CUDA + ADB support

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@881 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2004-06-03 18:46:20 +00:00
parent 63066f4f13
commit 267002cd28
3 changed files with 902 additions and 1 deletions

308
hw/adb.c Normal file
View File

@ -0,0 +1,308 @@
/*
* QEMU ADB support
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* ADB commands */
#define ADB_BUSRESET 0x00
#define ADB_FLUSH 0x01
#define ADB_WRITEREG 0x08
#define ADB_READREG 0x0c
/* ADB device commands */
#define ADB_CMD_SELF_TEST 0xff
#define ADB_CMD_CHANGE_ID 0xfe
#define ADB_CMD_CHANGE_ID_AND_ACT 0xfd
#define ADB_CMD_CHANGE_ID_AND_ENABLE 0x00
/* ADB default device IDs (upper 4 bits of ADB command byte) */
#define ADB_DONGLE 1
#define ADB_KEYBOARD 2
#define ADB_MOUSE 3
#define ADB_TABLET 4
#define ADB_MODEM 5
#define ADB_MISC 7
#define ADB_RET_OK 0
#define ADB_RET_INUSE 1
#define ADB_RET_NOTPRESENT 2
#define ADB_RET_TIMEOUT 3
#define ADB_RET_UNEXPECTED_RESULT 4
#define ADB_RET_REQUEST_ERROR 5
#define ADB_RET_BUS_ERROR 6
static void adb_send_packet1(ADBBusState *s, uint8_t reply)
{
adb_send_packet(s, &reply, 1);
}
void adb_receive_packet(ADBBusState *s, const uint8_t *buf, int len)
{
ADBDevice *d;
int devaddr, cmd, i;
uint8_t obuf[4];
cmd = buf[1] & 0xf;
devaddr = buf[1] >> 4;
if (buf[1] == ADB_BUSRESET) {
obuf[0] = 0x00;
obuf[1] = 0x00;
adb_send_packet(s, obuf, 2);
return;
}
if (cmd == ADB_FLUSH) {
obuf[0] = 0x00;
obuf[1] = 0x00;
adb_send_packet(s, obuf, 2);
return;
}
for(i = 0; i < s->nb_devices; i++) {
d = &s->devices[i];
if (d->devaddr == devaddr) {
d->receive_packet(d, buf, len);
return;
}
}
adb_send_packet1(s, ADB_RET_NOTPRESENT);
}
ADBDevice *adb_register_device(ADBBusState *s, int devaddr,
ADBDeviceReceivePacket *receive_packet,
void *opaque)
{
ADBDevice *d;
if (s->nb_devices >= MAX_ADB_DEVICES)
return NULL;
d = &s->devices[s->nb_devices++];
d->bus = s;
d->devaddr = devaddr;
d->receive_packet = receive_packet;
d->opaque = opaque;
return d;
}
/***************************************************************/
/* Keyboard ADB device */
static const uint8_t pc_to_adb_keycode[256] = {
0, 53, 18, 19, 20, 21, 23, 22, 26, 28, 25, 29, 27, 24, 51, 48,
12, 13, 14, 15, 17, 16, 32, 34, 31, 35, 33, 30, 36, 54, 0, 1,
2, 3, 5, 4, 38, 40, 37, 41, 39, 50, 56, 42, 6, 7, 8, 9,
11, 45, 46, 43, 47, 44,123, 67, 58, 49, 57,122,120, 99,118, 96,
97, 98,100,101,109, 71,107, 89, 91, 92, 78, 86, 87, 88, 69, 83,
84, 85, 82, 65, 0, 0, 10,103,111, 0, 0, 0, 0, 0, 0, 0,
76,125, 75,105,124,110,115, 62,116, 59, 60,119, 61,121,114,117,
0, 0, 0, 0,127, 81, 0,113, 0, 0, 0, 0, 95, 55, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 94, 0, 93, 0, 0, 0, 0, 0, 0,104,102,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
static void adb_kbd_put_keycode(void *opaque, int keycode)
{
static int ext_keycode;
ADBDevice *d = opaque;
uint8_t buf[4];
int adb_keycode;
if (keycode == 0xe0) {
ext_keycode = 1;
} else {
if (ext_keycode)
adb_keycode = pc_to_adb_keycode[keycode | 0x80];
else
adb_keycode = pc_to_adb_keycode[keycode & 0x7f];
buf[0] = 0x40;
buf[1] = (d->devaddr << 4) | 0x0c;
buf[2] = adb_keycode | (keycode & 0x80);
buf[3] = 0xff;
adb_send_packet(d->bus, buf, 4);
ext_keycode = 0;
}
}
static void adb_kbd_receive_packet(ADBDevice *d, const uint8_t *buf, int len)
{
int cmd, reg;
uint8_t obuf[4];
cmd = buf[0] & 0xc;
reg = buf[0] & 0x3;
switch(cmd) {
case ADB_WRITEREG:
switch(reg) {
case 2:
/* LED status */
adb_send_packet1(d->bus, ADB_RET_OK);
break;
case 3:
switch(buf[2]) {
case ADB_CMD_SELF_TEST:
adb_send_packet1(d->bus, ADB_RET_OK);
break;
case ADB_CMD_CHANGE_ID:
case ADB_CMD_CHANGE_ID_AND_ACT:
case ADB_CMD_CHANGE_ID_AND_ENABLE:
d->devaddr = buf[1] & 0xf;
adb_send_packet1(d->bus, ADB_RET_OK);
break;
default:
/* XXX: check this */
d->devaddr = buf[1] & 0xf;
d->handler = buf[2];
adb_send_packet1(d->bus, ADB_RET_OK);
break;
}
}
break;
case ADB_READREG:
switch(reg) {
case 1:
adb_send_packet1(d->bus, ADB_RET_OK);
break;
case 2:
obuf[0] = ADB_RET_OK;
obuf[1] = 0x00; /* XXX: check this */
obuf[2] = 0x07; /* led status */
adb_send_packet(d->bus, obuf, 3);
break;
case 3:
obuf[0] = ADB_RET_OK;
obuf[1] = d->handler;
obuf[2] = d->devaddr;
adb_send_packet(d->bus, obuf, 3);
break;
}
break;
}
}
void adb_kbd_init(ADBBusState *bus)
{
ADBDevice *d;
d = adb_register_device(bus, ADB_KEYBOARD, adb_kbd_receive_packet, NULL);
qemu_add_kbd_event_handler(adb_kbd_put_keycode, d);
}
/***************************************************************/
/* Mouse ADB device */
static void adb_mouse_event(void *opaque,
int dx1, int dy1, int dz1, int buttons_state)
{
ADBDevice *d = opaque;
uint8_t buf[4];
int dx, dy;
dx = dx1;
if (dx < -63)
dx = -63;
else if (dx > 63)
dx = 63;
dy = dy1;
if (dy < -63)
dy = -63;
else if (dy > 63)
dy = 63;
dx &= 0x7f;
dy &= 0x7f;
if (buttons_state & MOUSE_EVENT_LBUTTON)
dy |= 0x80;
if (buttons_state & MOUSE_EVENT_RBUTTON)
dx |= 0x80;
buf[0] = 0x40;
buf[1] = (d->devaddr << 4) | 0x0c;
buf[2] = dy;
buf[3] = dx;
adb_send_packet(d->bus, buf, 4);
}
static void adb_mouse_receive_packet(ADBDevice *d, const uint8_t *buf, int len)
{
int cmd, reg;
uint8_t obuf[4];
cmd = buf[0] & 0xc;
reg = buf[0] & 0x3;
switch(cmd) {
case ADB_WRITEREG:
switch(reg) {
case 2:
adb_send_packet1(d->bus, ADB_RET_OK);
break;
case 3:
switch(buf[2]) {
case ADB_CMD_SELF_TEST:
adb_send_packet1(d->bus, ADB_RET_OK);
break;
case ADB_CMD_CHANGE_ID:
case ADB_CMD_CHANGE_ID_AND_ACT:
case ADB_CMD_CHANGE_ID_AND_ENABLE:
d->devaddr = buf[1] & 0xf;
adb_send_packet1(d->bus, ADB_RET_OK);
break;
default:
/* XXX: check this */
d->devaddr = buf[1] & 0xf;
adb_send_packet1(d->bus, ADB_RET_OK);
break;
}
}
break;
case ADB_READREG:
switch(reg) {
case 1:
adb_send_packet1(d->bus, ADB_RET_OK);
break;
case 3:
obuf[0] = ADB_RET_OK;
obuf[1] = d->handler;
obuf[2] = d->devaddr;
adb_send_packet(d->bus, obuf, 3);
break;
}
break;
}
}
void adb_mouse_init(ADBBusState *bus)
{
ADBDevice *d;
d = adb_register_device(bus, ADB_MOUSE, adb_mouse_receive_packet, NULL);
qemu_add_mouse_event_handler(adb_mouse_event, d);
}

507
hw/cuda.c Normal file
View File

@ -0,0 +1,507 @@
/*
* QEMU CUDA support
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* Bits in B data register: all active low */
#define TREQ 0x08 /* Transfer request (input) */
#define TACK 0x10 /* Transfer acknowledge (output) */
#define TIP 0x20 /* Transfer in progress (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define IER_SET 0x80 /* set bits in IER */
#define IER_CLR 0 /* clear bits in IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define T1_INT 0x40 /* Timer 1 interrupt */
/* Bits in ACR */
#define T1MODE 0xc0 /* Timer 1 mode */
#define T1MODE_CONT 0x40 /* continuous interrupts */
/* commands (1st byte) */
#define ADB_PACKET 0
#define CUDA_PACKET 1
#define ERROR_PACKET 2
#define TIMER_PACKET 3
#define POWER_PACKET 4
#define MACIIC_PACKET 5
#define PMU_PACKET 6
/* CUDA commands (2nd byte) */
#define CUDA_WARM_START 0x0
#define CUDA_AUTOPOLL 0x1
#define CUDA_GET_6805_ADDR 0x2
#define CUDA_GET_TIME 0x3
#define CUDA_GET_PRAM 0x7
#define CUDA_SET_6805_ADDR 0x8
#define CUDA_SET_TIME 0x9
#define CUDA_POWERDOWN 0xa
#define CUDA_POWERUP_TIME 0xb
#define CUDA_SET_PRAM 0xc
#define CUDA_MS_RESET 0xd
#define CUDA_SEND_DFAC 0xe
#define CUDA_BATTERY_SWAP_SENSE 0x10
#define CUDA_RESET_SYSTEM 0x11
#define CUDA_SET_IPL 0x12
#define CUDA_FILE_SERVER_FLAG 0x13
#define CUDA_SET_AUTO_RATE 0x14
#define CUDA_GET_AUTO_RATE 0x16
#define CUDA_SET_DEVICE_LIST 0x19
#define CUDA_GET_DEVICE_LIST 0x1a
#define CUDA_SET_ONE_SECOND_MODE 0x1b
#define CUDA_SET_POWER_MESSAGES 0x21
#define CUDA_GET_SET_IIC 0x22
#define CUDA_WAKEUP 0x23
#define CUDA_TIMER_TICKLE 0x24
#define CUDA_COMBINED_FORMAT_IIC 0x25
#define CUDA_TIMER_FREQ (4700000 / 6)
typedef struct CUDATimer {
unsigned int latch;
uint16_t counter_value; /* counter value at load time */
int64_t load_time;
int64_t next_irq_time;
QEMUTimer *timer;
} CUDATimer;
typedef struct CUDAState {
/* cuda registers */
uint8_t b; /* B-side data */
uint8_t a; /* A-side data */
uint8_t dirb; /* B-side direction (1=output) */
uint8_t dira; /* A-side direction (1=output) */
uint8_t sr; /* Shift register */
uint8_t acr; /* Auxiliary control register */
uint8_t pcr; /* Peripheral control register */
uint8_t ifr; /* Interrupt flag register */
uint8_t ier; /* Interrupt enable register */
uint8_t anh; /* A-side data, no handshake */
CUDATimer timers[2];
uint8_t last_b; /* last value of B register */
uint8_t last_acr; /* last value of B register */
int data_in_size;
int data_in_index;
int data_out_index;
int irq;
uint8_t autopoll;
uint8_t data_in[128];
uint8_t data_out[16];
} CUDAState;
static CUDAState cuda_state;
ADBBusState adb_bus;
static void cuda_update(CUDAState *s);
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len);
static void cuda_update_irq(CUDAState *s)
{
if (s->ifr & s->ier & SR_INT) {
pic_set_irq(s->irq, 1);
} else {
pic_set_irq(s->irq, 0);
}
}
static unsigned int get_counter(CUDATimer *s)
{
int64_t d;
unsigned int counter;
d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
CUDA_TIMER_FREQ, ticks_per_sec);
if (d <= s->counter_value) {
counter = d;
} else {
counter = s->latch - 1 - ((d - s->counter_value) % s->latch);
}
return counter;
}
static void set_counter(CUDATimer *s, unsigned int val)
{
s->load_time = qemu_get_clock(vm_clock);
s->counter_value = val;
}
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
{
int64_t d, next_time, base;
/* current counter value */
d = muldiv64(current_time - s->load_time,
CUDA_TIMER_FREQ, ticks_per_sec);
if (d <= s->counter_value) {
next_time = s->counter_value + 1;
} else {
base = ((d - s->counter_value) % s->latch);
base = (base * s->latch) + s->counter_value;
next_time = base + s->latch;
}
next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
s->load_time;
if (next_time <= current_time)
next_time = current_time + 1;
return next_time;
}
static void cuda_timer1(void *opaque)
{
CUDAState *s = opaque;
CUDATimer *ti = &s->timers[0];
ti->next_irq_time = get_next_irq_time(ti, ti->next_irq_time);
qemu_mod_timer(ti->timer, ti->next_irq_time);
s->ifr |= T1_INT;
cuda_update_irq(s);
}
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
{
CUDAState *s = opaque;
uint32_t val;
addr = (addr >> 9) & 0xf;
switch(addr) {
case 0:
val = s->b;
break;
case 1:
val = s->a;
break;
case 2:
val = s->dirb;
break;
case 3:
val = s->dira;
break;
case 4:
val = get_counter(&s->timers[0]) & 0xff;
s->ifr &= ~T1_INT;
cuda_update_irq(s);
break;
case 5:
val = get_counter(&s->timers[0]) >> 8;
s->ifr &= ~T1_INT;
cuda_update_irq(s);
break;
case 6:
val = s->timers[0].latch & 0xff;
break;
case 7:
val = (s->timers[0].latch >> 8) & 0xff;
break;
case 8:
val = get_counter(&s->timers[1]) & 0xff;
break;
case 9:
val = get_counter(&s->timers[1]) >> 8;
break;
case 10:
if (s->data_in_index < s->data_in_size) {
val = s->data_in[s->data_in_index];
} else {
val = 0;
}
break;
case 11:
val = s->acr;
break;
case 12:
val = s->pcr;
break;
case 13:
val = s->ifr;
break;
case 14:
val = s->ier;
break;
default:
case 15:
val = s->anh;
break;
}
#ifdef DEBUG_CUDA
printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
#endif
return val;
}
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
CUDAState *s = opaque;
addr = (addr >> 9) & 0xf;
#ifdef DEBUG_CUDA
printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
#endif
switch(addr) {
case 0:
s->b = val;
cuda_update(s);
break;
case 1:
s->a = val;
break;
case 2:
s->dirb = val;
break;
case 3:
s->dira = val;
break;
case 4:
val = val | (get_counter(&s->timers[0]) & 0xff00);
set_counter(&s->timers[0], val);
break;
case 5:
val = (val << 8) | (get_counter(&s->timers[0]) & 0xff);
set_counter(&s->timers[0], val);
break;
case 6:
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
break;
case 7:
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
break;
case 8:
val = val | (get_counter(&s->timers[1]) & 0xff00);
set_counter(&s->timers[1], val);
break;
case 9:
val = (val << 8) | (get_counter(&s->timers[1]) & 0xff);
set_counter(&s->timers[1], val);
break;
case 10:
s->sr = val;
break;
case 11:
s->acr = val;
if ((s->acr & T1MODE) == T1MODE_CONT) {
if ((s->last_acr & T1MODE) != T1MODE_CONT) {
CUDATimer *ti = &s->timers[0];
/* activate timer interrupt */
ti->next_irq_time = get_next_irq_time(ti, qemu_get_clock(vm_clock));
qemu_mod_timer(ti->timer, ti->next_irq_time);
}
} else {
if ((s->last_acr & T1MODE) == T1MODE_CONT) {
CUDATimer *ti = &s->timers[0];
qemu_del_timer(ti->timer);
}
}
cuda_update(s);
break;
case 12:
s->pcr = val;
break;
case 13:
/* reset bits */
s->ifr &= ~val;
cuda_update_irq(s);
break;
case 14:
if (val & IER_SET) {
/* set bits */
s->ier |= val & 0x7f;
} else {
/* reset bits */
s->ier &= ~val;
}
cuda_update_irq(s);
break;
default:
case 15:
s->anh = val;
break;
}
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
if (s->data_in_index < s->data_in_size) {
/* data input */
if (!(s->b & TIP) &&
(s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
s->sr = s->data_in[s->data_in_index++];
s->ifr |= SR_INT;
cuda_update_irq(s);
}
}
if (s->data_in_index < s->data_in_size) {
/* there is some data to read */
s->b = (s->b & ~TREQ);
} else {
s->b = (s->b | TREQ);
}
if (s->acr & SR_OUT) {
/* data output */
if (!(s->b & TIP) &&
(s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
if (s->data_out_index < sizeof(s->data_out)) {
s->data_out[s->data_out_index++] = s->sr;
}
s->ifr |= SR_INT;
cuda_update_irq(s);
}
}
/* check end of data output */
if (!(s->acr & SR_OUT) && (s->last_acr & SR_OUT)) {
if (s->data_out_index > 0)
cuda_receive_packet_from_host(s, s->data_out, s->data_out_index);
s->data_out_index = 0;
}
s->last_acr = s->acr;
s->last_b = s->b;
}
static void cuda_send_packet_to_host(CUDAState *s,
const uint8_t *data, int len)
{
memcpy(s->data_in, data, len);
s->data_in_size = len;
s->data_in_index = 0;
cuda_update(s);
s->ifr |= SR_INT;
cuda_update_irq(s);
}
void adb_send_packet(ADBBusState *bus, const uint8_t *buf, int len)
{
CUDAState *s = &cuda_state;
uint8_t data[16];
memcpy(data + 1, buf, len);
data[0] = ADB_PACKET;
cuda_send_packet_to_host(s, data, len + 1);
}
static void cuda_receive_packet(CUDAState *s,
const uint8_t *data, int len)
{
uint8_t obuf[16];
int ti;
switch(data[0]) {
case CUDA_AUTOPOLL:
s->autopoll = data[1];
obuf[0] = CUDA_PACKET;
obuf[1] = data[1];
cuda_send_packet_to_host(s, obuf, 2);
break;
case CUDA_GET_TIME:
/* XXX: add time support ? */
ti = 0;
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
obuf[2] = 0;
obuf[3] = ti >> 24;
obuf[4] = ti >> 16;
obuf[5] = ti >> 8;
obuf[6] = ti;
cuda_send_packet_to_host(s, obuf, 7);
break;
case CUDA_SET_TIME:
case CUDA_FILE_SERVER_FLAG:
case CUDA_SET_DEVICE_LIST:
case CUDA_SET_AUTO_RATE:
case CUDA_SET_POWER_MESSAGES:
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
cuda_send_packet_to_host(s, obuf, 2);
break;
default:
break;
}
}
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len)
{
switch(data[0]) {
case ADB_PACKET:
adb_receive_packet(&adb_bus, data + 1, len - 1);
break;
case CUDA_PACKET:
cuda_receive_packet(s, data + 1, len - 1);
break;
}
}
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static CPUWriteMemoryFunc *cuda_write[] = {
&cuda_writeb,
&cuda_writew,
&cuda_writel,
};
static CPUReadMemoryFunc *cuda_read[] = {
&cuda_readb,
&cuda_readw,
&cuda_readl,
};
int cuda_init(void)
{
CUDAState *s = &cuda_state;
int cuda_mem_index;
s->timers[0].latch = 0x10000;
set_counter(&s->timers[0], 0xffff);
s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
s->timers[1].latch = 0x10000;
set_counter(&s->timers[1], 0xffff);
cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
return cuda_mem_index;
}

View File

@ -26,6 +26,86 @@
#define BIOS_FILENAME "ppc_rom.bin"
#define NVRAM_SIZE 0x2000
/* MacIO devices (mapped inside the MacIO address space): CUDA, DBDMA,
NVRAM (not implemented). */
static int dbdma_mem_index;
static int cuda_mem_index;
/* DBDMA: currently no op - should suffice right now */
static void dbdma_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static void dbdma_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static void dbdma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static uint32_t dbdma_readb (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t dbdma_readw (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t dbdma_readl (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static CPUWriteMemoryFunc *dbdma_write[] = {
&dbdma_writeb,
&dbdma_writew,
&dbdma_writel,
};
static CPUReadMemoryFunc *dbdma_read[] = {
&dbdma_readb,
&dbdma_readw,
&dbdma_readl,
};
static void macio_map(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
cpu_register_physical_memory(addr + 0x08000, 0x1000, dbdma_mem_index);
cpu_register_physical_memory(addr + 0x16000, 0x2000, cuda_mem_index);
}
static void macio_init(void)
{
PCIDevice *d;
d = pci_register_device("macio", sizeof(PCIDevice),
0, -1,
NULL, NULL);
/* Note: this code is strongly inspirated from the corresponding code
in PearPC */
d->config[0x00] = 0x6b; // vendor_id
d->config[0x01] = 0x10;
d->config[0x02] = 0x17;
d->config[0x03] = 0x00;
d->config[0x0a] = 0x00; // class_sub = pci2pci
d->config[0x0b] = 0xff; // class_base = bridge
d->config[0x0e] = 0x00; // header_type
d->config[0x3d] = 0x01; // interrupt on pin 1
dbdma_mem_index = cpu_register_io_memory(0, dbdma_read, dbdma_write, NULL);
pci_register_io_region(d, 0, 0x80000,
PCI_ADDRESS_SPACE_MEM, macio_map);
}
/* PowerPC PREP hardware initialisation */
void ppc_chrp_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
@ -86,7 +166,13 @@ void ppc_chrp_init(int ram_size, int vga_ram_size, int boot_device,
pci_ide_init(bs_table);
kbd_init();
/* cuda also initialize ADB */
cuda_mem_index = cuda_init();
adb_kbd_init(&adb_bus);
adb_mouse_init(&adb_bus);
macio_init();
nvram = m48t59_init(8, 0x0074, NVRAM_SIZE);