p;
CPUState **lastp;
CPUState *p;
cpu_list_lock();
lastp = &first_cpu;
p = first_cpu;
while (p && p != (CPUArchState *)cpu_env) {
while (p && p != cpu) {
lastp = &p->next_cpu;
p = p->next_cpu;
}

View File

@ -165,13 +165,13 @@ void memory_mapping_list_init(MemoryMappingList *list)
QTAILQ_INIT(&list->head);
}
static CPUArchState *find_paging_enabled_cpu(CPUArchState *start_cpu)
static CPUState *find_paging_enabled_cpu(CPUState *start_cpu)
{
CPUArchState *env;
CPUState *cpu;
for (env = start_cpu; env != NULL; env = env->next_cpu) {
if (cpu_paging_enabled(ENV_GET_CPU(env))) {
return env;
for (cpu = start_cpu; cpu != NULL; cpu = cpu->next_cpu) {
if (cpu_paging_enabled(cpu)) {
return cpu;
}
}
@ -180,15 +180,15 @@ static CPUArchState *find_paging_enabled_cpu(CPUArchState *start_cpu)
void qemu_get_guest_memory_mapping(MemoryMappingList *list, Error **errp)
{
CPUArchState *env, *first_paging_enabled_cpu;
CPUState *cpu, *first_paging_enabled_cpu;
RAMBlock *block;
ram_addr_t offset, length;
first_paging_enabled_cpu = find_paging_enabled_cpu(first_cpu);
if (first_paging_enabled_cpu) {
for (env = first_paging_enabled_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_paging_enabled_cpu; cpu != NULL; cpu = cpu->next_cpu) {
Error *err = NULL;
cpu_get_memory_mapping(ENV_GET_CPU(env), list, &err);
cpu_get_memory_mapping(cpu, list, &err);
if (err) {
error_propagate(errp, err);
return;

View File

@ -1806,14 +1806,12 @@ static void do_info_mtree(Monitor *mon, const QDict *qdict)
static void do_info_numa(Monitor *mon, const QDict *qdict)
{
int i;
CPUArchState *env;
CPUState *cpu;
monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
for (i = 0; i < nb_numa_nodes; i++) {
monitor_printf(mon, "node %d cpus:", i);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
if (cpu->numa_node == i) {
monitor_printf(mon, " %d", cpu->cpu_index);
}

View File

@ -185,7 +185,8 @@ int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
X86CPU *cpu = X86_CPU(cs);
int ret;
#ifdef TARGET_X86_64
bool lma = !!(first_cpu->hflags & HF_LMA_MASK);
X86CPU *first_x86_cpu = X86_CPU(first_cpu);
bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
if (lma) {
ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
@ -394,7 +395,9 @@ int cpu_get_dump_info(ArchDumpInfo *info)
RAMBlock *block;
#ifdef TARGET_X86_64
lma = !!(first_cpu->hflags & HF_LMA_MASK);
X86CPU *first_x86_cpu = X86_CPU(first_cpu);
lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
#endif
if (lma) {

View File

@ -1188,6 +1188,7 @@ void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
uint64_t status, uint64_t mcg_status, uint64_t addr,
uint64_t misc, int flags)
{
CPUState *cs = CPU(cpu);
CPUX86State *cenv = &cpu->env;
MCEInjectionParams params = {
.mon = mon,
@ -1200,7 +1201,6 @@ void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
.flags = flags,
};
unsigned bank_num = cenv->mcg_cap & 0xff;
CPUX86State *env;
if (!cenv->mcg_cap) {
monitor_printf(mon, "MCE injection not supported\n");
@ -1220,19 +1220,22 @@ void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
return;
}
run_on_cpu(CPU(cpu), do_inject_x86_mce, &params);
run_on_cpu(cs, do_inject_x86_mce, &params);
if (flags & MCE_INJECT_BROADCAST) {
CPUState *other_cs;
params.bank = 1;
params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
params.addr = 0;
params.misc = 0;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (cenv == env) {
for (other_cs = first_cpu; other_cs != NULL;
other_cs = other_cs->next_cpu) {
if (other_cs == cs) {
continue;
}
params.cpu = x86_env_get_cpu(env);
run_on_cpu(CPU(cpu), do_inject_x86_mce, &params);
params.cpu = X86_CPU(other_cs);
run_on_cpu(other_cs, do_inject_x86_mce, &params);
}
}
}

View File

@ -345,20 +345,22 @@ int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
int kvm_arch_on_sigbus(int code, void *addr)
{
if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
X86CPU *cpu = X86_CPU(first_cpu);
if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
ram_addr_t ram_addr;
hwaddr paddr;
/* Hope we are lucky for AO MCE */
if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
!kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
!kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
addr, &paddr)) {
fprintf(stderr, "Hardware memory error for memory used by "
"QEMU itself instead of guest system!: %p\n", addr);
return 0;
}
kvm_hwpoison_page_add(ram_addr);
kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
} else {
if (code == BUS_MCEERR_AO) {
return 0;

View File

@ -610,7 +610,7 @@ void helper_mwait(CPUX86State *env, int next_eip_addend)
cpu = x86_env_get_cpu(env);
cs = CPU(cpu);
/* XXX: not complete but not completely erroneous */
if (cs->cpu_index != 0 || env->next_cpu != NULL) {
if (cs->cpu_index != 0 || cs->next_cpu != NULL) {
/* more than one CPU: do not sleep because another CPU may
wake this one */
} else {

View File

@ -1696,39 +1696,38 @@ target_ulong helper_emt(void)
target_ulong helper_dvpe(CPUMIPSState *env)
{
CPUMIPSState *other_cpu_env = first_cpu;
CPUState *other_cs = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
do {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
/* Turn off all VPEs except the one executing the dvpe. */
if (other_cpu_env != env) {
MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
other_cpu_env->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
if (&other_cpu->env != env) {
other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
mips_vpe_sleep(other_cpu);
}
other_cpu_env = other_cpu_env->next_cpu;
} while (other_cpu_env);
other_cs = other_cs->next_cpu;
} while (other_cs);
return prev;
}
target_ulong helper_evpe(CPUMIPSState *env)
{
CPUMIPSState *other_cpu_env = first_cpu;
CPUState *other_cs = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
do {
MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
if (other_cpu_env != env
if (&other_cpu->env != env
/* If the VPE is WFI, don't disturb its sleep. */
&& !mips_vpe_is_wfi(other_cpu)) {
/* Enable the VPE. */
other_cpu_env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
mips_vpe_wake(other_cpu); /* And wake it up. */
}
other_cpu_env = other_cpu_env->next_cpu;
} while (other_cpu_env);
other_cs = other_cs->next_cpu;
} while (other_cs);
return prev;
}
#endif /* !CONFIG_USER_ONLY */

View File

@ -986,16 +986,19 @@ void helper_msgsnd(target_ulong rb)
{
int irq = dbell2irq(rb);
int pir = rb & DBELL_PIRTAG_MASK;
CPUPPCState *cenv;
CPUState *cs;
if (irq < 0) {
return;
}
for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *cenv = &cpu->env;
if ((rb & DBELL_BRDCAST) || (cenv->spr[SPR_BOOKE_PIR] == pir)) {
cenv->pending_interrupts |= 1 << irq;
cpu_interrupt(CPU(ppc_env_get_cpu(cenv)), CPU_INTERRUPT_HARD);
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}

View File

@ -1579,7 +1579,7 @@ uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
/* Find the largest hardware supported page size that's less than
* or equal to the (logical) backing page size of guest RAM */
kvm_get_smmu_info(ppc_env_get_cpu(first_cpu), &info);
kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
rampagesize = getrampagesize();
best_page_shift = 0;

View File

@ -681,7 +681,7 @@ static void page_flush_tb(void)
/* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUArchState *env1)
{
CPUArchState *env;
CPUState *cpu;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
@ -696,7 +696,9 @@ void tb_flush(CPUArchState *env1)
}
tcg_ctx.tb_ctx.nb_tbs = 0;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CPUArchState *env = cpu->env_ptr;
memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof(void *));
}
@ -821,7 +823,7 @@ static inline void tb_reset_jump(TranslationBlock *tb, int n)
/* invalidate one TB */
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
CPUArchState *env;
CPUState *cpu;
PageDesc *p;
unsigned int h, n1;
tb_page_addr_t phys_pc;
@ -848,7 +850,9 @@ void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
/* remove the TB from the hash list */
h = tb_jmp_cache_hash_func(tb->pc);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CPUArchState *env = cpu->env_ptr;
if (env->tb_jmp_cache[h] == tb) {
env->tb_jmp_cache[h] = NULL;
}