omap_gpmc: Support NAND devices

Support accesses to NAND devices, both by mapping them into
the GPMC address space, and via the NAND_COMMAND, NAND_ADDRESS
and NAND_DATA GPMC registers.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2011-08-28 16:22:19 +00:00
parent 9ed3e1b183
commit 2a952feb83
2 changed files with 208 additions and 12 deletions

View File

@ -122,6 +122,7 @@ struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
target_phys_addr_t base, qemu_irq irq); target_phys_addr_t base, qemu_irq irq);
void omap_gpmc_reset(struct omap_gpmc_s *s); void omap_gpmc_reset(struct omap_gpmc_s *s);
void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem); void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem);
void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand);
/* /*
* Common IRQ numbers for level 1 interrupt handler * Common IRQ numbers for level 1 interrupt handler

View File

@ -43,6 +43,8 @@ struct omap_gpmc_s {
uint32_t config[7]; uint32_t config[7];
MemoryRegion *iomem; MemoryRegion *iomem;
MemoryRegion container; MemoryRegion container;
MemoryRegion nandiomem;
DeviceState *dev;
} cs_file[8]; } cs_file[8];
int ecc_cs; int ecc_cs;
int ecc_ptr; int ecc_ptr;
@ -50,11 +52,135 @@ struct omap_gpmc_s {
ECCState ecc[9]; ECCState ecc[9];
}; };
#define OMAP_GPMC_8BIT 0
#define OMAP_GPMC_16BIT 1
#define OMAP_GPMC_NOR 0
#define OMAP_GPMC_NAND 2
static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
{
return (f->config[0] >> 10) & 3;
}
static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
{
/* devsize field is really 2 bits but we ignore the high
* bit to ensure consistent behaviour if the guest sets
* it (values 2 and 3 are reserved in the TRM)
*/
return (f->config[0] >> 12) & 1;
}
static void omap_gpmc_int_update(struct omap_gpmc_s *s) static void omap_gpmc_int_update(struct omap_gpmc_s *s)
{ {
qemu_set_irq(s->irq, s->irqen & s->irqst); qemu_set_irq(s->irq, s->irqen & s->irqst);
} }
/* Access functions for when a NAND-like device is mapped into memory:
* all addresses in the region behave like accesses to the relevant
* GPMC_NAND_DATA_i register (which is actually implemented to call these)
*/
static uint64_t omap_nand_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
uint64_t v;
nand_setpins(f->dev, 0, 0, 0, 1, 0);
switch (omap_gpmc_devsize(f)) {
case OMAP_GPMC_8BIT:
v = nand_getio(f->dev);
if (size == 1) {
return v;
}
v |= (nand_getio(f->dev) << 8);
if (size == 2) {
return v;
}
v |= (nand_getio(f->dev) << 16);
v |= (nand_getio(f->dev) << 24);
return v;
case OMAP_GPMC_16BIT:
v = nand_getio(f->dev);
if (size == 1) {
/* 8 bit read from 16 bit device : probably a guest bug */
return v & 0xff;
}
if (size == 2) {
return v;
}
v |= (nand_getio(f->dev) << 16);
return v;
default:
abort();
}
}
static void omap_nand_setio(DeviceState *dev, uint64_t value,
int nandsize, int size)
{
/* Write the specified value to the NAND device, respecting
* both size of the NAND device and size of the write access.
*/
switch (nandsize) {
case OMAP_GPMC_8BIT:
switch (size) {
case 1:
nand_setio(dev, value & 0xff);
break;
case 2:
nand_setio(dev, value & 0xff);
nand_setio(dev, (value >> 8) & 0xff);
break;
case 4:
default:
nand_setio(dev, value & 0xff);
nand_setio(dev, (value >> 8) & 0xff);
nand_setio(dev, (value >> 16) & 0xff);
nand_setio(dev, (value >> 24) & 0xff);
break;
}
case OMAP_GPMC_16BIT:
switch (size) {
case 1:
/* writing to a 16bit device with 8bit access is probably a guest
* bug; pass the value through anyway.
*/
case 2:
nand_setio(dev, value & 0xffff);
break;
case 4:
default:
nand_setio(dev, value & 0xffff);
nand_setio(dev, (value >> 16) & 0xffff);
break;
}
}
}
static void omap_nand_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
nand_setpins(f->dev, 0, 0, 0, 1, 0);
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
}
static const MemoryRegionOps omap_nand_ops = {
.read = omap_nand_read,
.write = omap_nand_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
{
/* Return the MemoryRegion* to map/unmap for this chipselect */
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
return f->iomem;
}
return &f->nandiomem;
}
static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs) static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
{ {
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs]; struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
@ -62,7 +188,7 @@ static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
uint32_t base = f->config[6] & 0x3f; uint32_t base = f->config[6] & 0x3f;
uint32_t size; uint32_t size;
if (!f->iomem) { if (!f->iomem && !f->dev) {
return; return;
} }
@ -86,7 +212,8 @@ static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
* that the same memory becomes accessible at every <i>size</i> bytes * that the same memory becomes accessible at every <i>size</i> bytes
* starting from <i>base</i>. */ * starting from <i>base</i>. */
memory_region_init(&f->container, "omap-gpmc-file", size); memory_region_init(&f->container, "omap-gpmc-file", size);
memory_region_add_subregion(&f->container, 0, f->iomem); memory_region_add_subregion(&f->container, 0,
omap_gpmc_cs_memregion(s, cs));
memory_region_add_subregion(get_system_memory(), base, memory_region_add_subregion(get_system_memory(), base,
&f->container); &f->container);
} }
@ -98,12 +225,11 @@ static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
/* Do nothing unless CSVALID */ /* Do nothing unless CSVALID */
return; return;
} }
if (!f->iomem) { if (!f->iomem && !f->dev) {
return; return;
} }
memory_region_del_subregion(get_system_memory(), &f->container); memory_region_del_subregion(get_system_memory(), &f->container);
memory_region_del_subregion(&f->container, f->iomem); memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
memory_region_destroy(&f->container); memory_region_destroy(&f->container);
} }
@ -151,6 +277,24 @@ void omap_gpmc_reset(struct omap_gpmc_s *s)
ecc_reset(&s->ecc[i]); ecc_reset(&s->ecc[i]);
} }
static int gpmc_wordaccess_only(target_phys_addr_t addr)
{
/* Return true if the register offset is to a register that
* only permits word width accesses.
* Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
* for any chipselect.
*/
if (addr >= 0x60 && addr <= 0x1d4) {
int cs = (addr - 0x60) / 0x30;
addr -= cs * 0x30;
if (addr >= 0x7c && addr < 0x88) {
/* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
return 0;
}
}
return 1;
}
static uint64_t omap_gpmc_read(void *opaque, target_phys_addr_t addr, static uint64_t omap_gpmc_read(void *opaque, target_phys_addr_t addr,
unsigned size) unsigned size)
{ {
@ -158,7 +302,7 @@ static uint64_t omap_gpmc_read(void *opaque, target_phys_addr_t addr,
int cs; int cs;
struct omap_gpmc_cs_file_s *f; struct omap_gpmc_cs_file_s *f;
if (size != 4) { if (size != 4 && gpmc_wordaccess_only(addr)) {
return omap_badwidth_read32(opaque, addr); return omap_badwidth_read32(opaque, addr);
} }
@ -210,7 +354,10 @@ static uint64_t omap_gpmc_read(void *opaque, target_phys_addr_t addr,
return f->config[5]; return f->config[5];
case 0x78: /* GPMC_CONFIG7 */ case 0x78: /* GPMC_CONFIG7 */
return f->config[6]; return f->config[6];
case 0x84: /* GPMC_NAND_DATA */ case 0x84 ... 0x87: /* GPMC_NAND_DATA */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
return omap_nand_read(f, 0, size);
}
return 0; return 0;
} }
break; break;
@ -260,7 +407,7 @@ static void omap_gpmc_write(void *opaque, target_phys_addr_t addr,
int cs; int cs;
struct omap_gpmc_cs_file_s *f; struct omap_gpmc_cs_file_s *f;
if (size != 4) { if (size != 4 && gpmc_wordaccess_only(addr)) {
return omap_badwidth_write32(opaque, addr, value); return omap_badwidth_write32(opaque, addr, value);
} }
@ -336,11 +483,23 @@ static void omap_gpmc_write(void *opaque, target_phys_addr_t addr,
omap_gpmc_cs_map(s, cs); omap_gpmc_cs_map(s, cs);
} }
break; break;
case 0x7c: /* GPMC_NAND_COMMAND */ case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
case 0x80: /* GPMC_NAND_ADDRESS */ if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
case 0x84: /* GPMC_NAND_DATA */ nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
}
break;
case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
}
break;
case 0x84 ... 0x87: /* GPMC_NAND_DATA */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
omap_nand_write(f, 0, value, size);
}
break; break;
default: default:
goto bad_reg; goto bad_reg;
} }
@ -403,6 +562,7 @@ static const MemoryRegionOps omap_gpmc_ops = {
struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu, struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
target_phys_addr_t base, qemu_irq irq) target_phys_addr_t base, qemu_irq irq)
{ {
int cs;
struct omap_gpmc_s *s = (struct omap_gpmc_s *) struct omap_gpmc_s *s = (struct omap_gpmc_s *)
g_malloc0(sizeof(struct omap_gpmc_s)); g_malloc0(sizeof(struct omap_gpmc_s));
@ -413,6 +573,19 @@ struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20; s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
omap_gpmc_reset(s); omap_gpmc_reset(s);
/* We have to register a different IO memory handler for each
* chip select region in case a NAND device is mapped there. We
* make the region the worst-case size of 256MB and rely on the
* container memory region in cs_map to chop it down to the actual
* guest-requested size.
*/
for (cs = 0; cs < 8; cs++) {
memory_region_init_io(&s->cs_file[cs].nandiomem,
&omap_nand_ops,
&s->cs_file[cs],
"omap-nand",
256 * 1024 * 1024);
}
return s; return s;
} }
@ -428,6 +601,28 @@ void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
f = &s->cs_file[cs]; f = &s->cs_file[cs];
omap_gpmc_cs_unmap(s, cs); omap_gpmc_cs_unmap(s, cs);
f->config[0] &= ~(0xf << 10);
f->iomem = iomem; f->iomem = iomem;
omap_gpmc_cs_map(s, cs); omap_gpmc_cs_map(s, cs);
} }
void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
{
struct omap_gpmc_cs_file_s *f;
assert(nand);
if (cs < 0 || cs >= 8) {
fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
exit(-1);
}
f = &s->cs_file[cs];
omap_gpmc_cs_unmap(s, cs);
f->config[0] &= ~(0xf << 10);
f->config[0] |= (OMAP_GPMC_NAND << 10);
f->dev = nand;
if (nand_getbuswidth(f->dev) == 16) {
f->config[0] |= OMAP_GPMC_16BIT << 12;
}
omap_gpmc_cs_map(s, cs);
}