-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1
 
 iQIcBAABAgAGBQJVcf+LAAoJEH3vgQaq/DkOMGYP/i/LxItDxCgfi+n6a1TIhgvs
 shp6FkatH50f0b4EoimmMhZJWZBU9GoTgNhULgreTm0fgv9d87ciFkabUZhJLO7e
 Sck+qMJYUpdB6goyVFC3efq7LpuwoGGBhekiQjMBe/a0f64BlYi8tL6hLpN/K3Cu
 i51ASrAD0rJvp58xAX9/Tgsopi8+++FPaOQzpUL81Zz6z6AGACkpepTndgxkt5DA
 +s5KHIod0+pUDVa6wjLxA3cWUPx8nA9emoRwl1eu98bwVPa/DX+TAa5ubLliIHtG
 CGwGZ97W0fHufmZbSCaCYsaHrRVKLBpmGQNorsZVcV/053yW8o5GKFcXMlH797sb
 dzcNvKPkHNlPJdPgU5akGeEtufesSWDqErOtlruoxR5HmBNHVkB4zFFpovAtrfGY
 YbpjrYk87W9OixQWOW6toHG3gE87jZnxj3GAIlWqJh1vSVqWWC2PNZTFqtQPu3lp
 gu3fv3kaa/EbLujmlfq6uD4MFQZlYjJG6JelLydLdimTnr/ad43vABbXGfgaDKAT
 X++CN9tst0hiuj3n/dJcDkox//U+yCbnPRk00H1bjT//YYJULtCeZk7Y0hVaB5mZ
 36PrTAK2FlTZ5caK7KrEtwzsRL4b61mrhzFi7E+Gd31wEiZA30fDu16sX0f+8+ex
 BqwG0voyXrQp1yx+M8cH
 =TBeO
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/jnsnow/tags/ide-pull-request' into staging

# gpg: Signature made Fri Jun  5 20:59:07 2015 BST using RSA key ID AAFC390E
# gpg: Good signature from "John Snow (John Huston) <jsnow@redhat.com>"
# gpg: WARNING: This key is not certified with sufficiently trusted signatures!
# gpg:          It is not certain that the signature belongs to the owner.
# Primary key fingerprint: FAEB 9711 A12C F475 812F  18F2 88A9 064D 1835 61EB
#      Subkey fingerprint: F9B7 ABDB BCAC DF95 BE76  CBD0 7DEF 8106 AAFC 390E

* remotes/jnsnow/tags/ide-pull-request:
  macio: remove remainder_len DBDMA_io property
  macio: update comment/constants to reflect the new code
  macio: switch pmac_dma_write() over to new offset/len implementation
  macio: switch pmac_dma_read() over to new offset/len implementation
  fdc-test: Test state for existing cases more thoroughly
  fdc: Fix MSR.RQM flag
  fdc: Disentangle phases in fdctrl_read_data()
  fdc: Code cleanup in fdctrl_write_data()
  fdc: Use phase in fdctrl_write_data()
  fdc: Introduce fdctrl->phase
  fdc: Rename fdctrl_set_fifo() to fdctrl_to_result_phase()
  fdc: Rename fdctrl_reset_fifo() to fdctrl_to_command_phase()

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2015-06-08 14:07:32 +01:00
commit 2e29dd7c44
4 changed files with 364 additions and 253 deletions

View File

@ -324,7 +324,7 @@ static void fd_revalidate(FDrive *drv)
/* Intel 82078 floppy disk controller emulation */
static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
static void fdctrl_reset_fifo(FDCtrl *fdctrl);
static void fdctrl_to_command_phase(FDCtrl *fdctrl);
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len);
static void fdctrl_raise_irq(FDCtrl *fdctrl);
@ -495,6 +495,33 @@ enum {
FD_DIR_DSKCHG = 0x80,
};
/*
* See chapter 5.0 "Controller phases" of the spec:
*
* Command phase:
* The host writes a command and its parameters into the FIFO. The command
* phase is completed when all parameters for the command have been supplied,
* and execution phase is entered.
*
* Execution phase:
* Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
* contains the payload now, otherwise it's unused. When all bytes of the
* required data have been transferred, the state is switched to either result
* phase (if the command produces status bytes) or directly back into the
* command phase for the next command.
*
* Result phase:
* The host reads out the FIFO, which contains one or more result bytes now.
*/
enum {
/* Only for migration: reconstruct phase from registers like qemu 2.3 */
FD_PHASE_RECONSTRUCT = 0,
FD_PHASE_COMMAND = 1,
FD_PHASE_EXECUTION = 2,
FD_PHASE_RESULT = 3,
};
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
@ -504,6 +531,7 @@ struct FDCtrl {
/* Controller state */
QEMUTimer *result_timer;
int dma_chann;
uint8_t phase;
/* Controller's identification */
uint8_t version;
/* HW */
@ -744,6 +772,28 @@ static const VMStateDescription vmstate_fdrive = {
}
};
/*
* Reconstructs the phase from register values according to the logic that was
* implemented in qemu 2.3. This is the default value that is used if the phase
* subsection is not present on migration.
*
* Don't change this function to reflect newer qemu versions, it is part of
* the migration ABI.
*/
static int reconstruct_phase(FDCtrl *fdctrl)
{
if (fdctrl->msr & FD_MSR_NONDMA) {
return FD_PHASE_EXECUTION;
} else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
/* qemu 2.3 disabled RQM only during DMA transfers */
return FD_PHASE_EXECUTION;
} else if (fdctrl->msr & FD_MSR_DIO) {
return FD_PHASE_RESULT;
} else {
return FD_PHASE_COMMAND;
}
}
static void fdc_pre_save(void *opaque)
{
FDCtrl *s = opaque;
@ -751,12 +801,24 @@ static void fdc_pre_save(void *opaque)
s->dor_vmstate = s->dor | GET_CUR_DRV(s);
}
static int fdc_pre_load(void *opaque)
{
FDCtrl *s = opaque;
s->phase = FD_PHASE_RECONSTRUCT;
return 0;
}
static int fdc_post_load(void *opaque, int version_id)
{
FDCtrl *s = opaque;
SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
if (s->phase == FD_PHASE_RECONSTRUCT) {
s->phase = reconstruct_phase(s);
}
return 0;
}
@ -794,11 +856,29 @@ static const VMStateDescription vmstate_fdc_result_timer = {
}
};
static bool fdc_phase_needed(void *opaque)
{
FDCtrl *fdctrl = opaque;
return reconstruct_phase(fdctrl) != fdctrl->phase;
}
static const VMStateDescription vmstate_fdc_phase = {
.name = "fdc/phase",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(phase, FDCtrl),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_fdc = {
.name = "fdc",
.version_id = 2,
.minimum_version_id = 2,
.pre_save = fdc_pre_save,
.pre_load = fdc_pre_load,
.post_load = fdc_post_load,
.fields = (VMStateField[]) {
/* Controller State */
@ -838,6 +918,9 @@ static const VMStateDescription vmstate_fdc = {
} , {
.vmsd = &vmstate_fdc_result_timer,
.needed = fdc_result_timer_needed,
} , {
.vmsd = &vmstate_fdc_phase,
.needed = fdc_phase_needed,
} , {
/* empty */
}
@ -918,7 +1001,7 @@ static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
fdctrl->data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_recalibrate(&fdctrl->drives[i]);
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
if (do_irq) {
fdctrl->status0 |= FD_SR0_RDYCHG;
fdctrl_raise_irq(fdctrl);
@ -1134,17 +1217,22 @@ static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
return retval;
}
/* FIFO state control */
static void fdctrl_reset_fifo(FDCtrl *fdctrl)
/* Clear the FIFO and update the state for receiving the next command */
static void fdctrl_to_command_phase(FDCtrl *fdctrl)
{
fdctrl->phase = FD_PHASE_COMMAND;
fdctrl->data_dir = FD_DIR_WRITE;
fdctrl->data_pos = 0;
fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
fdctrl->msr |= FD_MSR_RQM;
}
/* Set FIFO status for the host to read */
static void fdctrl_set_fifo(FDCtrl *fdctrl, int fifo_len)
/* Update the state to allow the guest to read out the command status.
* @fifo_len is the number of result bytes to be read out. */
static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
{
fdctrl->phase = FD_PHASE_RESULT;
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
@ -1157,7 +1245,7 @@ static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
fdctrl->fifo[0]);
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
/* Seek to next sector
@ -1238,7 +1326,7 @@ static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->msr &= ~FD_MSR_NONDMA;
fdctrl_set_fifo(fdctrl, 7);
fdctrl_to_result_phase(fdctrl, 7);
fdctrl_raise_irq(fdctrl);
}
@ -1352,7 +1440,7 @@ static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
fdctrl->msr |= FD_MSR_NONDMA;
fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
if (direction != FD_DIR_WRITE)
fdctrl->msr |= FD_MSR_DIO;
/* IO based transfer: calculate len */
@ -1505,9 +1593,16 @@ static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
FLOPPY_DPRINTF("error: controller not ready for reading\n");
return 0;
}
/* If data_len spans multiple sectors, the current position in the FIFO
* wraps around while fdctrl->data_pos is the real position in the whole
* request. */
pos = fdctrl->data_pos;
pos %= FD_SECTOR_LEN;
if (fdctrl->msr & FD_MSR_NONDMA) {
switch (fdctrl->phase) {
case FD_PHASE_EXECUTION:
assert(fdctrl->msr & FD_MSR_NONDMA);
if (pos == 0) {
if (fdctrl->data_pos != 0)
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
@ -1523,20 +1618,28 @@ static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
}
retval = fdctrl->fifo[pos];
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->data_pos = 0;
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->msr & FD_MSR_NONDMA) {
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->msr &= ~FD_MSR_RQM;
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
fdctrl_reset_fifo(fdctrl);
}
break;
case FD_PHASE_RESULT:
assert(!(fdctrl->msr & FD_MSR_NONDMA));
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->msr &= ~FD_MSR_RQM;
fdctrl_to_command_phase(fdctrl);
fdctrl_reset_irq(fdctrl);
}
break;
case FD_PHASE_COMMAND:
default:
abort();
}
retval = fdctrl->fifo[pos];
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
@ -1606,7 +1709,7 @@ static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
{
fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
fdctrl->fifo[0] = fdctrl->lock << 4;
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
@ -1631,20 +1734,20 @@ static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
fdctrl_set_fifo(fdctrl, 10);
fdctrl_to_result_phase(fdctrl, 10);
}
static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
{
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
{
fdctrl->fifo[0] = 0x41; /* Stepping 1 */
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
@ -1667,7 +1770,7 @@ static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
fdctrl->config = fdctrl->fifo[11];
fdctrl->precomp_trk = fdctrl->fifo[12];
fdctrl->pwrd = fdctrl->fifo[13];
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
@ -1697,7 +1800,7 @@ static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
fdctrl_set_fifo(fdctrl, 15);
fdctrl_to_result_phase(fdctrl, 15);
}
static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
@ -1746,7 +1849,7 @@ static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
else
fdctrl->dor |= FD_DOR_DMAEN;
/* No result back */
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
@ -1762,7 +1865,7 @@ static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
(cur_drv->head << 2) |
GET_CUR_DRV(fdctrl) |
0x28;
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
@ -1772,7 +1875,7 @@ static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fd_recalibrate(cur_drv);
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
@ -1788,7 +1891,7 @@ static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
fdctrl->reset_sensei--;
} else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
return;
} else {
fdctrl->fifo[0] =
@ -1797,7 +1900,7 @@ static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
}
fdctrl->fifo[1] = cur_drv->track;
fdctrl_set_fifo(fdctrl, 2);
fdctrl_to_result_phase(fdctrl, 2);
fdctrl_reset_irq(fdctrl);
fdctrl->status0 = FD_SR0_RDYCHG;
}
@ -1808,7 +1911,7 @@ static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
/* The seek command just sends step pulses to the drive and doesn't care if
* there is a medium inserted of if it's banging the head against the drive.
*/
@ -1825,7 +1928,7 @@ static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
if (fdctrl->fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
/* No result back */
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
@ -1833,20 +1936,20 @@ static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
fdctrl->config = fdctrl->fifo[2];
fdctrl->precomp_trk = fdctrl->fifo[3];
/* No result back */
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
{
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
{
/* No result back */
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
@ -1862,15 +1965,15 @@ static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direct
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
fdctrl_set_fifo(fdctrl, 4);
fdctrl_to_result_phase(fdctrl, 4);
} else {
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
}
} else if (fdctrl->data_len > 7) {
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl_set_fifo(fdctrl, 1);
fdctrl_to_result_phase(fdctrl, 1);
}
}
@ -1887,7 +1990,7 @@ static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
fd_seek(cur_drv, cur_drv->head,
cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
}
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
@ -1905,20 +2008,25 @@ static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
fd_seek(cur_drv, cur_drv->head,
cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
}
fdctrl_reset_fifo(fdctrl);
fdctrl_to_command_phase(fdctrl);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
}
static const struct {
/*
* Handlers for the execution phase of each command
*/
typedef struct FDCtrlCommand {
uint8_t value;
uint8_t mask;
const char* name;
int parameters;
void (*handler)(FDCtrl *fdctrl, int direction);
int direction;
} handlers[] = {
} FDCtrlCommand;
static const FDCtrlCommand handlers[] = {
{ FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
{ FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
@ -1955,9 +2063,19 @@ static const struct {
/* Associate command to an index in the 'handlers' array */
static uint8_t command_to_handler[256];
static const FDCtrlCommand *get_command(uint8_t cmd)
{
int idx;
idx = command_to_handler[cmd];
FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
return &handlers[idx];
}
static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
{
FDrive *cur_drv;
const FDCtrlCommand *cmd;
uint32_t pos;
/* Reset mode */
@ -1970,12 +2088,27 @@ static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
return;
}
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
/* Is it write command time ? */
if (fdctrl->msr & FD_MSR_NONDMA) {
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
/* If data_len spans multiple sectors, the current position in the FIFO
* wraps around while fdctrl->data_pos is the real position in the whole
* request. */
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
fdctrl->msr &= ~FD_MSR_RQM;
}
switch (fdctrl->phase) {
case FD_PHASE_EXECUTION:
/* For DMA requests, RQM should be cleared during execution phase, so
* we would have errored out above. */
assert(fdctrl->msr & FD_MSR_NONDMA);
/* FIFO data write */
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (pos == FD_SECTOR_LEN - 1 ||
fdctrl->data_pos == fdctrl->data_len) {
cur_drv = get_cur_drv(fdctrl);
@ -1983,45 +2116,54 @@ static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
< 0) {
FLOPPY_DPRINTF("error writing sector %d\n",
fd_sector(cur_drv));
return;
break;
}
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return;
break;
}
}
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->data_pos == fdctrl->data_len)
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
/* Command */
pos = command_to_handler[value & 0xff];
FLOPPY_DPRINTF("%s command\n", handlers[pos].name);
fdctrl->data_len = handlers[pos].parameters + 1;
fdctrl->msr |= FD_MSR_CMDBUSY;
}
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
return;
/* Switch to result phase when done with the transfer */
if (fdctrl->data_pos == fdctrl->data_len) {
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
break;
case FD_PHASE_COMMAND:
assert(!(fdctrl->msr & FD_MSR_NONDMA));
assert(fdctrl->data_pos < FD_SECTOR_LEN);
if (pos == 0) {
/* The first byte specifies the command. Now we start reading
* as many parameters as this command requires. */
cmd = get_command(value);
fdctrl->data_len = cmd->parameters + 1;
if (cmd->parameters) {
fdctrl->msr |= FD_MSR_RQM;
}
fdctrl->msr |= FD_MSR_CMDBUSY;
}
pos = command_to_handler[fdctrl->fifo[0] & 0xff];
FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name);
(*handlers[pos].handler)(fdctrl, handlers[pos].direction);
if (fdctrl->data_pos == fdctrl->data_len) {
/* We have all parameters now, execute the command */
fdctrl->phase = FD_PHASE_EXECUTION;
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
break;
}
cmd = get_command(fdctrl->fifo[0]);
FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
cmd->handler(fdctrl, cmd->direction);
}
break;
case FD_PHASE_RESULT:
default:
abort();
}
}

View File

@ -51,8 +51,15 @@ static const int debug_macio = 0;
#define MACIO_PAGE_SIZE 4096
/*
* Unaligned DMA read/write access functions required for OS X/Darwin which
* don't perform DMA transactions on sector boundaries. These functions are
* modelled on bdrv_co_do_preadv()/bdrv_co_do_pwritev() and so should be
* easy to remove if the unaligned block APIs are ever exposed.
*/
static void pmac_dma_read(BlockBackend *blk,
int64_t sector_num, int nb_sectors,
int64_t offset, unsigned int bytes,
void (*cb)(void *opaque, int ret), void *opaque)
{
DBDMA_io *io = opaque;
@ -60,76 +67,48 @@ static void pmac_dma_read(BlockBackend *blk,
IDEState *s = idebus_active_if(&m->bus);
dma_addr_t dma_addr, dma_len;
void *mem;
int nsector, remainder;
int64_t sector_num;
int nsector;
uint64_t align = BDRV_SECTOR_SIZE;
size_t head_bytes, tail_bytes;
qemu_iovec_destroy(&io->iov);
qemu_iovec_init(&io->iov, io->len / MACIO_PAGE_SIZE + 1);
if (io->remainder_len > 0) {
/* Return remainder of request */
int transfer = MIN(io->remainder_len, io->len);
sector_num = (offset >> 9);
nsector = (io->len >> 9);
MACIO_DPRINTF("--- DMA read pop - bounce addr: %p addr: %"
HWADDR_PRIx " remainder_len: %x\n",
&io->remainder + (0x200 - transfer), io->addr,
io->remainder_len);
cpu_physical_memory_write(io->addr,
&io->remainder + (0x200 - transfer),
transfer);
io->remainder_len -= transfer;
io->len -= transfer;
io->addr += transfer;
s->io_buffer_index += transfer;
s->io_buffer_size -= transfer;
if (io->remainder_len != 0) {
/* Still waiting for remainder */
return;
}
if (io->len == 0) {
MACIO_DPRINTF("--- finished all read processing; go and finish\n");
cb(opaque, 0);
return;
}
}
if (s->drive_kind == IDE_CD) {
sector_num = (int64_t)(s->lba << 2) + (s->io_buffer_index >> 9);
} else {
sector_num = ide_get_sector(s) + (s->io_buffer_index >> 9);
}
nsector = ((io->len + 0x1ff) >> 9);
remainder = (nsector << 9) - io->len;
MACIO_DPRINTF("--- DMA read transfer - addr: %" HWADDR_PRIx " len: %x\n",
io->addr, io->len);
MACIO_DPRINTF("--- DMA read transfer (0x%" HWADDR_PRIx ",0x%x): "
"sector_num: %" PRId64 ", nsector: %d\n", io->addr, io->len,
sector_num, nsector);
dma_addr = io->addr;
dma_len = io->len;
mem = dma_memory_map(&address_space_memory, dma_addr, &dma_len,
DMA_DIRECTION_FROM_DEVICE);
if (!remainder) {
MACIO_DPRINTF("--- DMA read aligned - addr: %" HWADDR_PRIx
" len: %x\n", io->addr, io->len);
qemu_iovec_add(&io->iov, mem, io->len);
} else {
MACIO_DPRINTF("--- DMA read unaligned - addr: %" HWADDR_PRIx
" len: %x\n", io->addr, io->len);
qemu_iovec_add(&io->iov, mem, io->len);
if (offset & (align - 1)) {
head_bytes = offset & (align - 1);
MACIO_DPRINTF("--- DMA read push - bounce addr: %p "
"remainder_len: %x\n",
&io->remainder + 0x200 - remainder, remainder);
qemu_iovec_add(&io->iov, &io->remainder + 0x200 - remainder,
remainder);
MACIO_DPRINTF("--- DMA unaligned head: sector %" PRId64 ", "
"discarding %zu bytes\n", sector_num, head_bytes);
io->remainder_len = remainder;
qemu_iovec_add(&io->iov, &io->head_remainder, head_bytes);
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
qemu_iovec_add(&io->iov, mem, io->len);
if ((offset + bytes) & (align - 1)) {
tail_bytes = (offset + bytes) & (align - 1);
MACIO_DPRINTF("--- DMA unaligned tail: sector %" PRId64 ", "
"discarding bytes %zu\n", sector_num, tail_bytes);
qemu_iovec_add(&io->iov, &io->tail_remainder, align - tail_bytes);
bytes = ROUND_UP(bytes, align);
}
s->io_buffer_size -= io->len;
@ -137,15 +116,15 @@ static void pmac_dma_read(BlockBackend *blk,
io->len = 0;
MACIO_DPRINTF("--- Block read transfer - sector_num: %"PRIx64" "
"nsector: %x\n",
sector_num, nsector);
MACIO_DPRINTF("--- Block read transfer - sector_num: %" PRIx64 " "
"nsector: %x\n", (offset >> 9), (bytes >> 9));
m->aiocb = blk_aio_readv(blk, sector_num, &io->iov, nsector, cb, io);
m->aiocb = blk_aio_readv(blk, (offset >> 9), &io->iov, (bytes >> 9),
cb, io);
}
static void pmac_dma_write(BlockBackend *blk,
int64_t sector_num, int nb_sectors,
int64_t offset, int bytes,
void (*cb)(void *opaque, int ret), void *opaque)
{
DBDMA_io *io = opaque;
@ -153,53 +132,20 @@ static void pmac_dma_write(BlockBackend *blk,
IDEState *s = idebus_active_if(&m->bus);
dma_addr_t dma_addr, dma_len;
void *mem;
int nsector, remainder;
int extra = 0;
int64_t sector_num;
int nsector;
uint64_t align = BDRV_SECTOR_SIZE;
size_t head_bytes, tail_bytes;
bool unaligned_head = false, unaligned_tail = false;
qemu_iovec_destroy(&io->iov);
qemu_iovec_init(&io->iov, io->len / MACIO_PAGE_SIZE + 1);
if (io->remainder_len > 0) {
/* Return remainder of request */
int transfer = MIN(io->remainder_len, io->len);
MACIO_DPRINTF("--- processing write remainder %x\n", transfer);
cpu_physical_memory_read(io->addr,
&io->remainder + (0x200 - transfer),
transfer);
io->remainder_len -= transfer;
io->len -= transfer;
io->addr += transfer;
s->io_buffer_index += transfer;
s->io_buffer_size -= transfer;
if (io->remainder_len != 0) {
/* Still waiting for remainder */
return;
}
MACIO_DPRINTF("--> prepending bounce buffer with size 0x200\n");
/* Sector transfer complete - prepend to request */
qemu_iovec_add(&io->iov, &io->remainder, 0x200);
extra = 1;
}
if (s->drive_kind == IDE_CD) {
sector_num = (int64_t)(s->lba << 2) + (s->io_buffer_index >> 9);
} else {
sector_num = ide_get_sector(s) + (s->io_buffer_index >> 9);
}
sector_num = (offset >> 9);
nsector = (io->len >> 9);
remainder = io->len - (nsector << 9);
MACIO_DPRINTF("--- DMA write transfer - addr: %" HWADDR_PRIx " len: %x\n",
io->addr, io->len);
MACIO_DPRINTF("xxx remainder: %x\n", remainder);
MACIO_DPRINTF("xxx sector_num: %"PRIx64" nsector: %x\n",
MACIO_DPRINTF("--- DMA write transfer (0x%" HWADDR_PRIx ",0x%x): "
"sector_num: %" PRId64 ", nsector: %d\n", io->addr, io->len,
sector_num, nsector);
dma_addr = io->addr;
@ -207,36 +153,59 @@ static void pmac_dma_write(BlockBackend *blk,
mem = dma_memory_map(&address_space_memory, dma_addr, &dma_len,
DMA_DIRECTION_TO_DEVICE);
if (!remainder) {
MACIO_DPRINTF("--- DMA write aligned - addr: %" HWADDR_PRIx
" len: %x\n", io->addr, io->len);
if (offset & (align - 1)) {
head_bytes = offset & (align - 1);
sector_num = ((offset & ~(align - 1)) >> 9);
MACIO_DPRINTF("--- DMA unaligned head: pre-reading head sector %"
PRId64 "\n", sector_num);
blk_pread(s->blk, (sector_num << 9), &io->head_remainder, align);
qemu_iovec_add(&io->iov, &io->head_remainder, head_bytes);
qemu_iovec_add(&io->iov, mem, io->len);
} else {
/* Write up to last complete sector */
MACIO_DPRINTF("--- DMA write unaligned - addr: %" HWADDR_PRIx
" len: %x\n", io->addr, (nsector << 9));
qemu_iovec_add(&io->iov, mem, (nsector << 9));
MACIO_DPRINTF("--- DMA write read - bounce addr: %p "
"remainder_len: %x\n", &io->remainder, remainder);
cpu_physical_memory_read(io->addr + (nsector << 9), &io->remainder,
remainder);
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
io->remainder_len = 0x200 - remainder;
MACIO_DPRINTF("xxx remainder_len: %x\n", io->remainder_len);
unaligned_head = true;
}
s->io_buffer_size -= ((nsector + extra) << 9);
s->io_buffer_index += ((nsector + extra) << 9);
if ((offset + bytes) & (align - 1)) {
tail_bytes = (offset + bytes) & (align - 1);
sector_num = (((offset + bytes) & ~(align - 1)) >> 9);
MACIO_DPRINTF("--- DMA unaligned tail: pre-reading tail sector %"
PRId64 "\n", sector_num);
blk_pread(s->blk, (sector_num << 9), &io->tail_remainder, align);
if (!unaligned_head) {
qemu_iovec_add(&io->iov, mem, io->len);
}
qemu_iovec_add(&io->iov, &io->tail_remainder + tail_bytes,
align - tail_bytes);
bytes = ROUND_UP(bytes, align);
unaligned_tail = true;
}
if (!unaligned_head && !unaligned_tail) {
qemu_iovec_add(&io->iov, mem, io->len);
}
s->io_buffer_size -= io->len;
s->io_buffer_index += io->len;
io->len = 0;
MACIO_DPRINTF("--- Block write transfer - sector_num: %"PRIx64" "
"nsector: %x\n", sector_num, nsector + extra);
MACIO_DPRINTF("--- Block write transfer - sector_num: %" PRIx64 " "
"nsector: %x\n", (offset >> 9), (bytes >> 9));
m->aiocb = blk_aio_writev(blk, sector_num, &io->iov, nsector + extra, cb,
io);
m->aiocb = blk_aio_writev(blk, (offset >> 9), &io->iov, (bytes >> 9),
cb, io);
}
static void pmac_ide_atapi_transfer_cb(void *opaque, int ret)
@ -244,19 +213,12 @@ static void pmac_ide_atapi_transfer_cb(void *opaque, int ret)
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
int64_t sector_num;
int nsector, remainder;
int64_t offset;
MACIO_DPRINTF("\ns is %p\n", s);
MACIO_DPRINTF("io_buffer_index: %x\n", s->io_buffer_index);
MACIO_DPRINTF("io_buffer_size: %x packet_transfer_size: %x\n",
s->io_buffer_size, s->packet_transfer_size);
MACIO_DPRINTF("lba: %x\n", s->lba);
MACIO_DPRINTF("io_addr: %" HWADDR_PRIx " io_len: %x\n", io->addr,
io->len);
MACIO_DPRINTF("pmac_ide_atapi_transfer_cb\n");
if (ret < 0) {
MACIO_DPRINTF("THERE WAS AN ERROR! %d\n", ret);
MACIO_DPRINTF("DMA error: %d\n", ret);
ide_atapi_io_error(s, ret);
goto done;
}
@ -270,6 +232,7 @@ static void pmac_ide_atapi_transfer_cb(void *opaque, int ret)
}
if (s->io_buffer_size <= 0) {
MACIO_DPRINTF("End of IDE transfer\n");
ide_atapi_cmd_ok(s);
m->dma_active = false;
goto done;
@ -289,19 +252,13 @@ static void pmac_ide_atapi_transfer_cb(void *opaque, int ret)
goto done;
}
/* Calculate number of sectors */
sector_num = (int64_t)(s->lba << 2) + (s->io_buffer_index >> 9);
nsector = (io->len + 0x1ff) >> 9;
remainder = io->len & 0x1ff;
/* Calculate current offset */
offset = (int64_t)(s->lba << 11) + s->io_buffer_index;
MACIO_DPRINTF("nsector: %d remainder: %x\n", nsector, remainder);
MACIO_DPRINTF("sector: %"PRIx64" %zx\n", sector_num, io->iov.size / 512);
pmac_dma_read(s->blk, sector_num, nsector, pmac_ide_atapi_transfer_cb, io);
pmac_dma_read(s->blk, offset, io->len, pmac_ide_atapi_transfer_cb, io);
return;
done:
MACIO_DPRINTF("done DMA\n\n");
block_acct_done(blk_get_stats(s->blk), &s->acct);
io->dma_end(opaque);
@ -313,16 +270,14 @@ static void pmac_ide_transfer_cb(void *opaque, int ret)
DBDMA_io *io = opaque;
MACIOIDEState *m = io->opaque;
IDEState *s = idebus_active_if(&m->bus);
int64_t sector_num;
int nsector, remainder;
int64_t offset;
MACIO_DPRINTF("pmac_ide_transfer_cb\n");
if (ret < 0) {
MACIO_DPRINTF("DMA error\n");
MACIO_DPRINTF("DMA error: %d\n", ret);
m->aiocb = NULL;
ide_dma_error(s);
io->remainder_len = 0;
goto done;
}
@ -335,7 +290,7 @@ static void pmac_ide_transfer_cb(void *opaque, int ret)
}
if (s->io_buffer_size <= 0) {
MACIO_DPRINTF("end of transfer\n");
MACIO_DPRINTF("End of IDE transfer\n");
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s->bus);
m->dma_active = false;
@ -348,24 +303,16 @@ static void pmac_ide_transfer_cb(void *opaque, int ret)
}
/* Calculate number of sectors */
sector_num = ide_get_sector(s) + (s->io_buffer_index >> 9);
nsector = (io->len + 0x1ff) >> 9;
remainder = io->len & 0x1ff;
s->nsector -= nsector;
MACIO_DPRINTF("nsector: %d remainder: %x\n", nsector, remainder);
MACIO_DPRINTF("sector: %"PRIx64" %x\n", sector_num, nsector);
offset = (ide_get_sector(s) << 9) + s->io_buffer_index;
switch (s->dma_cmd) {
case IDE_DMA_READ:
pmac_dma_read(s->blk, sector_num, nsector, pmac_ide_transfer_cb, io);
pmac_dma_read(s->blk, offset, io->len, pmac_ide_transfer_cb, io);
break;
case IDE_DMA_WRITE:
pmac_dma_write(s->blk, sector_num, nsector, pmac_ide_transfer_cb, io);
pmac_dma_write(s->blk, offset, io->len, pmac_ide_transfer_cb, io);
break;
case IDE_DMA_TRIM:
MACIO_DPRINTF("TRIM command issued!");
break;
}
@ -561,15 +508,12 @@ static void ide_dbdma_start(IDEDMA *dma, IDEState *s,
BlockCompletionFunc *cb)
{
MACIOIDEState *m = container_of(dma, MACIOIDEState, dma);
DBDMAState *dbdma = m->dbdma;
DBDMA_io *io;
int i;
s->io_buffer_index = 0;
if (s->drive_kind == IDE_CD) {
s->io_buffer_size = s->packet_transfer_size;
} else {
s->io_buffer_size = s->nsector * 0x200;
s->io_buffer_size = s->nsector * BDRV_SECTOR_SIZE;
}
MACIO_DPRINTF("\n\n------------ IDE transfer\n");
@ -578,15 +522,6 @@ static void ide_dbdma_start(IDEDMA *dma, IDEState *s,
MACIO_DPRINTF("lba: %x size: %x\n", s->lba, s->io_buffer_size);
MACIO_DPRINTF("-------------------------\n");
for (i = 0; i < DBDMA_CHANNELS; i++) {
io = &dbdma->channels[i].io;
if (io->opaque == m) {
io->remainder_len = 0;
}
}
MACIO_DPRINTF("\n");
m->dma_active = true;
DBDMA_kick(m->dbdma);
}

View File

@ -40,8 +40,8 @@ struct DBDMA_io {
/* DMA is in progress, don't start another one */
bool processing;
/* unaligned last sector of a request */
uint8_t remainder[0x200];
int remainder_len;
uint8_t head_remainder[0x200];
uint8_t tail_remainder[0x200];
QEMUIOVector iov;
};

View File

@ -218,6 +218,10 @@ static uint8_t send_read_no_dma_command(int nb_sect, uint8_t expected_st0)
inb(FLOPPY_BASE + reg_fifo);
}
msr = inb(FLOPPY_BASE + reg_msr);
assert_bit_set(msr, BUSY | RQM | DIO);
g_assert(get_irq(FLOPPY_IRQ));
st0 = floppy_recv();
if (st0 != expected_st0) {
ret = 1;
@ -228,8 +232,15 @@ static uint8_t send_read_no_dma_command(int nb_sect, uint8_t expected_st0)
floppy_recv();
floppy_recv();
floppy_recv();
g_assert(get_irq(FLOPPY_IRQ));
floppy_recv();
/* Check that we're back in command phase */
msr = inb(FLOPPY_BASE + reg_msr);
assert_bit_clear(msr, BUSY | DIO);
assert_bit_set(msr, RQM);
g_assert(!get_irq(FLOPPY_IRQ));
return ret;
}
@ -403,6 +414,7 @@ static void test_read_id(void)
uint8_t head = 0;
uint8_t cyl;
uint8_t st0;
uint8_t msr;
/* Seek to track 0 and check with READ ID */
send_seek(0);
@ -411,18 +423,29 @@ static void test_read_id(void)
g_assert(!get_irq(FLOPPY_IRQ));
floppy_send(head << 2 | drive);
msr = inb(FLOPPY_BASE + reg_msr);
if (!get_irq(FLOPPY_IRQ)) {
assert_bit_set(msr, BUSY);
assert_bit_clear(msr, RQM);
}
while (!get_irq(FLOPPY_IRQ)) {
/* qemu involves a timer with READ ID... */
clock_step(1000000000LL / 50);
}
msr = inb(FLOPPY_BASE + reg_msr);
assert_bit_set(msr, BUSY | RQM | DIO);
st0 = floppy_recv();
floppy_recv();
floppy_recv();
cyl = floppy_recv();
head = floppy_recv();
floppy_recv();
g_assert(get_irq(FLOPPY_IRQ));
floppy_recv();
g_assert(!get_irq(FLOPPY_IRQ));
g_assert_cmpint(cyl, ==, 0);
g_assert_cmpint(head, ==, 0);
@ -443,18 +466,29 @@ static void test_read_id(void)
g_assert(!get_irq(FLOPPY_IRQ));
floppy_send(head << 2 | drive);
msr = inb(FLOPPY_BASE + reg_msr);
if (!get_irq(FLOPPY_IRQ)) {
assert_bit_set(msr, BUSY);
assert_bit_clear(msr, RQM);
}
while (!get_irq(FLOPPY_IRQ)) {
/* qemu involves a timer with READ ID... */
clock_step(1000000000LL / 50);
}
msr = inb(FLOPPY_BASE + reg_msr);
assert_bit_set(msr, BUSY | RQM | DIO);
st0 = floppy_recv();
floppy_recv();
floppy_recv();
cyl = floppy_recv();
head = floppy_recv();
floppy_recv();
g_assert(get_irq(FLOPPY_IRQ));
floppy_recv();
g_assert(!get_irq(FLOPPY_IRQ));
g_assert_cmpint(cyl, ==, 8);
g_assert_cmpint(head, ==, 1);