vfio-user: handle PCI BAR accesses

Determine the BARs used by the PCI device and register handlers to
manage the access to the same.

Signed-off-by: Elena Ufimtseva <elena.ufimtseva@oracle.com>
Signed-off-by: John G Johnson <john.g.johnson@oracle.com>
Signed-off-by: Jagannathan Raman <jag.raman@oracle.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 3373e10b5be5f42846f0632d4382466e1698c505.1655151679.git.jag.raman@oracle.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Jagannathan Raman 2022-06-13 16:26:32 -04:00 committed by Stefan Hajnoczi
parent 15ccf9bee7
commit 3123f93d6b
5 changed files with 203 additions and 6 deletions

View File

@ -9,3 +9,6 @@ vfu_cfg_read(uint32_t offset, uint32_t val) "vfu: cfg: 0x%u -> 0x%x"
vfu_cfg_write(uint32_t offset, uint32_t val) "vfu: cfg: 0x%u <- 0x%x"
vfu_dma_register(uint64_t gpa, size_t len) "vfu: registering GPA 0x%"PRIx64", %zu bytes"
vfu_dma_unregister(uint64_t gpa) "vfu: unregistering GPA 0x%"PRIx64""
vfu_bar_register(int i, uint64_t addr, uint64_t size) "vfu: BAR %d: addr 0x%"PRIx64" size 0x%"PRIx64""
vfu_bar_rw_enter(const char *op, uint64_t addr) "vfu: %s request for BAR address 0x%"PRIx64""
vfu_bar_rw_exit(const char *op, uint64_t addr) "vfu: Finished %s of BAR address 0x%"PRIx64""

View File

@ -52,6 +52,7 @@
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
#include "qemu/timer.h"
#include "exec/memory.h"
#define TYPE_VFU_OBJECT "x-vfio-user-server"
OBJECT_DECLARE_TYPE(VfuObject, VfuObjectClass, VFU_OBJECT)
@ -332,6 +333,193 @@ static void dma_unregister(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
trace_vfu_dma_unregister((uint64_t)info->iova.iov_base);
}
static int vfu_object_mr_rw(MemoryRegion *mr, uint8_t *buf, hwaddr offset,
hwaddr size, const bool is_write)
{
uint8_t *ptr = buf;
bool release_lock = false;
uint8_t *ram_ptr = NULL;
MemTxResult result;
int access_size;
uint64_t val;
if (memory_access_is_direct(mr, is_write)) {
/**
* Some devices expose a PCI expansion ROM, which could be buffer
* based as compared to other regions which are primarily based on
* MemoryRegionOps. memory_region_find() would already check
* for buffer overflow, we don't need to repeat it here.
*/
ram_ptr = memory_region_get_ram_ptr(mr);
if (is_write) {
memcpy((ram_ptr + offset), buf, size);
} else {
memcpy(buf, (ram_ptr + offset), size);
}
return 0;
}
while (size) {
/**
* The read/write logic used below is similar to the ones in
* flatview_read/write_continue()
*/
release_lock = prepare_mmio_access(mr);
access_size = memory_access_size(mr, size, offset);
if (is_write) {
val = ldn_he_p(ptr, access_size);
result = memory_region_dispatch_write(mr, offset, val,
size_memop(access_size),
MEMTXATTRS_UNSPECIFIED);
} else {
result = memory_region_dispatch_read(mr, offset, &val,
size_memop(access_size),
MEMTXATTRS_UNSPECIFIED);
stn_he_p(ptr, access_size, val);
}
if (release_lock) {
qemu_mutex_unlock_iothread();
release_lock = false;
}
if (result != MEMTX_OK) {
return -1;
}
size -= access_size;
ptr += access_size;
offset += access_size;
}
return 0;
}
static size_t vfu_object_bar_rw(PCIDevice *pci_dev, int pci_bar,
hwaddr bar_offset, char * const buf,
hwaddr len, const bool is_write)
{
MemoryRegionSection section = { 0 };
uint8_t *ptr = (uint8_t *)buf;
MemoryRegion *section_mr = NULL;
uint64_t section_size;
hwaddr section_offset;
hwaddr size = 0;
while (len) {
section = memory_region_find(pci_dev->io_regions[pci_bar].memory,
bar_offset, len);
if (!section.mr) {
warn_report("vfu: invalid address 0x%"PRIx64"", bar_offset);
return size;
}
section_mr = section.mr;
section_offset = section.offset_within_region;
section_size = int128_get64(section.size);
if (is_write && section_mr->readonly) {
warn_report("vfu: attempting to write to readonly region in "
"bar %d - [0x%"PRIx64" - 0x%"PRIx64"]",
pci_bar, bar_offset,
(bar_offset + section_size));
memory_region_unref(section_mr);
return size;
}
if (vfu_object_mr_rw(section_mr, ptr, section_offset,
section_size, is_write)) {
warn_report("vfu: failed to %s "
"[0x%"PRIx64" - 0x%"PRIx64"] in bar %d",
is_write ? "write to" : "read from", bar_offset,
(bar_offset + section_size), pci_bar);
memory_region_unref(section_mr);
return size;
}
size += section_size;
bar_offset += section_size;
ptr += section_size;
len -= section_size;
memory_region_unref(section_mr);
}
return size;
}
/**
* VFU_OBJECT_BAR_HANDLER - macro for defining handlers for PCI BARs.
*
* To create handler for BAR number 2, VFU_OBJECT_BAR_HANDLER(2) would
* define vfu_object_bar2_handler
*/
#define VFU_OBJECT_BAR_HANDLER(BAR_NO) \
static ssize_t vfu_object_bar##BAR_NO##_handler(vfu_ctx_t *vfu_ctx, \
char * const buf, size_t count, \
loff_t offset, const bool is_write) \
{ \
VfuObject *o = vfu_get_private(vfu_ctx); \
PCIDevice *pci_dev = o->pci_dev; \
\
return vfu_object_bar_rw(pci_dev, BAR_NO, offset, \
buf, count, is_write); \
} \
VFU_OBJECT_BAR_HANDLER(0)
VFU_OBJECT_BAR_HANDLER(1)
VFU_OBJECT_BAR_HANDLER(2)
VFU_OBJECT_BAR_HANDLER(3)
VFU_OBJECT_BAR_HANDLER(4)
VFU_OBJECT_BAR_HANDLER(5)
VFU_OBJECT_BAR_HANDLER(6)
static vfu_region_access_cb_t *vfu_object_bar_handlers[PCI_NUM_REGIONS] = {
&vfu_object_bar0_handler,
&vfu_object_bar1_handler,
&vfu_object_bar2_handler,
&vfu_object_bar3_handler,
&vfu_object_bar4_handler,
&vfu_object_bar5_handler,
&vfu_object_bar6_handler,
};
/**
* vfu_object_register_bars - Identify active BAR regions of pdev and setup
* callbacks to handle read/write accesses
*/
static void vfu_object_register_bars(vfu_ctx_t *vfu_ctx, PCIDevice *pdev)
{
int flags = VFU_REGION_FLAG_RW;
int i;
for (i = 0; i < PCI_NUM_REGIONS; i++) {
if (!pdev->io_regions[i].size) {
continue;
}
if ((i == VFU_PCI_DEV_ROM_REGION_IDX) ||
pdev->io_regions[i].memory->readonly) {
flags &= ~VFU_REGION_FLAG_WRITE;
}
vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX + i,
(size_t)pdev->io_regions[i].size,
vfu_object_bar_handlers[i],
flags, NULL, 0, -1, 0);
trace_vfu_bar_register(i, pdev->io_regions[i].addr,
pdev->io_regions[i].size);
}
}
/*
* TYPE_VFU_OBJECT depends on the availability of the 'socket' and 'device'
* properties. It also depends on devices instantiated in QEMU. These
@ -442,6 +630,8 @@ static void vfu_object_init_ctx(VfuObject *o, Error **errp)
goto fail;
}
vfu_object_register_bars(o->vfu_ctx, o->pci_dev);
ret = vfu_realize_ctx(o->vfu_ctx);
if (ret < 0) {
error_setg(errp, "vfu: Failed to realize device %s- %s",

View File

@ -2810,6 +2810,9 @@ MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
hwaddr addr, const void *buf,
hwaddr len);
int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
bool prepare_mmio_access(MemoryRegion *mr);
static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
{
if (is_write) {

View File

@ -2719,7 +2719,7 @@ void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
invalidate_and_set_dirty(mr, addr, size);
}
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
{
unsigned access_size_max = mr->ops->valid.max_access_size;
@ -2746,7 +2746,7 @@ static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
return l;
}
static bool prepare_mmio_access(MemoryRegion *mr)
bool prepare_mmio_access(MemoryRegion *mr)
{
bool release_lock = false;

View File

@ -144,7 +144,7 @@ static void *pattern_alloc(pattern p, size_t len)
return buf;
}
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
{
unsigned access_size_max = mr->ops->valid.max_access_size;
@ -242,11 +242,12 @@ void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
/*
* If mr1 isn't RAM, address_space_translate doesn't update l. Use
* memory_access_size to identify the number of bytes that it is safe
* to write without accidentally writing to another MemoryRegion.
* fuzz_memory_access_size to identify the number of bytes that it
* is safe to write without accidentally writing to another
* MemoryRegion.
*/
if (!memory_region_is_ram(mr1)) {
l = memory_access_size(mr1, l, addr1);
l = fuzz_memory_access_size(mr1, l, addr1);
}
if (memory_region_is_ram(mr1) ||
memory_region_is_romd(mr1) ||