scripts/dump-guest-memory.py: Introduce multi-arch support

By modelling the ELF with ctypes we not only gain full python 3
support but can also create dumps for different architectures more easily.

Tested-by: Andrew Jones <drjones@redhat.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Message-Id: <1453464520-3882-6-git-send-email-frankja@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Janosch Frank 2016-01-22 13:08:39 +01:00 committed by Paolo Bonzini
parent 6782c0e785
commit 368e3adc89
1 changed files with 322 additions and 164 deletions

View File

@ -6,6 +6,7 @@
#
# Authors:
# Laszlo Ersek <lersek@redhat.com>
# Janosch Frank <frankja@linux.vnet.ibm.com>
#
# This work is licensed under the terms of the GNU GPL, version 2 or later. See
# the COPYING file in the top-level directory.
@ -15,58 +16,303 @@
# "help data" summary), and it should match how other help texts look in
# gdb.
import struct
import ctypes
UINTPTR_T = gdb.lookup_type("uintptr_t")
TARGET_PAGE_SIZE = 0x1000
TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000
# Various ELF constants
EM_X86_64 = 62 # AMD x86-64 target machine
ELFDATA2LSB = 1 # little endian
ELFCLASS64 = 2
ELFMAG = "\x7FELF"
EV_CURRENT = 1
ET_CORE = 4
PT_LOAD = 1
PT_NOTE = 4
# Special value for e_phnum. This indicates that the real number of
# program headers is too large to fit into e_phnum. Instead the real
# value is in the field sh_info of section 0.
PN_XNUM = 0xFFFF
# Format strings for packing and header size calculation.
ELF64_EHDR = ("4s" # e_ident/magic
"B" # e_ident/class
"B" # e_ident/data
"B" # e_ident/version
"B" # e_ident/osabi
"8s" # e_ident/pad
"H" # e_type
"H" # e_machine
"I" # e_version
"Q" # e_entry
"Q" # e_phoff
"Q" # e_shoff
"I" # e_flags
"H" # e_ehsize
"H" # e_phentsize
"H" # e_phnum
"H" # e_shentsize
"H" # e_shnum
"H" # e_shstrndx
)
ELF64_PHDR = ("I" # p_type
"I" # p_flags
"Q" # p_offset
"Q" # p_vaddr
"Q" # p_paddr
"Q" # p_filesz
"Q" # p_memsz
"Q" # p_align
)
EV_CURRENT = 1
ELFCLASS32 = 1
ELFCLASS64 = 2
ELFDATA2LSB = 1
ELFDATA2MSB = 2
ET_CORE = 4
PT_LOAD = 1
PT_NOTE = 4
EM_386 = 3
EM_PPC = 20
EM_PPC64 = 21
EM_S390 = 22
EM_AARCH = 183
EM_X86_64 = 62
class ELF(object):
"""Representation of a ELF file."""
def __init__(self, arch):
self.ehdr = None
self.notes = []
self.segments = []
self.notes_size = 0
self.endianess = None
self.elfclass = ELFCLASS64
if arch == 'aarch64-le':
self.endianess = ELFDATA2LSB
self.elfclass = ELFCLASS64
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_AARCH
elif arch == 'aarch64-be':
self.endianess = ELFDATA2MSB
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_AARCH
elif arch == 'X86_64':
self.endianess = ELFDATA2LSB
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_X86_64
elif arch == '386':
self.endianess = ELFDATA2LSB
self.elfclass = ELFCLASS32
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_386
elif arch == 's390':
self.endianess = ELFDATA2MSB
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_S390
elif arch == 'ppc64-le':
self.endianess = ELFDATA2LSB
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_PPC64
elif arch == 'ppc64-be':
self.endianess = ELFDATA2MSB
self.ehdr = get_arch_ehdr(self.endianess, self.elfclass)
self.ehdr.e_machine = EM_PPC64
else:
raise gdb.GdbError("No valid arch type specified.\n"
"Currently supported types:\n"
"aarch64-be, aarch64-le, X86_64, 386, s390, "
"ppc64-be, ppc64-le")
self.add_segment(PT_NOTE, 0, 0)
def add_note(self, n_name, n_desc, n_type):
"""Adds a note to the ELF."""
note = get_arch_note(self.endianess, len(n_name), len(n_desc))
note.n_namesz = len(n_name) + 1
note.n_descsz = len(n_desc)
note.n_name = n_name.encode()
note.n_type = n_type
# Desc needs to be 4 byte aligned (although the 64bit spec
# specifies 8 byte). When defining n_desc as uint32 it will be
# automatically aligned but we need the memmove to copy the
# string into it.
ctypes.memmove(note.n_desc, n_desc.encode(), len(n_desc))
self.notes.append(note)
self.segments[0].p_filesz += ctypes.sizeof(note)
self.segments[0].p_memsz += ctypes.sizeof(note)
def add_segment(self, p_type, p_paddr, p_size):
"""Adds a segment to the elf."""
phdr = get_arch_phdr(self.endianess, self.elfclass)
phdr.p_type = p_type
phdr.p_paddr = p_paddr
phdr.p_filesz = p_size
phdr.p_memsz = p_size
self.segments.append(phdr)
self.ehdr.e_phnum += 1
def to_file(self, elf_file):
"""Writes all ELF structures to the the passed file.
Structure:
Ehdr
Segment 0:PT_NOTE
Segment 1:PT_LOAD
Segment N:PT_LOAD
Note 0..N
Dump contents
"""
elf_file.write(self.ehdr)
off = ctypes.sizeof(self.ehdr) + \
len(self.segments) * ctypes.sizeof(self.segments[0])
for phdr in self.segments:
phdr.p_offset = off
elf_file.write(phdr)
off += phdr.p_filesz
for note in self.notes:
elf_file.write(note)
def get_arch_note(endianess, len_name, len_desc):
"""Returns a Note class with the specified endianess."""
if endianess == ELFDATA2LSB:
superclass = ctypes.LittleEndianStructure
else:
superclass = ctypes.BigEndianStructure
len_name = len_name + 1
class Note(superclass):
"""Represents an ELF note, includes the content."""
_fields_ = [("n_namesz", ctypes.c_uint32),
("n_descsz", ctypes.c_uint32),
("n_type", ctypes.c_uint32),
("n_name", ctypes.c_char * len_name),
("n_desc", ctypes.c_uint32 * ((len_desc + 3) // 4))]
return Note()
class Ident(ctypes.Structure):
"""Represents the ELF ident array in the ehdr structure."""
_fields_ = [('ei_mag0', ctypes.c_ubyte),
('ei_mag1', ctypes.c_ubyte),
('ei_mag2', ctypes.c_ubyte),
('ei_mag3', ctypes.c_ubyte),
('ei_class', ctypes.c_ubyte),
('ei_data', ctypes.c_ubyte),
('ei_version', ctypes.c_ubyte),
('ei_osabi', ctypes.c_ubyte),
('ei_abiversion', ctypes.c_ubyte),
('ei_pad', ctypes.c_ubyte * 7)]
def __init__(self, endianess, elfclass):
self.ei_mag0 = 0x7F
self.ei_mag1 = ord('E')
self.ei_mag2 = ord('L')
self.ei_mag3 = ord('F')
self.ei_class = elfclass
self.ei_data = endianess
self.ei_version = EV_CURRENT
def get_arch_ehdr(endianess, elfclass):
"""Returns a EHDR64 class with the specified endianess."""
if endianess == ELFDATA2LSB:
superclass = ctypes.LittleEndianStructure
else:
superclass = ctypes.BigEndianStructure
class EHDR64(superclass):
"""Represents the 64 bit ELF header struct."""
_fields_ = [('e_ident', Ident),
('e_type', ctypes.c_uint16),
('e_machine', ctypes.c_uint16),
('e_version', ctypes.c_uint32),
('e_entry', ctypes.c_uint64),
('e_phoff', ctypes.c_uint64),
('e_shoff', ctypes.c_uint64),
('e_flags', ctypes.c_uint32),
('e_ehsize', ctypes.c_uint16),
('e_phentsize', ctypes.c_uint16),
('e_phnum', ctypes.c_uint16),
('e_shentsize', ctypes.c_uint16),
('e_shnum', ctypes.c_uint16),
('e_shstrndx', ctypes.c_uint16)]
def __init__(self):
super(superclass, self).__init__()
self.e_ident = Ident(endianess, elfclass)
self.e_type = ET_CORE
self.e_version = EV_CURRENT
self.e_ehsize = ctypes.sizeof(self)
self.e_phoff = ctypes.sizeof(self)
self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianess, elfclass))
self.e_phnum = 0
class EHDR32(superclass):
"""Represents the 32 bit ELF header struct."""
_fields_ = [('e_ident', Ident),
('e_type', ctypes.c_uint16),
('e_machine', ctypes.c_uint16),
('e_version', ctypes.c_uint32),
('e_entry', ctypes.c_uint32),
('e_phoff', ctypes.c_uint32),
('e_shoff', ctypes.c_uint32),
('e_flags', ctypes.c_uint32),
('e_ehsize', ctypes.c_uint16),
('e_phentsize', ctypes.c_uint16),
('e_phnum', ctypes.c_uint16),
('e_shentsize', ctypes.c_uint16),
('e_shnum', ctypes.c_uint16),
('e_shstrndx', ctypes.c_uint16)]
def __init__(self):
super(superclass, self).__init__()
self.e_ident = Ident(endianess, elfclass)
self.e_type = ET_CORE
self.e_version = EV_CURRENT
self.e_ehsize = ctypes.sizeof(self)
self.e_phoff = ctypes.sizeof(self)
self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianess, elfclass))
self.e_phnum = 0
# End get_arch_ehdr
if elfclass == ELFCLASS64:
return EHDR64()
else:
return EHDR32()
def get_arch_phdr(endianess, elfclass):
"""Returns a 32 or 64 bit PHDR class with the specified endianess."""
if endianess == ELFDATA2LSB:
superclass = ctypes.LittleEndianStructure
else:
superclass = ctypes.BigEndianStructure
class PHDR64(superclass):
"""Represents the 64 bit ELF program header struct."""
_fields_ = [('p_type', ctypes.c_uint32),
('p_flags', ctypes.c_uint32),
('p_offset', ctypes.c_uint64),
('p_vaddr', ctypes.c_uint64),
('p_paddr', ctypes.c_uint64),
('p_filesz', ctypes.c_uint64),
('p_memsz', ctypes.c_uint64),
('p_align', ctypes.c_uint64)]
class PHDR32(superclass):
"""Represents the 32 bit ELF program header struct."""
_fields_ = [('p_type', ctypes.c_uint32),
('p_offset', ctypes.c_uint32),
('p_vaddr', ctypes.c_uint32),
('p_paddr', ctypes.c_uint32),
('p_filesz', ctypes.c_uint32),
('p_memsz', ctypes.c_uint32),
('p_flags', ctypes.c_uint32),
('p_align', ctypes.c_uint32)]
# End get_arch_phdr
if elfclass == ELFCLASS64:
return PHDR64()
else:
return PHDR32()
def int128_get64(val):
"""Returns low 64bit part of Int128 struct."""
@ -188,20 +434,22 @@ def get_guest_phys_blocks():
class DumpGuestMemory(gdb.Command):
"""Extract guest vmcore from qemu process coredump.
The sole argument is FILE, identifying the target file to write the
guest vmcore to.
The two required arguments are FILE and ARCH:
FILE identifies the target file to write the guest vmcore to.
ARCH specifies the architecture for which the core will be generated.
This GDB command reimplements the dump-guest-memory QMP command in
python, using the representation of guest memory as captured in the qemu
coredump. The qemu process that has been dumped must have had the
command line option "-machine dump-guest-core=on".
command line option "-machine dump-guest-core=on" which is the default.
For simplicity, the "paging", "begin" and "end" parameters of the QMP
command are not supported -- no attempt is made to get the guest's
internal paging structures (ie. paging=false is hard-wired), and guest
memory is always fully dumped.
Only x86_64 guests are supported.
Currently aarch64-be, aarch64-le, X86_64, 386, s390, ppc64-be,
ppc64-le guests are supported.
The CORE/NT_PRSTATUS and QEMU notes (that is, the VCPUs' statuses) are
not written to the vmcore. Preparing these would require context that is
@ -219,129 +467,39 @@ shape and this command should mostly work."""
super(DumpGuestMemory, self).__init__("dump-guest-memory",
gdb.COMMAND_DATA,
gdb.COMPLETE_FILENAME)
self.elf64_ehdr_le = struct.Struct("<%s" % ELF64_EHDR)
self.elf64_phdr_le = struct.Struct("<%s" % ELF64_PHDR)
self.elf = None
self.guest_phys_blocks = None
def cpu_get_dump_info(self):
# We can't synchronize the registers with KVM post-mortem, and
# the bits in (first_x86_cpu->env.hflags) seem to be stale; they
# may not reflect long mode for example. Hence just assume the
# most common values. This also means that instruction pointer
# etc. will be bogus in the dump, but at least the RAM contents
# should be valid.
self.dump_info = {"d_machine": EM_X86_64,
"d_endian" : ELFDATA2LSB,
"d_class" : ELFCLASS64}
def dump_init(self, vmcore):
"""Prepares and writes ELF structures to core file."""
def encode_elf64_ehdr_le(self):
return self.elf64_ehdr_le.pack(
ELFMAG, # e_ident/magic
self.dump_info["d_class"], # e_ident/class
self.dump_info["d_endian"], # e_ident/data
EV_CURRENT, # e_ident/version
0, # e_ident/osabi
"", # e_ident/pad
ET_CORE, # e_type
self.dump_info["d_machine"], # e_machine
EV_CURRENT, # e_version
0, # e_entry
self.elf64_ehdr_le.size, # e_phoff
0, # e_shoff
0, # e_flags
self.elf64_ehdr_le.size, # e_ehsize
self.elf64_phdr_le.size, # e_phentsize
self.phdr_num, # e_phnum
0, # e_shentsize
0, # e_shnum
0 # e_shstrndx
)
# Needed to make crash happy, data for more useful notes is
# not available in a qemu core.
self.elf.add_note("NONE", "EMPTY", 0)
def encode_elf64_note_le(self):
return self.elf64_phdr_le.pack(PT_NOTE, # p_type
0, # p_flags
(self.memory_offset -
len(self.note)), # p_offset
0, # p_vaddr
0, # p_paddr
len(self.note), # p_filesz
len(self.note), # p_memsz
0 # p_align
)
# We should never reach PN_XNUM for paging=false dumps,
# there's just a handful of discontiguous ranges after
# merging.
# The constant is needed to account for the PT_NOTE segment.
phdr_num = len(self.guest_phys_blocks) + 1
assert phdr_num < PN_XNUM
def encode_elf64_load_le(self, offset, start_hwaddr, range_size):
return self.elf64_phdr_le.pack(PT_LOAD, # p_type
0, # p_flags
offset, # p_offset
0, # p_vaddr
start_hwaddr, # p_paddr
range_size, # p_filesz
range_size, # p_memsz
0 # p_align
)
def note_init(self, name, desc, type):
# name must include a trailing NUL
namesz = (len(name) + 1 + 3) / 4 * 4
descsz = (len(desc) + 3) / 4 * 4
fmt = ("<" # little endian
"I" # n_namesz
"I" # n_descsz
"I" # n_type
"%us" # name
"%us" # desc
% (namesz, descsz))
self.note = struct.pack(fmt,
len(name) + 1, len(desc), type, name, desc)
def dump_init(self):
self.guest_phys_blocks = get_guest_phys_blocks()
self.cpu_get_dump_info()
# we have no way to retrieve the VCPU status from KVM
# post-mortem
self.note_init("NONE", "EMPTY", 0)
# Account for PT_NOTE.
self.phdr_num = 1
# We should never reach PN_XNUM for paging=false dumps: there's
# just a handful of discontiguous ranges after merging.
self.phdr_num += len(self.guest_phys_blocks)
assert self.phdr_num < PN_XNUM
# Calculate the ELF file offset where the memory dump commences:
#
# ELF header
# PT_NOTE
# PT_LOAD: 1
# PT_LOAD: 2
# ...
# PT_LOAD: len(self.guest_phys_blocks)
# ELF note
# memory dump
self.memory_offset = (self.elf64_ehdr_le.size +
self.elf64_phdr_le.size * self.phdr_num +
len(self.note))
def dump_begin(self, vmcore):
vmcore.write(self.encode_elf64_ehdr_le())
vmcore.write(self.encode_elf64_note_le())
running = self.memory_offset
for block in self.guest_phys_blocks:
range_size = block["target_end"] - block["target_start"]
vmcore.write(self.encode_elf64_load_le(running,
block["target_start"],
range_size))
running += range_size
vmcore.write(self.note)
block_size = block["target_end"] - block["target_start"]
self.elf.add_segment(PT_LOAD, block["target_start"], block_size)
self.elf.to_file(vmcore)
def dump_iterate(self, vmcore):
"""Writes guest core to file."""
qemu_core = gdb.inferiors()[0]
for block in self.guest_phys_blocks:
cur = block["host_addr"]
left = block["target_end"] - block["target_start"]
print("dumping range at %016x for length %016x" %
(cur.cast(UINTPTR_T), left))
while left > 0:
chunk_size = min(TARGET_PAGE_SIZE, left)
chunk = qemu_core.read_memory(cur, chunk_size)
@ -349,22 +507,22 @@ shape and this command should mostly work."""
cur += chunk_size
left -= chunk_size
def create_vmcore(self, filename):
vmcore = open(filename, "wb")
self.dump_begin(vmcore)
self.dump_iterate(vmcore)
vmcore.close()
def invoke(self, args, from_tty):
"""Handles command invocation from gdb."""
# Unwittingly pressing the Enter key after the command should
# not dump the same multi-gig coredump to the same file.
self.dont_repeat()
argv = gdb.string_to_argv(args)
if len(argv) != 1:
raise gdb.GdbError("usage: dump-guest-memory FILE")
if len(argv) != 2:
raise gdb.GdbError("usage: dump-guest-memory FILE ARCH")
self.dump_init()
self.create_vmcore(argv[0])
self.elf = ELF(argv[1])
self.guest_phys_blocks = get_guest_phys_blocks()
with open(argv[0], "wb") as vmcore:
self.dump_init(vmcore)
self.dump_iterate(vmcore)
DumpGuestMemory()