- Copy-on-read block driver

- The qcow2 default refcount cache size has been decreased
 - Various bug fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJa+uwxAAoJEPQH2wBh1c9AHLAH/24gj+Tg35wP9dssHcpfZgLJ
 Yx0FeTvIvPUvjXTfdATei+MgomwPHcMJIIldH/rwXINzj1gvf+I8Kfb4iLm23Pby
 60D02MwrQWPnYt9mypVtLB+yVnzTRjeFn0v84r1w2OXm+PUw79xlQdNa1Yi0pl29
 y8F6Xk3on8d4CVgYSS8oRAzhUm+AP4wwilYVXtnCx4Btghs6REh5we2xcYSaz3PF
 EM83tZiiXCAHvWiwiTTLf/Qt7IK5mN8QsR3NaaB4qGBDrpM+nkYkJTNfqMvvi4OY
 VqhD+6etTVTaieJwFsAY1Q379t/ov5V0pya1LOu9LN4xGxMMGkrBmggVErAU8Gk=
 =omzC
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'mreitz/tags/pull-block-2018-05-15' into queue-block

- Copy-on-read block driver
- The qcow2 default refcount cache size has been decreased
- Various bug fixes

# gpg: Signature made Tue May 15 16:18:25 2018 CEST
# gpg:                using RSA key F407DB0061D5CF40
# gpg: Good signature from "Max Reitz <mreitz@redhat.com>"
# Primary key fingerprint: 91BE B60A 30DB 3E88 57D1  1829 F407 DB00 61D5 CF40

* mreitz/tags/pull-block-2018-05-15: (21 commits)
  iotests: Add test for -U/force-share conflicts
  qemu-img: Use only string options in img_open_opts
  qemu-io: Use purely string blockdev options
  block: Document BDRV_REQ_WRITE_UNCHANGED support
  qemu-img: Check post-truncation size
  iotests: Add test for COR across nodes
  iotests: Copy 197 for COR filter driver
  iotests: Clean up wrap image in 197
  block: Support BDRV_REQ_WRITE_UNCHANGED in filters
  block/quorum: Support BDRV_REQ_WRITE_UNCHANGED
  block: Set BDRV_REQ_WRITE_UNCHANGED for COR writes
  block: Add BDRV_REQ_WRITE_UNCHANGED flag
  block: BLK_PERM_WRITE includes ..._UNCHANGED
  block: Add COR filter driver
  iotests: Skip 181 and 201 without userfaultfd
  iotests: Add failure matching to common.qemu
  docs: Document the new default sizes of the qcow2 caches
  qcow2: Give the refcount cache the minimum possible size by default
  specs/qcow2: Clarify that compressed clusters have the COPIED bit reset
  Fix error message about compressed clusters with OFLAG_COPIED
  ...

Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This commit is contained in:
Kevin Wolf 2018-05-15 16:19:53 +02:00
commit 1fce860ea5
36 changed files with 862 additions and 159 deletions

View File

@ -26,7 +26,7 @@ block-obj-y += accounting.o dirty-bitmap.o
block-obj-y += write-threshold.o
block-obj-y += backup.o
block-obj-$(CONFIG_REPLICATION) += replication.o
block-obj-y += throttle.o
block-obj-y += throttle.o copy-on-read.o
block-obj-y += crypto.o

View File

@ -398,10 +398,11 @@ static int blkdebug_open(BlockDriverState *bs, QDict *options, int flags,
goto out;
}
bs->supported_write_flags = BDRV_REQ_FUA &
bs->file->bs->supported_write_flags;
bs->supported_zero_flags = (BDRV_REQ_FUA | BDRV_REQ_MAY_UNMAP) &
bs->file->bs->supported_zero_flags;
bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED |
(BDRV_REQ_FUA & bs->file->bs->supported_write_flags);
bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED |
((BDRV_REQ_FUA | BDRV_REQ_MAY_UNMAP) &
bs->file->bs->supported_zero_flags);
ret = -EINVAL;
/* Set alignment overrides */

View File

@ -35,6 +35,9 @@ static int blkreplay_open(BlockDriverState *bs, QDict *options, int flags,
goto fail;
}
bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED;
bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED;
ret = 0;
fail:
return ret;

View File

@ -141,6 +141,9 @@ static int blkverify_open(BlockDriverState *bs, QDict *options, int flags,
goto fail;
}
bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED;
bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED;
ret = 0;
fail:
qemu_opts_del(opts);

173
block/copy-on-read.c Normal file
View File

@ -0,0 +1,173 @@
/*
* Copy-on-read filter block driver
*
* Copyright (c) 2018 Red Hat, Inc.
*
* Author:
* Max Reitz <mreitz@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "block/block_int.h"
static int cor_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, false,
errp);
if (!bs->file) {
return -EINVAL;
}
bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED |
(BDRV_REQ_FUA &
bs->file->bs->supported_write_flags);
bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED |
((BDRV_REQ_FUA | BDRV_REQ_MAY_UNMAP) &
bs->file->bs->supported_zero_flags);
return 0;
}
static void cor_close(BlockDriverState *bs)
{
}
#define PERM_PASSTHROUGH (BLK_PERM_CONSISTENT_READ \
| BLK_PERM_WRITE \
| BLK_PERM_RESIZE)
#define PERM_UNCHANGED (BLK_PERM_ALL & ~PERM_PASSTHROUGH)
static void cor_child_perm(BlockDriverState *bs, BdrvChild *c,
const BdrvChildRole *role,
BlockReopenQueue *reopen_queue,
uint64_t perm, uint64_t shared,
uint64_t *nperm, uint64_t *nshared)
{
if (c == NULL) {
*nperm = (perm & PERM_PASSTHROUGH) | BLK_PERM_WRITE_UNCHANGED;
*nshared = (shared & PERM_PASSTHROUGH) | PERM_UNCHANGED;
return;
}
*nperm = (perm & PERM_PASSTHROUGH) |
(c->perm & PERM_UNCHANGED);
*nshared = (shared & PERM_PASSTHROUGH) |
(c->shared_perm & PERM_UNCHANGED);
}
static int64_t cor_getlength(BlockDriverState *bs)
{
return bdrv_getlength(bs->file->bs);
}
static int cor_truncate(BlockDriverState *bs, int64_t offset,
PreallocMode prealloc, Error **errp)
{
return bdrv_truncate(bs->file, offset, prealloc, errp);
}
static int coroutine_fn cor_co_preadv(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
return bdrv_co_preadv(bs->file, offset, bytes, qiov,
flags | BDRV_REQ_COPY_ON_READ);
}
static int coroutine_fn cor_co_pwritev(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
return bdrv_co_pwritev(bs->file, offset, bytes, qiov, flags);
}
static int coroutine_fn cor_co_pwrite_zeroes(BlockDriverState *bs,
int64_t offset, int bytes,
BdrvRequestFlags flags)
{
return bdrv_co_pwrite_zeroes(bs->file, offset, bytes, flags);
}
static int coroutine_fn cor_co_pdiscard(BlockDriverState *bs,
int64_t offset, int bytes)
{
return bdrv_co_pdiscard(bs->file->bs, offset, bytes);
}
static void cor_eject(BlockDriverState *bs, bool eject_flag)
{
bdrv_eject(bs->file->bs, eject_flag);
}
static void cor_lock_medium(BlockDriverState *bs, bool locked)
{
bdrv_lock_medium(bs->file->bs, locked);
}
static bool cor_recurse_is_first_non_filter(BlockDriverState *bs,
BlockDriverState *candidate)
{
return bdrv_recurse_is_first_non_filter(bs->file->bs, candidate);
}
BlockDriver bdrv_copy_on_read = {
.format_name = "copy-on-read",
.bdrv_open = cor_open,
.bdrv_close = cor_close,
.bdrv_child_perm = cor_child_perm,
.bdrv_getlength = cor_getlength,
.bdrv_truncate = cor_truncate,
.bdrv_co_preadv = cor_co_preadv,
.bdrv_co_pwritev = cor_co_pwritev,
.bdrv_co_pwrite_zeroes = cor_co_pwrite_zeroes,
.bdrv_co_pdiscard = cor_co_pdiscard,
.bdrv_eject = cor_eject,
.bdrv_lock_medium = cor_lock_medium,
.bdrv_co_block_status = bdrv_co_block_status_from_file,
.bdrv_recurse_is_first_non_filter = cor_recurse_is_first_non_filter,
.has_variable_length = true,
.is_filter = true,
};
static void bdrv_copy_on_read_init(void)
{
bdrv_register(&bdrv_copy_on_read);
}
block_init(bdrv_copy_on_read_init);

View File

@ -1118,13 +1118,15 @@ static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
/* FIXME: Should we (perhaps conditionally) be setting
* BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
* that still correctly reads as zero? */
ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
BDRV_REQ_WRITE_UNCHANGED);
} else {
/* This does not change the data on the disk, it is not
* necessary to flush even in cache=writethrough mode.
*/
ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
&local_qiov, 0);
&local_qiov,
BDRV_REQ_WRITE_UNCHANGED);
}
if (ret < 0) {
@ -1504,7 +1506,11 @@ static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
assert(!waited || !req->serialising);
assert(req->overlap_offset <= offset);
assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
assert(child->perm & BLK_PERM_WRITE);
if (flags & BDRV_REQ_WRITE_UNCHANGED) {
assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
} else {
assert(child->perm & BLK_PERM_WRITE);
}
assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);

View File

@ -1134,6 +1134,8 @@ static void mirror_start_job(const char *job_id, BlockDriverState *bs,
mirror_top_bs->implicit = true;
}
mirror_top_bs->total_sectors = bs->total_sectors;
mirror_top_bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED;
mirror_top_bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED;
bdrv_set_aio_context(mirror_top_bs, bdrv_get_aio_context(bs));
/* bdrv_append takes ownership of the mirror_top_bs reference, need to keep

View File

@ -1577,9 +1577,9 @@ static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
case QCOW2_CLUSTER_COMPRESSED:
/* Compressed clusters don't have QCOW_OFLAG_COPIED */
if (l2_entry & QCOW_OFLAG_COPIED) {
fprintf(stderr, "ERROR: cluster %" PRId64 ": "
fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
"copied flag must never be set for compressed "
"clusters\n", l2_entry >> s->cluster_bits);
"clusters\n", l2_entry & s->cluster_offset_mask);
l2_entry &= ~QCOW_OFLAG_COPIED;
res->corruptions++;
}

View File

@ -802,23 +802,30 @@ static void read_cache_sizes(BlockDriverState *bs, QemuOpts *opts,
} else if (refcount_cache_size_set) {
*l2_cache_size = combined_cache_size - *refcount_cache_size;
} else {
*refcount_cache_size = combined_cache_size
/ (DEFAULT_L2_REFCOUNT_SIZE_RATIO + 1);
*l2_cache_size = combined_cache_size - *refcount_cache_size;
uint64_t virtual_disk_size = bs->total_sectors * BDRV_SECTOR_SIZE;
uint64_t max_l2_cache = virtual_disk_size / (s->cluster_size / 8);
uint64_t min_refcount_cache =
(uint64_t) MIN_REFCOUNT_CACHE_SIZE * s->cluster_size;
/* Assign as much memory as possible to the L2 cache, and
* use the remainder for the refcount cache */
if (combined_cache_size >= max_l2_cache + min_refcount_cache) {
*l2_cache_size = max_l2_cache;
*refcount_cache_size = combined_cache_size - *l2_cache_size;
} else {
*refcount_cache_size =
MIN(combined_cache_size, min_refcount_cache);
*l2_cache_size = combined_cache_size - *refcount_cache_size;
}
}
} else {
if (!l2_cache_size_set && !refcount_cache_size_set) {
if (!l2_cache_size_set) {
*l2_cache_size = MAX(DEFAULT_L2_CACHE_BYTE_SIZE,
(uint64_t)DEFAULT_L2_CACHE_CLUSTERS
* s->cluster_size);
*refcount_cache_size = *l2_cache_size
/ DEFAULT_L2_REFCOUNT_SIZE_RATIO;
} else if (!l2_cache_size_set) {
*l2_cache_size = *refcount_cache_size
* DEFAULT_L2_REFCOUNT_SIZE_RATIO;
} else if (!refcount_cache_size_set) {
*refcount_cache_size = *l2_cache_size
/ DEFAULT_L2_REFCOUNT_SIZE_RATIO;
}
if (!refcount_cache_size_set) {
*refcount_cache_size = MIN_REFCOUNT_CACHE_SIZE * s->cluster_size;
}
}

View File

@ -77,10 +77,6 @@
#define DEFAULT_L2_CACHE_CLUSTERS 8 /* clusters */
#define DEFAULT_L2_CACHE_BYTE_SIZE 1048576 /* bytes */
/* The refblock cache needs only a fourth of the L2 cache size to cover as many
* clusters */
#define DEFAULT_L2_REFCOUNT_SIZE_RATIO 4
#define DEFAULT_CLUSTER_SIZE 65536

View File

@ -115,6 +115,7 @@ struct QuorumAIOCB {
/* Request metadata */
uint64_t offset;
uint64_t bytes;
int flags;
QEMUIOVector *qiov; /* calling IOV */
@ -157,7 +158,8 @@ static bool quorum_64bits_compare(QuorumVoteValue *a, QuorumVoteValue *b)
static QuorumAIOCB *quorum_aio_get(BlockDriverState *bs,
QEMUIOVector *qiov,
uint64_t offset,
uint64_t bytes)
uint64_t bytes,
int flags)
{
BDRVQuorumState *s = bs->opaque;
QuorumAIOCB *acb = g_new(QuorumAIOCB, 1);
@ -168,6 +170,7 @@ static QuorumAIOCB *quorum_aio_get(BlockDriverState *bs,
.bs = bs,
.offset = offset,
.bytes = bytes,
.flags = flags,
.qiov = qiov,
.votes.compare = quorum_sha256_compare,
.votes.vote_list = QLIST_HEAD_INITIALIZER(acb.votes.vote_list),
@ -271,9 +274,11 @@ static void quorum_rewrite_entry(void *opaque)
BDRVQuorumState *s = acb->bs->opaque;
/* Ignore any errors, it's just a correction attempt for already
* corrupted data. */
* corrupted data.
* Mask out BDRV_REQ_WRITE_UNCHANGED because this overwrites the
* area with different data from the other children. */
bdrv_co_pwritev(s->children[co->idx], acb->offset, acb->bytes,
acb->qiov, 0);
acb->qiov, acb->flags & ~BDRV_REQ_WRITE_UNCHANGED);
/* Wake up the caller after the last rewrite */
acb->rewrite_count--;
@ -673,7 +678,7 @@ static int quorum_co_preadv(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov, int flags)
{
BDRVQuorumState *s = bs->opaque;
QuorumAIOCB *acb = quorum_aio_get(bs, qiov, offset, bytes);
QuorumAIOCB *acb = quorum_aio_get(bs, qiov, offset, bytes, flags);
int ret;
acb->is_read = true;
@ -699,7 +704,7 @@ static void write_quorum_entry(void *opaque)
sacb->bs = s->children[i]->bs;
sacb->ret = bdrv_co_pwritev(s->children[i], acb->offset, acb->bytes,
acb->qiov, 0);
acb->qiov, acb->flags);
if (sacb->ret == 0) {
acb->success_count++;
} else {
@ -719,7 +724,7 @@ static int quorum_co_pwritev(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov, int flags)
{
BDRVQuorumState *s = bs->opaque;
QuorumAIOCB *acb = quorum_aio_get(bs, qiov, offset, bytes);
QuorumAIOCB *acb = quorum_aio_get(bs, qiov, offset, bytes, flags);
int i, ret;
for (i = 0; i < s->num_children; i++) {
@ -961,6 +966,8 @@ static int quorum_open(BlockDriverState *bs, QDict *options, int flags,
}
s->next_child_index = s->num_children;
bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED;
g_free(opened);
goto exit;

View File

@ -415,10 +415,11 @@ static int raw_open(BlockDriverState *bs, QDict *options, int flags,
}
bs->sg = bs->file->bs->sg;
bs->supported_write_flags = BDRV_REQ_FUA &
bs->file->bs->supported_write_flags;
bs->supported_zero_flags = (BDRV_REQ_FUA | BDRV_REQ_MAY_UNMAP) &
bs->file->bs->supported_zero_flags;
bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED |
(BDRV_REQ_FUA & bs->file->bs->supported_write_flags);
bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED |
((BDRV_REQ_FUA | BDRV_REQ_MAY_UNMAP) &
bs->file->bs->supported_zero_flags);
if (bs->probed && !bdrv_is_read_only(bs)) {
fprintf(stderr,

View File

@ -81,8 +81,10 @@ static int throttle_open(BlockDriverState *bs, QDict *options,
if (!bs->file) {
return -EINVAL;
}
bs->supported_write_flags = bs->file->bs->supported_write_flags;
bs->supported_zero_flags = bs->file->bs->supported_zero_flags;
bs->supported_write_flags = bs->file->bs->supported_write_flags |
BDRV_REQ_WRITE_UNCHANGED;
bs->supported_zero_flags = bs->file->bs->supported_zero_flags |
BDRV_REQ_WRITE_UNCHANGED;
return throttle_configure_tgm(bs, tgm, options, errp);
}

View File

@ -400,10 +400,10 @@ L2 table entry:
62: 0 for standard clusters
1 for compressed clusters
63: 0 for a cluster that is unused or requires COW, 1 if its
refcount is exactly one. This information is only accurate
in L2 tables that are reachable from the active L1
table.
63: 0 for clusters that are unused, compressed or require COW.
1 for standard clusters whose refcount is exactly one.
This information is only accurate in L2 tables
that are reachable from the active L1 table.
Standard Cluster Descriptor:

View File

@ -116,31 +116,30 @@ There are three options available, and all of them take bytes:
"refcount-cache-size": maximum size of the refcount block cache
"cache-size": maximum size of both caches combined
There are two things that need to be taken into account:
There are a few things that need to be taken into account:
- Both caches must have a size that is a multiple of the cluster size
(or the cache entry size: see "Using smaller cache sizes" below).
- If you only set one of the options above, QEMU will automatically
adjust the others so that the L2 cache is 4 times bigger than the
refcount cache.
- The default L2 cache size is 8 clusters or 1MB (whichever is more),
and the minimum is 2 clusters (or 2 cache entries, see below).
This means that these options are equivalent:
- The default (and minimum) refcount cache size is 4 clusters.
-drive file=hd.qcow2,l2-cache-size=2097152
-drive file=hd.qcow2,refcount-cache-size=524288
-drive file=hd.qcow2,cache-size=2621440
- If only "cache-size" is specified then QEMU will assign as much
memory as possible to the L2 cache before increasing the refcount
cache size.
The reason for this 1/4 ratio is to ensure that both caches cover the
same amount of disk space. Note however that this is only valid with
the default value of refcount_bits (16). If you are using a different
value you might want to calculate both cache sizes yourself since QEMU
will always use the same 1/4 ratio.
Unlike L2 tables, refcount blocks are not used during normal I/O but
only during allocations and internal snapshots. In most cases they are
accessed sequentially (even during random guest I/O) so increasing the
refcount cache size won't have any measurable effect in performance
(this can change if you are using internal snapshots, so you may want
to think about increasing the cache size if you use them heavily).
It's also worth mentioning that there's no strict need for both caches
to cover the same amount of disk space. The refcount cache is used
much less often than the L2 cache, so it's perfectly reasonable to
keep it small.
Before QEMU 2.12 the refcount cache had a default size of 1/4 of the
L2 cache size. This resulted in unnecessarily large caches, so now the
refcount cache is as small as possible unless overridden by the user.
Using smaller cache entries

View File

@ -54,8 +54,12 @@ typedef enum {
BDRV_REQ_FUA = 0x10,
BDRV_REQ_WRITE_COMPRESSED = 0x20,
/* Signifies that this write request will not change the visible disk
* content. */
BDRV_REQ_WRITE_UNCHANGED = 0x40,
/* Mask of valid flags */
BDRV_REQ_MASK = 0x3f,
BDRV_REQ_MASK = 0x7f,
} BdrvRequestFlags;
typedef struct BlockSizes {
@ -205,6 +209,9 @@ enum {
* This permission (which is weaker than BLK_PERM_WRITE) is both enough and
* required for writes to the block node when the caller promises that
* the visible disk content doesn't change.
*
* As the BLK_PERM_WRITE permission is strictly stronger, either is
* sufficient to perform an unchanging write.
*/
BLK_PERM_WRITE_UNCHANGED = 0x04,

View File

@ -656,10 +656,24 @@ struct BlockDriverState {
/* I/O Limits */
BlockLimits bl;
/* Flags honored during pwrite (so far: BDRV_REQ_FUA) */
/* Flags honored during pwrite (so far: BDRV_REQ_FUA,
* BDRV_REQ_WRITE_UNCHANGED).
* If a driver does not support BDRV_REQ_WRITE_UNCHANGED, those
* writes will be issued as normal writes without the flag set.
* This is important to note for drivers that do not explicitly
* request a WRITE permission for their children and instead take
* the same permissions as their parent did (this is commonly what
* block filters do). Such drivers have to be aware that the
* parent may have taken a WRITE_UNCHANGED permission only and is
* issuing such requests. Drivers either must make sure that
* these requests do not result in plain WRITE accesses (usually
* by supporting BDRV_REQ_WRITE_UNCHANGED, and then forwarding
* every incoming write request as-is, including potentially that
* flag), or they have to explicitly take the WRITE permission for
* their children. */
unsigned int supported_write_flags;
/* Flags honored during pwrite_zeroes (so far: BDRV_REQ_FUA,
* BDRV_REQ_MAY_UNMAP) */
* BDRV_REQ_MAY_UNMAP, BDRV_REQ_WRITE_UNCHANGED) */
unsigned int supported_zero_flags;
/* the following member gives a name to every node on the bs graph. */

View File

@ -2510,11 +2510,12 @@
# @vxhs: Since 2.10
# @throttle: Since 2.11
# @nvme: Since 2.12
# @copy-on-read: Since 2.13
#
# Since: 2.9
##
{ 'enum': 'BlockdevDriver',
'data': [ 'blkdebug', 'blkverify', 'bochs', 'cloop',
'data': [ 'blkdebug', 'blkverify', 'bochs', 'cloop', 'copy-on-read',
'dmg', 'file', 'ftp', 'ftps', 'gluster', 'host_cdrom',
'host_device', 'http', 'https', 'iscsi', 'luks', 'nbd', 'nfs',
'null-aio', 'null-co', 'nvme', 'parallels', 'qcow', 'qcow2', 'qed',
@ -3531,6 +3532,7 @@
'blkverify': 'BlockdevOptionsBlkverify',
'bochs': 'BlockdevOptionsGenericFormat',
'cloop': 'BlockdevOptionsGenericFormat',
'copy-on-read':'BlockdevOptionsGenericFormat',
'dmg': 'BlockdevOptionsGenericFormat',
'file': 'BlockdevOptionsFile',
'ftp': 'BlockdevOptionsCurlFtp',
@ -4058,6 +4060,7 @@
'blkverify': 'BlockdevCreateNotSupported',
'bochs': 'BlockdevCreateNotSupported',
'cloop': 'BlockdevCreateNotSupported',
'copy-on-read': 'BlockdevCreateNotSupported',
'dmg': 'BlockdevCreateNotSupported',
'file': 'BlockdevCreateOptionsFile',
'ftp': 'BlockdevCreateNotSupported',

View File

@ -277,12 +277,12 @@ static BlockBackend *img_open_opts(const char *optstr,
options = qemu_opts_to_qdict(opts, NULL);
if (force_share) {
if (qdict_haskey(options, BDRV_OPT_FORCE_SHARE)
&& !qdict_get_bool(options, BDRV_OPT_FORCE_SHARE)) {
&& strcmp(qdict_get_str(options, BDRV_OPT_FORCE_SHARE), "on")) {
error_report("--force-share/-U conflicts with image options");
qobject_unref(options);
return NULL;
}
qdict_put_bool(options, BDRV_OPT_FORCE_SHARE, true);
qdict_put_str(options, BDRV_OPT_FORCE_SHARE, "on");
}
blk = blk_new_open(NULL, NULL, options, flags, &local_err);
if (!blk) {
@ -3381,7 +3381,7 @@ static int img_resize(int argc, char **argv)
Error *err = NULL;
int c, ret, relative;
const char *filename, *fmt, *size;
int64_t n, total_size, current_size;
int64_t n, total_size, current_size, new_size;
bool quiet = false;
BlockBackend *blk = NULL;
PreallocMode prealloc = PREALLOC_MODE_OFF;
@ -3557,11 +3557,42 @@ static int img_resize(int argc, char **argv)
}
ret = blk_truncate(blk, total_size, prealloc, &err);
if (!ret) {
qprintf(quiet, "Image resized.\n");
} else {
if (ret < 0) {
error_report_err(err);
goto out;
}
new_size = blk_getlength(blk);
if (new_size < 0) {
error_report("Failed to verify truncated image length: %s",
strerror(-new_size));
ret = -1;
goto out;
}
/* Some block drivers implement a truncation method, but only so
* the user can cause qemu to refresh the image's size from disk.
* The idea is that the user resizes the image outside of qemu and
* then invokes block_resize to inform qemu about it.
* (This includes iscsi and file-posix for device files.)
* Of course, that is not the behavior someone invoking
* qemu-img resize would find useful, so we catch that behavior
* here and tell the user. */
if (new_size != total_size && new_size == current_size) {
error_report("Image was not resized; resizing may not be supported "
"for this image");
ret = -1;
goto out;
}
if (new_size != total_size) {
warn_report("Image should have been resized to %" PRIi64
" bytes, but was resized to %" PRIi64 " bytes",
total_size, new_size);
}
qprintf(quiet, "Image resized.\n");
out:
blk_unref(blk);
if (ret) {

View File

@ -95,12 +95,12 @@ static int openfile(char *name, int flags, bool writethrough, bool force_share,
opts = qdict_new();
}
if (qdict_haskey(opts, BDRV_OPT_FORCE_SHARE)
&& !qdict_get_bool(opts, BDRV_OPT_FORCE_SHARE)) {
&& strcmp(qdict_get_str(opts, BDRV_OPT_FORCE_SHARE), "on")) {
error_report("-U conflicts with image options");
qobject_unref(opts);
return 1;
}
qdict_put_bool(opts, BDRV_OPT_FORCE_SHARE, true);
qdict_put_str(opts, BDRV_OPT_FORCE_SHARE, "on");
}
qemuio_blk = blk_new_open(name, NULL, opts, flags, &local_err);
if (!qemuio_blk) {

View File

@ -129,53 +129,6 @@ $QEMU_IO -c "read -P 0x44 1023k 1k" "$TEST_IMG" 2>&1 | _filter_qemu_io | _fil
$QEMU_IO -c "read -P 0 1024k 1022k" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
echo
echo "=== Corrupted size field in compressed cluster descriptor ==="
echo
# Create an empty image and fill half of it with compressed data.
# The L2 entries of the two compressed clusters are located at
# 0x800000 and 0x800008, their original values are 0x4008000000a00000
# and 0x4008000000a00802 (5 sectors for compressed data each).
_make_test_img 8M -o cluster_size=2M
$QEMU_IO -c "write -c -P 0x11 0 2M" -c "write -c -P 0x11 2M 2M" "$TEST_IMG" \
2>&1 | _filter_qemu_io | _filter_testdir
# Reduce size of compressed data to 4 sectors: this corrupts the image.
poke_file "$TEST_IMG" $((0x800000)) "\x40\x06"
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# 'qemu-img check' however doesn't see anything wrong because it
# doesn't try to decompress the data and the refcounts are consistent.
# TODO: update qemu-img so this can be detected.
_check_test_img
# Increase size of compressed data to the maximum (8192 sectors).
# This makes QEMU read more data (8192 sectors instead of 5, host
# addresses [0xa00000, 0xdfffff]), but the decompression algorithm
# stops once we have enough to restore the uncompressed cluster, so
# the rest of the data is ignored.
poke_file "$TEST_IMG" $((0x800000)) "\x7f\xfe"
# Do it also for the second compressed cluster (L2 entry at 0x800008).
# In this case the compressed data would span 3 host clusters
# (host addresses: [0xa00802, 0xe00801])
poke_file "$TEST_IMG" $((0x800008)) "\x7f\xfe"
# Here the image is too small so we're asking QEMU to read beyond the
# end of the image.
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# But if we grow the image we won't be reading beyond its end anymore.
$QEMU_IO -c "write -P 0x22 4M 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# The refcount data is however wrong because due to the increased size
# of the compressed data it now reaches the following host clusters.
# This can be repaired by qemu-img check by increasing the refcount of
# those clusters.
# TODO: update qemu-img to correct the compressed cluster size instead.
_check_test_img -r all
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
$QEMU_IO -c "read -P 0x22 4M 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
echo
echo "=== Full allocation with -S 0 ==="
echo

View File

@ -99,39 +99,6 @@ read 1024/1024 bytes at offset 1047552
read 1046528/1046528 bytes at offset 1048576
1022 KiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
=== Corrupted size field in compressed cluster descriptor ===
Formatting 'TEST_DIR/t.IMGFMT', fmt=IMGFMT size=8388608
wrote 2097152/2097152 bytes at offset 0
2 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 2097152/2097152 bytes at offset 2097152
2 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read failed: Input/output error
No errors were found on the image.
read 4194304/4194304 bytes at offset 0
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 4194304/4194304 bytes at offset 4194304
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 4194304/4194304 bytes at offset 0
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
ERROR cluster 6 refcount=1 reference=3
ERROR cluster 7 refcount=1 reference=2
Repairing cluster 6 refcount=1 reference=3
Repairing cluster 7 refcount=1 reference=2
Repairing OFLAG_COPIED data cluster: l2_entry=8000000000c00000 refcount=3
Repairing OFLAG_COPIED data cluster: l2_entry=8000000000e00000 refcount=2
The following inconsistencies were found and repaired:
0 leaked clusters
4 corruptions
Double checking the fixed image now...
No errors were found on the image.
read 4194304/4194304 bytes at offset 0
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 4194304/4194304 bytes at offset 4194304
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
=== Full allocation with -S 0 ===
Formatting 'TEST_DIR/t.IMGFMT', fmt=IMGFMT size=67108864

View File

@ -22,7 +22,7 @@ refcount-cache-size may not exceed cache-size
L2 cache size too big
L2 cache entry size must be a power of two between 512 and the cluster size (65536)
L2 cache entry size must be a power of two between 512 and the cluster size (65536)
L2 cache size too big
Refcount cache size too big
Conflicting values for qcow2 options 'overlap-check' ('constant') and 'overlap-check.template' ('all')
Unsupported value 'blubb' for qcow2 option 'overlap-check'. Allowed are any of the following: none, constant, cached, all
Unsupported value 'blubb' for qcow2 option 'overlap-check'. Allowed are any of the following: none, constant, cached, all

View File

@ -242,6 +242,23 @@ _run_cmd $QEMU_IO "${TEST_IMG}" -c 'write 0 512'
_cleanup_qemu
echo
echo "== Detecting -U and force-share conflicts =="
echo
echo 'No conflict:'
$QEMU_IMG info -U --image-opts driver=null-co,force-share=on
echo
echo 'Conflict:'
$QEMU_IMG info -U --image-opts driver=null-co,force-share=off
echo
echo 'No conflict:'
$QEMU_IO -c 'open -r -U -o driver=null-co,force-share=on'
echo
echo 'Conflict:'
$QEMU_IO -c 'open -r -U -o driver=null-co,force-share=off'
# success, all done
echo "*** done"
rm -f $seq.full

View File

@ -399,4 +399,20 @@ Is another process using the image?
Closing the other
_qemu_io_wrapper TEST_DIR/t.qcow2 -c write 0 512
== Detecting -U and force-share conflicts ==
No conflict:
image: null-co://
file format: null-co
virtual size: 1.0G (1073741824 bytes)
disk size: unavailable
Conflict:
qemu-img: --force-share/-U conflicts with image options
No conflict:
Conflict:
-U conflicts with image options
*** done

View File

@ -96,6 +96,19 @@ echo
# Enable postcopy-ram capability both on source and destination
silent=yes
_send_qemu_cmd $dest 'migrate_set_capability postcopy-ram on' "(qemu)"
qemu_error_no_exit=yes success_or_failure=yes \
_send_qemu_cmd $dest '' "(qemu)" "Postcopy is not supported"
if [ ${QEMU_STATUS[$dest]} -lt 0 ]; then
_send_qemu_cmd $dest '' "(qemu)"
_send_qemu_cmd $src 'quit' ""
_send_qemu_cmd $dest 'quit' ""
wait=1 _cleanup_qemu
_notrun 'Postcopy is not supported'
fi
_send_qemu_cmd $src 'migrate_set_speed 4k' "(qemu)"
_send_qemu_cmd $src 'migrate_set_capability postcopy-ram on' "(qemu)"
_send_qemu_cmd $src "migrate -d unix:${MIG_SOCKET}" "(qemu)"

View File

@ -44,6 +44,7 @@ esac
_cleanup()
{
_cleanup_test_img
rm -f "$TEST_WRAP"
rm -f "$BLKDBG_CONF"
}
trap "_cleanup; exit \$status" 0 1 2 3 15

View File

@ -82,6 +82,19 @@ echo
silent=yes
_send_qemu_cmd $dest 'migrate_set_capability postcopy-ram on' "(qemu)"
qemu_error_no_exit=yes success_or_failure=yes \
_send_qemu_cmd $dest '' "(qemu)" "Postcopy is not supported"
if [ ${QEMU_STATUS[$dest]} -lt 0 ]; then
_send_qemu_cmd $dest '' "(qemu)"
_send_qemu_cmd $src 'quit' ""
_send_qemu_cmd $dest 'quit' ""
wait=1 _cleanup_qemu
_notrun 'Postcopy is not supported'
fi
_send_qemu_cmd $src 'migrate_set_capability postcopy-ram on' "(qemu)"
_send_qemu_cmd $src "migrate -d unix:${MIG_SOCKET}" "(qemu)"

97
tests/qemu-iotests/214 Executable file
View File

@ -0,0 +1,97 @@
#!/bin/bash
#
# Test qcow2 image compression
#
# Copyright (C) 2018 Igalia, S.L.
# Author: Alberto Garcia <berto@igalia.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
seq=$(basename "$0")
echo "QA output created by $seq"
here=$PWD
status=1 # failure is the default!
_cleanup()
{
_cleanup_test_img
}
trap "_cleanup; exit \$status" 0 1 2 3 15
# get standard environment, filters and checks
. ./common.rc
. ./common.filter
_supported_fmt qcow2
_supported_proto file
_supported_os Linux
# Repairing the corrupted image requires qemu-img check to store a
# refcount up to 3, which requires at least two refcount bits.
_unsupported_imgopts 'refcount_bits=1[^0-9]'
echo
echo "=== Corrupted size field in compressed cluster descriptor ==="
echo
# Create an empty image and fill half of it with compressed data.
# The L2 entries of the two compressed clusters are located at
# 0x800000 and 0x800008, their original values are 0x4008000000a00000
# and 0x4008000000a00802 (5 sectors for compressed data each).
_make_test_img 8M -o cluster_size=2M
$QEMU_IO -c "write -c -P 0x11 0 2M" -c "write -c -P 0x11 2M 2M" "$TEST_IMG" \
2>&1 | _filter_qemu_io | _filter_testdir
# Reduce size of compressed data to 4 sectors: this corrupts the image.
poke_file "$TEST_IMG" $((0x800000)) "\x40\x06"
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# 'qemu-img check' however doesn't see anything wrong because it
# doesn't try to decompress the data and the refcounts are consistent.
# TODO: update qemu-img so this can be detected.
_check_test_img
# Increase size of compressed data to the maximum (8192 sectors).
# This makes QEMU read more data (8192 sectors instead of 5, host
# addresses [0xa00000, 0xdfffff]), but the decompression algorithm
# stops once we have enough to restore the uncompressed cluster, so
# the rest of the data is ignored.
poke_file "$TEST_IMG" $((0x800000)) "\x7f\xfe"
# Do it also for the second compressed cluster (L2 entry at 0x800008).
# In this case the compressed data would span 3 host clusters
# (host addresses: [0xa00802, 0xe00801])
poke_file "$TEST_IMG" $((0x800008)) "\x7f\xfe"
# Here the image is too small so we're asking QEMU to read beyond the
# end of the image.
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# But if we grow the image we won't be reading beyond its end anymore.
$QEMU_IO -c "write -P 0x22 4M 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# The refcount data is however wrong because due to the increased size
# of the compressed data it now reaches the following host clusters.
# This can be repaired by qemu-img check by increasing the refcount of
# those clusters.
# TODO: update qemu-img to correct the compressed cluster size instead.
_check_test_img -r all
$QEMU_IO -c "read -P 0x11 0 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
$QEMU_IO -c "read -P 0x22 4M 4M" "$TEST_IMG" 2>&1 | _filter_qemu_io | _filter_testdir
# success, all done
echo '*** done'
rm -f $seq.full
status=0

View File

@ -0,0 +1,35 @@
QA output created by 214
=== Corrupted size field in compressed cluster descriptor ===
Formatting 'TEST_DIR/t.IMGFMT', fmt=IMGFMT size=8388608
wrote 2097152/2097152 bytes at offset 0
2 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 2097152/2097152 bytes at offset 2097152
2 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read failed: Input/output error
No errors were found on the image.
read 4194304/4194304 bytes at offset 0
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 4194304/4194304 bytes at offset 4194304
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 4194304/4194304 bytes at offset 0
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
ERROR cluster 6 refcount=1 reference=3
ERROR cluster 7 refcount=1 reference=2
Repairing cluster 6 refcount=1 reference=3
Repairing cluster 7 refcount=1 reference=2
Repairing OFLAG_COPIED data cluster: l2_entry=8000000000c00000 refcount=3
Repairing OFLAG_COPIED data cluster: l2_entry=8000000000e00000 refcount=2
The following inconsistencies were found and repaired:
0 leaked clusters
4 corruptions
Double checking the fixed image now...
No errors were found on the image.
read 4194304/4194304 bytes at offset 0
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 4194304/4194304 bytes at offset 4194304
4 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
*** done

120
tests/qemu-iotests/215 Executable file
View File

@ -0,0 +1,120 @@
#!/bin/bash
#
# Test case for copy-on-read into qcow2, using the COR filter driver
#
# Copyright (C) 2018 Red Hat, Inc.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
seq="$(basename $0)"
echo "QA output created by $seq"
here="$PWD"
status=1 # failure is the default!
# get standard environment, filters and checks
. ./common.rc
. ./common.filter
TEST_WRAP="$TEST_DIR/t.wrap.qcow2"
BLKDBG_CONF="$TEST_DIR/blkdebug.conf"
# Sanity check: our use of blkdebug fails if $TEST_DIR contains spaces
# or other problems
case "$TEST_DIR" in
*[^-_a-zA-Z0-9/]*)
_notrun "Suspicious TEST_DIR='$TEST_DIR', cowardly refusing to run" ;;
esac
_cleanup()
{
_cleanup_test_img
rm -f "$TEST_WRAP"
rm -f "$BLKDBG_CONF"
}
trap "_cleanup; exit \$status" 0 1 2 3 15
# Test is supported for any backing file; but we force qcow2 for our wrapper.
_supported_fmt generic
_supported_proto generic
_supported_os Linux
# LUKS support may be possible, but it complicates things.
_unsupported_fmt luks
echo
echo '=== Copy-on-read ==='
echo
# Prep the images
# VPC rounds image sizes to a specific geometry, force a specific size.
if [ "$IMGFMT" = "vpc" ]; then
IMGOPTS=$(_optstr_add "$IMGOPTS" "force_size")
fi
_make_test_img 4G
$QEMU_IO -c "write -P 55 3G 1k" "$TEST_IMG" | _filter_qemu_io
IMGPROTO=file IMGFMT=qcow2 IMGOPTS= TEST_IMG_FILE="$TEST_WRAP" \
_make_test_img -F "$IMGFMT" -b "$TEST_IMG" | _filter_img_create
$QEMU_IO -f qcow2 -c "write -z -u 1M 64k" "$TEST_WRAP" | _filter_qemu_io
# Ensure that a read of two clusters, but where one is already allocated,
# does not re-write the allocated cluster
cat > "$BLKDBG_CONF" <<EOF
[inject-error]
event = "cor_write"
sector = "2048"
EOF
$QEMU_IO -c "open \
-o driver=copy-on-read,file.driver=blkdebug,file.config=$BLKDBG_CONF,file.image.driver=qcow2 $TEST_WRAP" \
-c "read -P 0 1M 128k" | _filter_qemu_io
# Read the areas we want copied. A zero-length read should still be a
# no-op. The next read is under 2G, but aligned so that rounding to
# clusters copies more than 2G of zeroes. The final read will pick up
# the non-zero data in the same cluster. Since a 2G read may exhaust
# memory on some machines (particularly 32-bit), we skip the test if
# that fails due to memory pressure.
$QEMU_IO \
-c "open -o driver=copy-on-read,file.driver=qcow2 $TEST_WRAP" \
-c "read 0 0" \
| _filter_qemu_io
output=$($QEMU_IO \
-c "open -o driver=copy-on-read,file.driver=qcow2 $TEST_WRAP" \
-c "read -P 0 1k $((2*1024*1024*1024 - 512))" \
2>&1 | _filter_qemu_io)
case $output in
*allocate*)
_notrun "Insufficent memory to run test" ;;
*) printf '%s\n' "$output" ;;
esac
$QEMU_IO \
-c "open -o driver=copy-on-read,file.driver=qcow2 $TEST_WRAP" \
-c "read -P 0 $((3*1024*1024*1024 + 1024)) 1k" \
| _filter_qemu_io
# Copy-on-read is incompatible with read-only
$QEMU_IO \
-c "open -r -o driver=copy-on-read,file.driver=qcow2 $TEST_WRAP" \
2>&1 | _filter_testdir
# Break the backing chain, and show that images are identical, and that
# we properly copied over explicit zeros.
$QEMU_IMG rebase -u -b "" -f qcow2 "$TEST_WRAP"
$QEMU_IO -f qcow2 -c map "$TEST_WRAP"
_check_test_img
$QEMU_IMG compare -f $IMGFMT -F qcow2 "$TEST_IMG" "$TEST_WRAP"
# success, all done
echo '*** done'
status=0

View File

@ -0,0 +1,26 @@
QA output created by 215
=== Copy-on-read ===
Formatting 'TEST_DIR/t.IMGFMT', fmt=IMGFMT size=4294967296
wrote 1024/1024 bytes at offset 3221225472
1 KiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
Formatting 'TEST_DIR/t.wrap.IMGFMT', fmt=IMGFMT size=4294967296 backing_file=TEST_DIR/t.IMGFMT backing_fmt=IMGFMT
wrote 65536/65536 bytes at offset 1048576
64 KiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 131072/131072 bytes at offset 1048576
128 KiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 0/0 bytes at offset 0
0 bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 2147483136/2147483136 bytes at offset 1024
2 GiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 1024/1024 bytes at offset 3221226496
1 KiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
can't open device TEST_DIR/t.wrap.qcow2: Block node is read-only
2 GiB (0x80010000) bytes allocated at offset 0 bytes (0x0)
1023.938 MiB (0x3fff0000) bytes not allocated at offset 2 GiB (0x80010000)
64 KiB (0x10000) bytes allocated at offset 3 GiB (0xc0000000)
1023.938 MiB (0x3fff0000) bytes not allocated at offset 3 GiB (0xc0010000)
No errors were found on the image.
Images are identical.
*** done

115
tests/qemu-iotests/216 Executable file
View File

@ -0,0 +1,115 @@
#!/usr/bin/env python
#
# Copy-on-read tests using a COR filter node
#
# Copyright (C) 2018 Red Hat, Inc.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Creator/Owner: Max Reitz <mreitz@redhat.com>
import iotests
from iotests import log, qemu_img_pipe, qemu_io, filter_qemu_io
# Need backing file support
iotests.verify_image_format(supported_fmts=['qcow2', 'qcow', 'qed', 'vmdk'])
iotests.verify_platform(['linux'])
log('')
log('=== Copy-on-read across nodes ===')
log('')
# The old copy-on-read mechanism without a filter node cannot request
# WRITE_UNCHANGED permissions for its child. Therefore it just tries
# to sneak its write by the usual permission system and holds its
# fingers crossed. However, that sneaking does not work so well when
# there is a filter node in the way: That will receive the write
# request and re-issue a new one to its child, which this time is a
# proper write request that will make the permission system cough --
# unless there is someone at the top (like a guest device) that has
# requested write permissions.
#
# A COR filter node, however, can request the proper permissions for
# its child and therefore is not hit by this issue.
with iotests.FilePath('base.img') as base_img_path, \
iotests.FilePath('top.img') as top_img_path, \
iotests.VM() as vm:
log('--- Setting up images ---')
log('')
qemu_img_pipe('create', '-f', iotests.imgfmt, base_img_path, '64M')
log(filter_qemu_io(qemu_io(base_img_path, '-c', 'write -P 1 0M 1M')))
qemu_img_pipe('create', '-f', iotests.imgfmt, '-b', base_img_path,
top_img_path)
log(filter_qemu_io(qemu_io(top_img_path, '-c', 'write -P 2 1M 1M')))
log('')
log('--- Doing COR ---')
log('')
# Compare with e.g. the following:
# vm.add_drive_raw('if=none,node-name=node0,copy-on-read=on,driver=raw,' \
# 'file.driver=%s,file.file.filename=%s' %
# (iotests.imgfmt, top_img_path))
# (Remove the blockdev-add instead.)
# ((Not tested here because it hits an assertion in the permission
# system.))
vm.launch()
log(vm.qmp('blockdev-add',
node_name='node0',
driver='copy-on-read',
file={
'driver': 'raw',
'file': {
'driver': 'copy-on-read',
'file': {
'driver': 'raw',
'file': {
'driver': iotests.imgfmt,
'file': {
'driver': 'file',
'filename': top_img_path
},
'backing': {
'driver': iotests.imgfmt,
'file': {
'driver': 'file',
'filename': base_img_path
}
}
}
}
}
}))
# Trigger COR
log(vm.qmp('human-monitor-command',
command_line='qemu-io node0 "read 0 64M"'))
vm.shutdown()
log('')
log('--- Checking COR result ---')
log('')
log(filter_qemu_io(qemu_io(base_img_path, '-c', 'discard 0 64M')))
log(filter_qemu_io(qemu_io(top_img_path, '-c', 'read -P 1 0M 1M')))
log(filter_qemu_io(qemu_io(top_img_path, '-c', 'read -P 2 1M 1M')))

View File

@ -0,0 +1,28 @@
=== Copy-on-read across nodes ===
--- Setting up images ---
wrote 1048576/1048576 bytes at offset 0
1 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 1048576/1048576 bytes at offset 1048576
1 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
--- Doing COR ---
{u'return': {}}
{u'return': u''}
--- Checking COR result ---
discard 67108864/67108864 bytes at offset 0
64 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 1048576/1048576 bytes at offset 0
1 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
read 1048576/1048576 bytes at offset 1048576
1 MiB, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)

View File

@ -52,11 +52,29 @@ _in_fd=4
# response is not echoed out.
# If $mismatch_only is set, only non-matching responses will
# be echoed.
#
# If $success_or_failure is set, the meaning of the arguments is
# changed as follows:
# $2: A string to search for in the response; if found, this indicates
# success and ${QEMU_STATUS[$1]} is set to 0.
# $3: A string to search for in the response; if found, this indicates
# failure and the test is either aborted (if $qemu_error_no_exit
# is not set) or ${QEMU_STATUS[$1]} is set to -1 (otherwise).
function _timed_wait_for()
{
local h=${1}
shift
if [ -z "${success_or_failure}" ]; then
success_match=${*}
failure_match=
else
success_match=${1}
failure_match=${2}
fi
timeout=yes
QEMU_STATUS[$h]=0
while IFS= read -t ${QEMU_COMM_TIMEOUT} resp <&${QEMU_OUT[$h]}
do
@ -64,10 +82,18 @@ function _timed_wait_for()
echo "${resp}" | _filter_testdir | _filter_qemu \
| _filter_qemu_io | _filter_qmp | _filter_hmp
fi
grep -q "${*}" < <(echo "${resp}")
if [ -n "${failure_match}" ]; then
grep -q "${failure_match}" < <(echo "${resp}")
if [ $? -eq 0 ]; then
timeout=
break
fi
fi
grep -q "${success_match}" < <(echo "${resp}")
if [ $? -eq 0 ]; then
return
elif [ -z "${silent}" ] && [ -n "${mismatch_only}" ]; then
fi
if [ -z "${silent}" ] && [ -n "${mismatch_only}" ]; then
echo "${resp}" | _filter_testdir | _filter_qemu \
| _filter_qemu_io | _filter_qmp | _filter_hmp
fi
@ -75,8 +101,12 @@ function _timed_wait_for()
done
QEMU_STATUS[$h]=-1
if [ -z "${qemu_error_no_exit}" ]; then
echo "Timeout waiting for ${*} on handle ${h}"
exit 1 # Timeout means the test failed
if [ -n "${timeout}" ]; then
echo "Timeout waiting for ${success_match} on handle ${h}"
else
echo "Wrong response matching ${failure_match} on handle ${h}"
fi
exit 1 # Timeout or wrong match mean the test failed
fi
}
@ -96,6 +126,11 @@ function _timed_wait_for()
# If $qemu_error_no_exit is set, then even if the expected response
# is not seen, we will not exit. $QEMU_STATUS[$1] will be set it -1 in
# that case.
#
# If $success_or_failure is set, then the last two strings are the
# strings the response will be scanned for. The first of the two
# indicates success, the latter indicates failure. Failure is handled
# like a timeout.
function _send_qemu_cmd()
{
local h=${1}
@ -109,14 +144,23 @@ function _send_qemu_cmd()
use_error="no"
fi
# This array element extraction is done to accommodate pathnames with spaces
cmd=${@: 1:${#@}-1}
shift $(($# - 1))
if [ -z "${success_or_failure}" ]; then
cmd=${@: 1:${#@}-1}
shift $(($# - 1))
else
cmd=${@: 1:${#@}-2}
shift $(($# - 2))
fi
while [ ${count} -gt 0 ]
do
echo "${cmd}" >&${QEMU_IN[${h}]}
if [ -n "${1}" ]; then
qemu_error_no_exit=${use_error} _timed_wait_for ${h} "${1}"
if [ -z "${success_or_failure}" ]; then
qemu_error_no_exit=${use_error} _timed_wait_for ${h} "${1}"
else
qemu_error_no_exit=${use_error} _timed_wait_for ${h} "${1}" "${2}"
fi
if [ ${QEMU_STATUS[$h]} -eq 0 ]; then
return
fi

View File

@ -212,4 +212,7 @@
211 rw auto quick
212 rw auto quick
213 rw auto quick
214 rw auto
215 rw auto quick
216 rw auto quick
218 rw auto quick