* Add dummy next-cube ethernet register to allow diagnostic to timeout

* Don't pulse next-cube SCSI DMA IRQ upon reception of FLUSH command
 * Rework next-cube mmio ops and system control register handling functions
 * Embed next-cube MemoryRegions into NeXTState
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCAAxFiEEJ7iIR+7gJQEY8+q5LtnXdP5wLbUFAmWFkbYTHGh1dGhAdHV4
 ZmFtaWx5Lm9yZwAKCRAu2dd0/nAttczHD/9DJKhSFPw+4dLF9kTk7hhs1FMBlD+x
 rrrfiP5U33fvL/+3ZzriovKjPkt2M/2C9/bg2G+smugg56gcWKXfNRX+bB8nx1J9
 +rlFhKa3pHvG7EXDWkWjbzceMS3W3T2RBzx1RNs/TmLnCWAmx0J//ADGqfZm6Bxf
 1C65S8uUFN4VRWKdiynSkCfOwIockFPVE6A8G1QkCfBdhzWfMORcm1AplwOQLzKo
 qF6zU9s5i4b0FAj3NWgnK2W3l8PhYYasn18wpQ6krmBuFIJlTvuNpbIAiLfZyaeh
 Svb9gN/41AAiGiq25NUkAcXmWehFWeBzZ5Dpnxw3HfVJkqiBmB2GMUGIvrBbSsvH
 mBqDX/0IGGSrvUM8B7Zij6wFhrjtrhhufpDmn9hqb+x8v/YOOLt/qT6QCHyrUJZs
 LGcEoL2B1NgVWflyvEzJaC6TbLm2zmzHSto2HA90vL9P9taKmqaxeXGS8mt3o4iN
 Ev4Q/oQnUulHKYyVGqpt0DGRxSO6C8+0uoSCKYSehqPnACGtCJXpa33fYZyFg6ax
 wsNqA8PY8FKJ3vTSazkDhIcWJvkat6U0EMWaeO21XOsZTw/I2bY7ztMnWeaV9UJh
 76ZTOO3sxlZt4tDM5ddpW6PobFp4T+qA8KQOWp+ecVfi7xvzXp7zahxR+gYFtcsR
 qkJ8/X5SfiCtgg==
 =y0ez
 -----END PGP SIGNATURE-----

Merge tag 'm68k-pull-2023-12-22' of https://gitlab.com/huth/qemu into staging

* Add dummy next-cube ethernet register to allow diagnostic to timeout
* Don't pulse next-cube SCSI DMA IRQ upon reception of FLUSH command
* Rework next-cube mmio ops and system control register handling functions
* Embed next-cube MemoryRegions into NeXTState

# -----BEGIN PGP SIGNATURE-----
#
# iQJHBAABCAAxFiEEJ7iIR+7gJQEY8+q5LtnXdP5wLbUFAmWFkbYTHGh1dGhAdHV4
# ZmFtaWx5Lm9yZwAKCRAu2dd0/nAttczHD/9DJKhSFPw+4dLF9kTk7hhs1FMBlD+x
# rrrfiP5U33fvL/+3ZzriovKjPkt2M/2C9/bg2G+smugg56gcWKXfNRX+bB8nx1J9
# +rlFhKa3pHvG7EXDWkWjbzceMS3W3T2RBzx1RNs/TmLnCWAmx0J//ADGqfZm6Bxf
# 1C65S8uUFN4VRWKdiynSkCfOwIockFPVE6A8G1QkCfBdhzWfMORcm1AplwOQLzKo
# qF6zU9s5i4b0FAj3NWgnK2W3l8PhYYasn18wpQ6krmBuFIJlTvuNpbIAiLfZyaeh
# Svb9gN/41AAiGiq25NUkAcXmWehFWeBzZ5Dpnxw3HfVJkqiBmB2GMUGIvrBbSsvH
# mBqDX/0IGGSrvUM8B7Zij6wFhrjtrhhufpDmn9hqb+x8v/YOOLt/qT6QCHyrUJZs
# LGcEoL2B1NgVWflyvEzJaC6TbLm2zmzHSto2HA90vL9P9taKmqaxeXGS8mt3o4iN
# Ev4Q/oQnUulHKYyVGqpt0DGRxSO6C8+0uoSCKYSehqPnACGtCJXpa33fYZyFg6ax
# wsNqA8PY8FKJ3vTSazkDhIcWJvkat6U0EMWaeO21XOsZTw/I2bY7ztMnWeaV9UJh
# 76ZTOO3sxlZt4tDM5ddpW6PobFp4T+qA8KQOWp+ecVfi7xvzXp7zahxR+gYFtcsR
# qkJ8/X5SfiCtgg==
# =y0ez
# -----END PGP SIGNATURE-----
# gpg: Signature made Fri 22 Dec 2023 08:40:06 EST
# gpg:                using RSA key 27B88847EEE0250118F3EAB92ED9D774FE702DB5
# gpg:                issuer "huth@tuxfamily.org"
# gpg: Good signature from "Thomas Huth <th.huth@gmx.de>" [full]
# gpg:                 aka "Thomas Huth <thuth@redhat.com>" [full]
# gpg:                 aka "Thomas Huth <huth@tuxfamily.org>" [full]
# gpg:                 aka "Thomas Huth <th.huth@posteo.de>" [unknown]
# Primary key fingerprint: 27B8 8847 EEE0 2501 18F3  EAB9 2ED9 D774 FE70 2DB5

* tag 'm68k-pull-2023-12-22' of https://gitlab.com/huth/qemu:
  next-cube.c: move machine MemoryRegions into NeXTState
  next-cube.c: remove val and size arguments from nextscr2_write()
  next-cube.c: move LED logic to new next_scr2_led_update() function
  next-cube.c: move static old_scr2 variable to NeXTPC
  next-cube.c: move static phase variable to NextRtc
  next-cube.c: move static led variable to NeXTPC
  next-cube.c: update and improve dma_ops
  next-cube.c: update scr_ops to properly use modern memory API
  next-cube.c: update mmio_ops to properly use modern memory API
  next-cube.c: don't pulse SCSI DMA IRQ upon reception of FLUSH command
  next-cube.c: add dummy Ethernet register to allow diagnostic to timeout

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Stefan Hajnoczi 2023-12-26 06:05:20 -05:00
commit 400819c837

View File

@ -62,6 +62,7 @@ typedef struct next_dma {
} next_dma;
typedef struct NextRtc {
int8_t phase;
uint8_t ram[32];
uint8_t command;
uint8_t value;
@ -73,6 +74,12 @@ typedef struct NextRtc {
struct NeXTState {
MachineState parent;
MemoryRegion rom;
MemoryRegion rom2;
MemoryRegion dmamem;
MemoryRegion bmapm1;
MemoryRegion bmapm2;
next_dma dma[10];
};
@ -90,8 +97,10 @@ struct NeXTPC {
uint32_t scr1;
uint32_t scr2;
uint32_t old_scr2;
uint32_t int_mask;
uint32_t int_status;
uint32_t led;
uint8_t scsi_csr_1;
uint8_t scsi_csr_2;
@ -121,49 +130,46 @@ static const uint8_t rtc_ram2[32] = {
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
static void next_scr2_led_update(NeXTPC *s)
{
static int led;
static int phase;
static uint8_t old_scr2;
uint8_t scr2_2;
NextRtc *rtc = &s->rtc;
if (size == 4) {
scr2_2 = (val >> 8) & 0xFF;
} else {
scr2_2 = val & 0xFF;
}
if (val & 0x1) {
if (s->scr2 & 0x1) {
DPRINTF("fault!\n");
led++;
if (led == 10) {
s->led++;
if (s->led == 10) {
DPRINTF("LED flashing, possible fault!\n");
led = 0;
s->led = 0;
}
}
}
static void next_scr2_rtc_update(NeXTPC *s)
{
uint8_t old_scr2, scr2_2;
NextRtc *rtc = &s->rtc;
old_scr2 = extract32(s->old_scr2, 8, 8);
scr2_2 = extract32(s->scr2, 8, 8);
if (scr2_2 & 0x1) {
/* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
if (phase == -1) {
phase = 0;
/* DPRINTF("RTC %x phase %i\n", scr2_2, rtc->phase); */
if (rtc->phase == -1) {
rtc->phase = 0;
}
/* If we are in going down clock... do something */
if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
((scr2_2 & SCR2_RTCLK) == 0)) {
if (phase < 8) {
if (rtc->phase < 8) {
rtc->command = (rtc->command << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if (phase >= 8 && phase < 16) {
if (rtc->phase >= 8 && rtc->phase < 16) {
rtc->value = (rtc->value << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
/* if we read RAM register, output RT_DATA bit */
if (rtc->command <= 0x1F) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
if (rtc->ram[rtc->command] & (0x80 >> (rtc->phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
@ -174,7 +180,7 @@ static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
if (rtc->command == 0x30) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now status = 0x98 (new rtc + FTU) */
if (rtc->status & (0x80 >> (phase - 8))) {
if (rtc->status & (0x80 >> (rtc->phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
@ -184,7 +190,7 @@ static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
/* read the status 0x31 */
if (rtc->command == 0x31) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (rtc->control & (0x80 >> (phase - 8))) {
if (rtc->control & (0x80 >> (rtc->phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
@ -220,7 +226,7 @@ static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
}
if (ret & (0x80 >> (phase - 8))) {
if (ret & (0x80 >> (rtc->phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
@ -229,8 +235,8 @@ static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
}
phase++;
if (phase == 16) {
rtc->phase++;
if (rtc->phase == 16) {
if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
rtc->ram[rtc->command - 0x80] = rtc->value;
}
@ -246,207 +252,98 @@ static void nextscr2_write(NeXTPC *s, uint32_t val, int size)
}
} else {
/* else end or abort */
phase = -1;
rtc->phase = -1;
rtc->command = 0;
rtc->value = 0;
}
s->scr2 = val & 0xFFFF00FF;
s->scr2 |= scr2_2 << 8;
old_scr2 = scr2_2;
s->scr2 = deposit32(s->scr2, 8, 8, scr2_2);
}
static uint32_t mmio_readb(NeXTPC *s, hwaddr addr)
static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
switch (addr) {
case 0xc000:
return (s->scr1 >> 24) & 0xFF;
case 0xc001:
return (s->scr1 >> 16) & 0xFF;
case 0xc002:
return (s->scr1 >> 8) & 0xFF;
case 0xc003:
return (s->scr1 >> 0) & 0xFF;
NeXTPC *s = NEXT_PC(opaque);
uint64_t val;
case 0xd000:
return (s->scr2 >> 24) & 0xFF;
case 0xd001:
return (s->scr2 >> 16) & 0xFF;
case 0xd002:
return (s->scr2 >> 8) & 0xFF;
case 0xd003:
return (s->scr2 >> 0) & 0xFF;
case 0x14020:
DPRINTF("MMIO Read 0x4020\n");
return 0x7f;
default:
DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readw(NeXTPC *s, hwaddr addr)
{
switch (addr) {
default:
DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readl(NeXTPC *s, hwaddr addr)
{
switch (addr) {
case 0x7000:
/* DPRINTF("Read INT status: %x\n", s->int_status); */
return s->int_status;
val = s->int_status;
break;
case 0x7800:
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
return s->int_mask;
case 0xc000:
return s->scr1;
case 0xd000:
return s->scr2;
default:
DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static void mmio_writeb(NeXTPC *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0xd003:
nextscr2_write(s, val, 1);
val = s->int_mask;
break;
case 0xc000 ... 0xc003:
val = extract32(s->scr1, (4 - (addr - 0xc000) - size) << 3,
size << 3);
break;
case 0xd000 ... 0xd003:
val = extract32(s->scr2, (4 - (addr - 0xd000) - size) << 3,
size << 3);
break;
case 0x14020:
val = 0x7f;
break;
default:
DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
val = 0;
DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size);
break;
}
return val;
}
static void mmio_writew(NeXTPC *s, hwaddr addr, uint32_t val)
static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
DPRINTF("MMIO Write W\n");
}
NeXTPC *s = NEXT_PC(opaque);
static void mmio_writel(NeXTPC *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0x7000:
DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
DPRINTF("INT Status old: %x new: %x\n", s->int_status,
(unsigned int)val);
s->int_status = val;
break;
case 0x7800:
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val);
s->int_mask = val;
break;
case 0xc000:
DPRINTF("SCR1 Write: %x\n", val);
case 0xc000 ... 0xc003:
DPRINTF("SCR1 Write: %x\n", (unsigned int)val);
s->scr1 = deposit32(s->scr1, (4 - (addr - 0xc000) - size) << 3,
size << 3, val);
break;
case 0xd000:
nextscr2_write(s, val, 4);
case 0xd000 ... 0xd003:
s->scr2 = deposit32(s->scr2, (4 - (addr - 0xd000) - size) << 3,
size << 3, val);
next_scr2_led_update(s);
next_scr2_rtc_update(s);
s->old_scr2 = s->scr2;
break;
default:
DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr,
(unsigned int)val, size);
}
}
static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (size) {
case 1:
return mmio_readb(s, addr);
case 2:
return mmio_readw(s, addr);
case 4:
return mmio_readl(s, addr);
default:
g_assert_not_reached();
}
}
static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (size) {
case 1:
mmio_writeb(s, addr, value);
break;
case 2:
mmio_writew(s, addr, value);
break;
case 4:
mmio_writel(s, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps mmio_ops = {
.read = mmio_readfn,
.write = mmio_writefn,
static const MemoryRegionOps next_mmio_ops = {
.read = next_mmio_read,
.write = next_mmio_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
.endianness = DEVICE_BIG_ENDIAN,
};
static uint32_t scr_readb(NeXTPC *s, hwaddr addr)
{
switch (addr) {
case 0x14108:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
return 0x40 | 0x04 | 0x2 | 0x1;
case 0x14020:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
return s->scsi_csr_1;
case 0x14021:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
return 0x40;
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far
*/
case 0x1a000:
return 0xff & (clock() >> 24);
case 0x1a001:
return 0xff & (clock() >> 16);
case 0x1a002:
return 0xff & (clock() >> 8);
case 0x1a003:
/* Hack: We need to have this change consistently to make it work */
return 0xFF & clock();
default:
DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
return 0;
}
}
static uint32_t scr_readw(NeXTPC *s, hwaddr addr)
{
DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
return 0;
}
static uint32_t scr_readl(NeXTPC *s, hwaddr addr)
{
DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
return 0;
}
#define SCSICSR_ENABLE 0x01
#define SCSICSR_RESET 0x02 /* reset scsi dma */
#define SCSICSR_FIFOFL 0x04
@ -454,25 +351,73 @@ static uint32_t scr_readl(NeXTPC *s, hwaddr addr)
#define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
static void scr_writeb(NeXTPC *s, hwaddr addr, uint32_t value)
static uint64_t next_scr_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
uint64_t val;
switch (addr) {
case 0x14108:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
val = 0x40 | 0x04 | 0x2 | 0x1;
break;
case 0x14020:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
val = s->scsi_csr_1;
break;
case 0x14021:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
val = 0x40;
break;
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far.
*
* Hack: We need to have the LSB change consistently to make it work
*/
case 0x1a000 ... 0x1a003:
val = extract32(clock(), (4 - (addr - 0x1a000) - size) << 3,
size << 3);
break;
/* For now return dummy byte to allow the Ethernet test to timeout */
case 0x6000:
val = 0xff;
break;
default:
DPRINTF("BMAP Read @ 0x%x size %u\n", (unsigned int)addr, size);
val = 0;
break;
}
return val;
}
static void next_scr_writefn(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (addr) {
case 0x14108:
DPRINTF("FDCSR Write: %x\n", value);
if (value == 0x0) {
if (val == 0x0) {
/* qemu_irq_raise(s->fd_irq[0]); */
}
break;
case 0x14020: /* SCSI Control Register */
if (value & SCSICSR_FIFOFL) {
if (val & SCSICSR_FIFOFL) {
DPRINTF("SCSICSR FIFO Flush\n");
/* will have to add another irq to the esp if this is needed */
/* esp_puflush_fifo(esp_g); */
qemu_irq_pulse(s->scsi_dma);
}
if (value & SCSICSR_ENABLE) {
if (val & SCSICSR_ENABLE) {
DPRINTF("SCSICSR Enable\n");
/*
* qemu_irq_raise(s->scsi_dma);
@ -486,17 +431,17 @@ static void scr_writeb(NeXTPC *s, hwaddr addr, uint32_t value)
* s->scsi_csr_1 &= ~SCSICSR_ENABLE;
*/
if (value & SCSICSR_RESET) {
if (val & SCSICSR_RESET) {
DPRINTF("SCSICSR Reset\n");
/* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
qemu_irq_raise(s->scsi_reset);
s->scsi_csr_1 &= ~(SCSICSR_INTMASK | 0x80 | 0x1);
qemu_irq_lower(s->scsi_reset);
}
if (value & SCSICSR_DMADIR) {
if (val & SCSICSR_DMADIR) {
DPRINTF("SCSICSR DMAdir\n");
}
if (value & SCSICSR_CPUDMA) {
if (val & SCSICSR_CPUDMA) {
DPRINTF("SCSICSR CPUDMA\n");
/* qemu_irq_raise(s->scsi_dma); */
s->int_status |= 0x4000000;
@ -505,11 +450,11 @@ static void scr_writeb(NeXTPC *s, hwaddr addr, uint32_t value)
s->int_status &= ~(0x4000000);
/* qemu_irq_lower(s->scsi_dma); */
}
if (value & SCSICSR_INTMASK) {
if (val & SCSICSR_INTMASK) {
DPRINTF("SCSICSR INTMASK\n");
/*
* int_mask &= ~0x1000;
* s->scsi_csr_1 |= value;
* s->scsi_csr_1 |= val;
* s->scsi_csr_1 &= ~SCSICSR_INTMASK;
* if (s->scsi_queued) {
* s->scsi_queued = 0;
@ -519,72 +464,28 @@ static void scr_writeb(NeXTPC *s, hwaddr addr, uint32_t value)
} else {
/* int_mask |= 0x1000; */
}
if (value & 0x80) {
if (val & 0x80) {
/* int_mask |= 0x1000; */
/* s->scsi_csr_1 |= 0x80; */
}
DPRINTF("SCSICSR Write: %x\n", value);
/* s->scsi_csr_1 = value; */
return;
DPRINTF("SCSICSR Write: %x\n", val);
/* s->scsi_csr_1 = val; */
break;
/* Hardware timer latch - not implemented yet */
case 0x1a000:
default:
DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
DPRINTF("BMAP Write @ 0x%x with 0x%x size %u\n", (unsigned int)addr,
val, size);
}
}
static void scr_writew(NeXTPC *s, hwaddr addr, uint32_t value)
{
DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
}
static void scr_writel(NeXTPC *s, hwaddr addr, uint32_t value)
{
DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
}
static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (size) {
case 1:
return scr_readb(s, addr);
case 2:
return scr_readw(s, addr);
case 4:
return scr_readl(s, addr);
default:
g_assert_not_reached();
}
}
static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (size) {
case 1:
scr_writeb(s, addr, value);
break;
case 2:
scr_writew(s, addr, value);
break;
case 4:
scr_writel(s, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps scr_ops = {
.read = scr_readfn,
.write = scr_writefn,
static const MemoryRegionOps next_scr_ops = {
.read = next_scr_readfn,
.write = next_scr_writefn,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
.endianness = DEVICE_BIG_ENDIAN,
};
#define NEXTDMA_SCSI(x) (0x10 + x)
@ -599,59 +500,63 @@ static const MemoryRegionOps scr_ops = {
#define NEXTDMA_NEXT_INIT 0x4200
#define NEXTDMA_SIZE 0x4204
static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
unsigned int size)
static void next_dma_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_ENRX(NEXTDMA_CSR):
if (value & DMA_DEV2M) {
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
}
if (value & DMA_SETENABLE) {
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
}
if (value & DMA_SETSUPDATE) {
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
}
if (value & DMA_CLRCOMPLETE) {
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
}
if (value & DMA_RESET) {
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
next_state->dma[NEXTDMA_ENRX].next_initbuf = val;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_ENRX].next = value;
next_state->dma[NEXTDMA_ENRX].next = val;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_ENRX].limit = value;
next_state->dma[NEXTDMA_ENRX].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_CSR):
if (value & DMA_DEV2M) {
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
}
if (value & DMA_SETENABLE) {
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
}
if (value & DMA_SETSUPDATE) {
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
}
if (value & DMA_CLRCOMPLETE) {
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
}
if (value & DMA_RESET) {
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
/* DPRINTF("SCSI DMA RESET\n"); */
@ -660,23 +565,23 @@ static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_SCSI].next = value;
next_state->dma[NEXTDMA_SCSI].next = val;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_SCSI].limit = value;
next_state->dma[NEXTDMA_SCSI].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
next_state->dma[NEXTDMA_SCSI].start = value;
next_state->dma[NEXTDMA_SCSI].start = val;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
next_state->dma[NEXTDMA_SCSI].stop = value;
next_state->dma[NEXTDMA_SCSI].stop = val;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
next_state->dma[NEXTDMA_SCSI].next_initbuf = val;
break;
default:
@ -684,52 +589,73 @@ static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
}
}
static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
static uint64_t next_dma_read(void *opaque, hwaddr addr, unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
uint64_t val;
switch (addr) {
case NEXTDMA_SCSI(NEXTDMA_CSR):
DPRINTF("SCSI DMA CSR READ\n");
return next_state->dma[NEXTDMA_SCSI].csr;
val = next_state->dma[NEXTDMA_SCSI].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_CSR):
return next_state->dma[NEXTDMA_ENRX].csr;
val = next_state->dma[NEXTDMA_ENRX].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
return next_state->dma[NEXTDMA_ENRX].next_initbuf;
val = next_state->dma[NEXTDMA_ENRX].next_initbuf;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
return next_state->dma[NEXTDMA_ENRX].next;
val = next_state->dma[NEXTDMA_ENRX].next;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
return next_state->dma[NEXTDMA_ENRX].limit;
val = next_state->dma[NEXTDMA_ENRX].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
return next_state->dma[NEXTDMA_SCSI].next;
val = next_state->dma[NEXTDMA_SCSI].next;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
return next_state->dma[NEXTDMA_SCSI].next_initbuf;
val = next_state->dma[NEXTDMA_SCSI].next_initbuf;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
return next_state->dma[NEXTDMA_SCSI].limit;
val = next_state->dma[NEXTDMA_SCSI].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
return next_state->dma[NEXTDMA_SCSI].start;
val = next_state->dma[NEXTDMA_SCSI].start;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
return next_state->dma[NEXTDMA_SCSI].stop;
val = next_state->dma[NEXTDMA_SCSI].stop;
break;
default:
DPRINTF("DMA read @ %x\n", (unsigned int)addr);
return 0;
val = 0;
}
/*
* once the csr's are done, subtract 0x3FEC from the addr, and that will
* normalize the upper registers
*/
return val;
}
static const MemoryRegionOps dma_ops = {
.read = dma_readl,
.write = dma_writel,
static const MemoryRegionOps next_dma_ops = {
.read = next_dma_read,
.write = next_dma_write,
.impl.min_access_size = 4,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_irq(void *opaque, int number, int level)
@ -959,6 +885,7 @@ static void next_pc_reset(DeviceState *dev)
/* 0x0000XX00 << vital bits */
s->scr1 = 0x00011102;
s->scr2 = 0x00ff0c80;
s->old_scr2 = s->scr2;
s->rtc.status = 0x90;
@ -973,9 +900,9 @@ static void next_pc_realize(DeviceState *dev, Error **errp)
qdev_init_gpio_in(dev, next_irq, NEXT_NUM_IRQS);
memory_region_init_io(&s->mmiomem, OBJECT(s), &mmio_ops, s,
"next.mmio", 0xD0000);
memory_region_init_io(&s->scrmem, OBJECT(s), &scr_ops, s,
memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s,
"next.mmio", 0xd0000);
memory_region_init_io(&s->scrmem, OBJECT(s), &next_scr_ops, s,
"next.scr", 0x20000);
sysbus_init_mmio(sbd, &s->mmiomem);
sysbus_init_mmio(sbd, &s->scrmem);
@ -994,9 +921,10 @@ static Property next_pc_properties[] = {
static const VMStateDescription next_rtc_vmstate = {
.name = "next-rtc",
.version_id = 1,
.minimum_version_id = 1,
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_INT8(phase, NextRtc),
VMSTATE_UINT8_ARRAY(ram, NextRtc, 32),
VMSTATE_UINT8(command, NextRtc),
VMSTATE_UINT8(value, NextRtc),
@ -1009,13 +937,15 @@ static const VMStateDescription next_rtc_vmstate = {
static const VMStateDescription next_pc_vmstate = {
.name = "next-pc",
.version_id = 1,
.minimum_version_id = 1,
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32(scr1, NeXTPC),
VMSTATE_UINT32(scr2, NeXTPC),
VMSTATE_UINT32(old_scr2, NeXTPC),
VMSTATE_UINT32(int_mask, NeXTPC),
VMSTATE_UINT32(int_status, NeXTPC),
VMSTATE_UINT32(led, NeXTPC),
VMSTATE_UINT8(scsi_csr_1, NeXTPC),
VMSTATE_UINT8(scsi_csr_2, NeXTPC),
VMSTATE_STRUCT(rtc, NeXTPC, 0, next_rtc_vmstate, NextRtc),
@ -1043,13 +973,9 @@ static const TypeInfo next_pc_info = {
static void next_cube_init(MachineState *machine)
{
NeXTState *m = NEXT_MACHINE(machine);
M68kCPU *cpu;
CPUM68KState *env;
MemoryRegion *rom = g_new(MemoryRegion, 1);
MemoryRegion *rom2 = g_new(MemoryRegion, 1);
MemoryRegion *dmamem = g_new(MemoryRegion, 1);
MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
MemoryRegion *sysmem = get_system_memory();
const char *bios_name = machine->firmware ?: ROM_FILE;
DeviceState *pcdev;
@ -1084,21 +1010,23 @@ static void next_cube_init(MachineState *machine)
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000);
/* BMAP memory */
memory_region_init_ram_flags_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
RAM_SHARED, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
memory_region_init_ram_flags_nomigrate(&m->bmapm1, NULL, "next.bmapmem",
64, RAM_SHARED, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, &m->bmapm1);
/* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);
memory_region_init_alias(&m->bmapm2, NULL, "next.bmapmem2", &m->bmapm1,
0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, &m->bmapm2);
/* KBD */
sysbus_create_simple(TYPE_NEXTKBD, 0x0200e000, NULL);
/* Load ROM here */
memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, rom);
memory_region_init_alias(rom2, NULL, "next.rom2", rom, 0x0, 0x20000);
memory_region_add_subregion(sysmem, 0x0, rom2);
memory_region_init_rom(&m->rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, &m->rom);
memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0,
0x20000);
memory_region_add_subregion(sysmem, 0x0, &m->rom2);
if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
@ -1125,8 +1053,9 @@ static void next_cube_init(MachineState *machine)
next_scsi_init(pcdev, cpu);
/* DMA */
memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, dmamem);
memory_region_init_io(&m->dmamem, NULL, &next_dma_ops, machine,
"next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, &m->dmamem);
}
static void next_machine_class_init(ObjectClass *oc, void *data)