Add periodic timer implementation.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2846 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
parent
0ff596d02f
commit
423f0742a8
157
hw/arm_timer.c
157
hw/arm_timer.c
@ -22,114 +22,24 @@
|
||||
#define TIMER_CTRL_ENABLE (1 << 7)
|
||||
|
||||
typedef struct {
|
||||
int64_t next_time;
|
||||
int64_t expires;
|
||||
int64_t loaded;
|
||||
QEMUTimer *timer;
|
||||
ptimer_state *timer;
|
||||
uint32_t control;
|
||||
uint32_t count;
|
||||
uint32_t limit;
|
||||
int raw_freq;
|
||||
int freq;
|
||||
int int_level;
|
||||
qemu_irq irq;
|
||||
} arm_timer_state;
|
||||
|
||||
/* Calculate the new expiry time of the given timer. */
|
||||
|
||||
static void arm_timer_reload(arm_timer_state *s)
|
||||
{
|
||||
int64_t delay;
|
||||
|
||||
s->loaded = s->expires;
|
||||
delay = muldiv64(s->count, ticks_per_sec, s->freq);
|
||||
if (delay == 0)
|
||||
delay = 1;
|
||||
s->expires += delay;
|
||||
}
|
||||
|
||||
/* Check all active timers, and schedule the next timer interrupt. */
|
||||
|
||||
static void arm_timer_update(arm_timer_state *s, int64_t now)
|
||||
static void arm_timer_update(arm_timer_state *s)
|
||||
{
|
||||
int64_t next;
|
||||
|
||||
/* Ignore disabled timers. */
|
||||
if ((s->control & TIMER_CTRL_ENABLE) == 0)
|
||||
return;
|
||||
/* Ignore expired one-shot timers. */
|
||||
if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
|
||||
return;
|
||||
if (s->expires - now <= 0) {
|
||||
/* Timer has expired. */
|
||||
s->int_level = 1;
|
||||
if (s->control & TIMER_CTRL_ONESHOT) {
|
||||
/* One-shot. */
|
||||
s->count = 0;
|
||||
} else {
|
||||
if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
|
||||
/* Free running. */
|
||||
if (s->control & TIMER_CTRL_32BIT)
|
||||
s->count = 0xffffffff;
|
||||
else
|
||||
s->count = 0xffff;
|
||||
} else {
|
||||
/* Periodic. */
|
||||
s->count = s->limit;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (s->expires - now <= 0) {
|
||||
arm_timer_reload(s);
|
||||
}
|
||||
/* Update interrupts. */
|
||||
if (s->int_level && (s->control & TIMER_CTRL_IE)) {
|
||||
qemu_irq_raise(s->irq);
|
||||
} else {
|
||||
qemu_irq_lower(s->irq);
|
||||
}
|
||||
|
||||
next = now;
|
||||
if (next - s->expires < 0)
|
||||
next = s->expires;
|
||||
|
||||
/* Schedule the next timer interrupt. */
|
||||
if (next == now) {
|
||||
qemu_del_timer(s->timer);
|
||||
s->next_time = 0;
|
||||
} else if (next != s->next_time) {
|
||||
qemu_mod_timer(s->timer, next);
|
||||
s->next_time = next;
|
||||
}
|
||||
}
|
||||
|
||||
/* Return the current value of the timer. */
|
||||
static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
|
||||
{
|
||||
int64_t left;
|
||||
int64_t period;
|
||||
|
||||
if (s->count == 0)
|
||||
return 0;
|
||||
if ((s->control & TIMER_CTRL_ENABLE) == 0)
|
||||
return s->count;
|
||||
left = s->expires - now;
|
||||
period = s->expires - s->loaded;
|
||||
/* If the timer should have expired then return 0. This can happen
|
||||
when the host timer signal doesnt occur immediately. It's better to
|
||||
have a timer appear to sit at zero for a while than have it wrap
|
||||
around before the guest interrupt is raised. */
|
||||
/* ??? Could we trigger the interrupt here? */
|
||||
if (left < 0)
|
||||
return 0;
|
||||
/* We need to calculate count * elapsed / period without overfowing.
|
||||
Scale both elapsed and period so they fit in a 32-bit int. */
|
||||
while (period != (int32_t)period) {
|
||||
period >>= 1;
|
||||
left >>= 1;
|
||||
}
|
||||
return ((uint64_t)s->count * (uint64_t)(int32_t)left)
|
||||
/ (int32_t)period;
|
||||
}
|
||||
|
||||
uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
|
||||
@ -141,7 +51,7 @@ uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
|
||||
case 6: /* TimerBGLoad */
|
||||
return s->limit;
|
||||
case 1: /* TimerValue */
|
||||
return arm_timer_getcount(s, qemu_get_clock(vm_clock));
|
||||
return ptimer_get_count(s->timer);
|
||||
case 2: /* TimerControl */
|
||||
return s->control;
|
||||
case 4: /* TimerRIS */
|
||||
@ -151,24 +61,40 @@ uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
|
||||
return 0;
|
||||
return s->int_level;
|
||||
default:
|
||||
cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
|
||||
cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n",
|
||||
(int)offset);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset the timer limit after settings have changed. */
|
||||
static void arm_timer_recalibrate(arm_timer_state *s, int reload)
|
||||
{
|
||||
uint32_t limit;
|
||||
|
||||
if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
|
||||
/* Free running. */
|
||||
if (s->control & TIMER_CTRL_32BIT)
|
||||
limit = 0xffffffff;
|
||||
else
|
||||
limit = 0xffff;
|
||||
} else {
|
||||
/* Periodic. */
|
||||
limit = s->limit;
|
||||
}
|
||||
ptimer_set_limit(s->timer, limit, reload);
|
||||
}
|
||||
|
||||
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
|
||||
uint32_t value)
|
||||
{
|
||||
arm_timer_state *s = (arm_timer_state *)opaque;
|
||||
int64_t now;
|
||||
int freq;
|
||||
|
||||
now = qemu_get_clock(vm_clock);
|
||||
switch (offset >> 2) {
|
||||
case 0: /* TimerLoad */
|
||||
s->limit = value;
|
||||
s->count = value;
|
||||
s->expires = now;
|
||||
arm_timer_reload(s);
|
||||
arm_timer_recalibrate(s, 1);
|
||||
break;
|
||||
case 1: /* TimerValue */
|
||||
/* ??? Linux seems to want to write to this readonly register.
|
||||
@ -179,19 +105,20 @@ static void arm_timer_write(void *opaque, target_phys_addr_t offset,
|
||||
/* Pause the timer if it is running. This may cause some
|
||||
inaccuracy dure to rounding, but avoids a whole lot of other
|
||||
messyness. */
|
||||
s->count = arm_timer_getcount(s, now);
|
||||
ptimer_stop(s->timer);
|
||||
}
|
||||
s->control = value;
|
||||
s->freq = s->raw_freq;
|
||||
freq = s->freq;
|
||||
/* ??? Need to recalculate expiry time after changing divisor. */
|
||||
switch ((value >> 2) & 3) {
|
||||
case 1: s->freq >>= 4; break;
|
||||
case 2: s->freq >>= 8; break;
|
||||
case 1: freq >>= 4; break;
|
||||
case 2: freq >>= 8; break;
|
||||
}
|
||||
arm_timer_recalibrate(s, 0);
|
||||
ptimer_set_freq(s->timer, freq);
|
||||
if (s->control & TIMER_CTRL_ENABLE) {
|
||||
/* Restart the timer if still enabled. */
|
||||
s->expires = now;
|
||||
arm_timer_reload(s);
|
||||
ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
|
||||
}
|
||||
break;
|
||||
case 3: /* TimerIntClr */
|
||||
@ -199,32 +126,34 @@ static void arm_timer_write(void *opaque, target_phys_addr_t offset,
|
||||
break;
|
||||
case 6: /* TimerBGLoad */
|
||||
s->limit = value;
|
||||
arm_timer_recalibrate(s, 0);
|
||||
break;
|
||||
default:
|
||||
cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
|
||||
cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n",
|
||||
(int)offset);
|
||||
}
|
||||
arm_timer_update(s, now);
|
||||
arm_timer_update(s);
|
||||
}
|
||||
|
||||
static void arm_timer_tick(void *opaque)
|
||||
{
|
||||
int64_t now;
|
||||
|
||||
now = qemu_get_clock(vm_clock);
|
||||
arm_timer_update((arm_timer_state *)opaque, now);
|
||||
arm_timer_state *s = (arm_timer_state *)opaque;
|
||||
s->int_level = 1;
|
||||
arm_timer_update(s);
|
||||
}
|
||||
|
||||
static void *arm_timer_init(uint32_t freq, qemu_irq irq)
|
||||
{
|
||||
arm_timer_state *s;
|
||||
QEMUBH *bh;
|
||||
|
||||
s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
|
||||
s->irq = irq;
|
||||
s->raw_freq = s->freq = 1000000;
|
||||
s->freq = freq;
|
||||
s->control = TIMER_CTRL_IE;
|
||||
s->count = 0xffffffff;
|
||||
|
||||
s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
|
||||
bh = qemu_bh_new(arm_timer_tick, s);
|
||||
s->timer = ptimer_init(bh);
|
||||
/* ??? Save/restore. */
|
||||
return s;
|
||||
}
|
||||
|
164
hw/ptimer.c
Normal file
164
hw/ptimer.c
Normal file
@ -0,0 +1,164 @@
|
||||
/*
|
||||
* General purpose implementation of a simple periodic countdown timer.
|
||||
*
|
||||
* Copyright (c) 2007 CodeSourcery.
|
||||
*
|
||||
* This code is licenced under the GNU LGPL.
|
||||
*/
|
||||
#include "vl.h"
|
||||
|
||||
|
||||
struct ptimer_state
|
||||
{
|
||||
int enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
|
||||
uint32_t limit;
|
||||
uint32_t delta;
|
||||
uint32_t period_frac;
|
||||
int64_t period;
|
||||
int64_t last_event;
|
||||
int64_t next_event;
|
||||
QEMUBH *bh;
|
||||
QEMUTimer *timer;
|
||||
};
|
||||
|
||||
/* Use a bottom-half routine to avoid reentrancy issues. */
|
||||
static void ptimer_trigger(ptimer_state *s)
|
||||
{
|
||||
if (s->bh) {
|
||||
qemu_bh_schedule(s->bh);
|
||||
}
|
||||
}
|
||||
|
||||
static void ptimer_reload(ptimer_state *s)
|
||||
{
|
||||
if (s->delta == 0) {
|
||||
ptimer_trigger(s);
|
||||
s->delta = s->limit;
|
||||
}
|
||||
if (s->delta == 0 || s->period == 0) {
|
||||
fprintf(stderr, "Timer with period zero, disabling\n");
|
||||
s->enabled = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
s->last_event = s->next_event;
|
||||
s->next_event = s->last_event + s->delta * s->period;
|
||||
if (s->period_frac) {
|
||||
s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
|
||||
}
|
||||
qemu_mod_timer(s->timer, s->next_event);
|
||||
}
|
||||
|
||||
static void ptimer_tick(void *opaque)
|
||||
{
|
||||
ptimer_state *s = (ptimer_state *)opaque;
|
||||
ptimer_trigger(s);
|
||||
s->delta = 0;
|
||||
if (s->enabled == 2) {
|
||||
s->enabled = 0;
|
||||
} else {
|
||||
ptimer_reload(s);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t ptimer_get_count(ptimer_state *s)
|
||||
{
|
||||
int64_t now;
|
||||
uint32_t counter;
|
||||
|
||||
if (s->enabled) {
|
||||
now = qemu_get_clock(vm_clock);
|
||||
/* Figure out the current counter value. */
|
||||
if (now - s->next_event > 0
|
||||
|| s->period == 0) {
|
||||
/* Prevent timer underflowing if it should already have
|
||||
triggered. */
|
||||
counter = 0;
|
||||
} else {
|
||||
int64_t rem;
|
||||
int64_t div;
|
||||
|
||||
rem = s->next_event - now;
|
||||
div = s->period;
|
||||
counter = rem / div;
|
||||
}
|
||||
} else {
|
||||
counter = s->delta;
|
||||
}
|
||||
return counter;
|
||||
}
|
||||
|
||||
void ptimer_set_count(ptimer_state *s, uint32_t count)
|
||||
{
|
||||
s->delta = count;
|
||||
if (s->enabled) {
|
||||
s->next_event = qemu_get_clock(vm_clock);
|
||||
ptimer_reload(s);
|
||||
}
|
||||
}
|
||||
|
||||
void ptimer_run(ptimer_state *s, int oneshot)
|
||||
{
|
||||
if (s->period == 0) {
|
||||
fprintf(stderr, "Timer with period zero, disabling\n");
|
||||
return;
|
||||
}
|
||||
s->enabled = oneshot ? 2 : 1;
|
||||
s->next_event = qemu_get_clock(vm_clock);
|
||||
ptimer_reload(s);
|
||||
}
|
||||
|
||||
/* Pause a timer. Note that this may cause it to "loose" time, even if it
|
||||
is immediately restarted. */
|
||||
void ptimer_stop(ptimer_state *s)
|
||||
{
|
||||
if (!s->enabled)
|
||||
return;
|
||||
|
||||
s->delta = ptimer_get_count(s);
|
||||
qemu_del_timer(s->timer);
|
||||
s->enabled = 0;
|
||||
}
|
||||
|
||||
/* Set counter increment interval in nanoseconds. */
|
||||
void ptimer_set_period(ptimer_state *s, int64_t period)
|
||||
{
|
||||
if (s->enabled) {
|
||||
fprintf(stderr, "FIXME: ptimer_set_period with running timer");
|
||||
}
|
||||
s->period = period;
|
||||
s->period_frac = 0;
|
||||
}
|
||||
|
||||
/* Set counter frequency in Hz. */
|
||||
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
|
||||
{
|
||||
if (s->enabled) {
|
||||
fprintf(stderr, "FIXME: ptimer_set_freq with running timer");
|
||||
}
|
||||
s->period = 1000000000ll / freq;
|
||||
s->period_frac = (1000000000ll << 32) / freq;
|
||||
}
|
||||
|
||||
/* Set the initial countdown value. If reload is nonzero then also set
|
||||
count = limit. */
|
||||
void ptimer_set_limit(ptimer_state *s, uint32_t limit, int reload)
|
||||
{
|
||||
if (s->enabled) {
|
||||
fprintf(stderr, "FIXME: ptimer_set_limit with running timer");
|
||||
}
|
||||
s->limit = limit;
|
||||
if (reload)
|
||||
s->delta = limit;
|
||||
}
|
||||
|
||||
ptimer_state *ptimer_init(QEMUBH *bh)
|
||||
{
|
||||
ptimer_state *s;
|
||||
|
||||
s = (ptimer_state *)qemu_mallocz(sizeof(ptimer_state));
|
||||
s->bh = bh;
|
||||
s->timer = qemu_new_timer(vm_clock, ptimer_tick, s);
|
||||
return s;
|
||||
}
|
||||
|
8
vl.c
8
vl.c
@ -6322,7 +6322,6 @@ void main_loop_wait(int timeout)
|
||||
}
|
||||
#endif
|
||||
qemu_aio_poll();
|
||||
qemu_bh_poll();
|
||||
|
||||
if (vm_running) {
|
||||
qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
|
||||
@ -6330,10 +6329,15 @@ void main_loop_wait(int timeout)
|
||||
/* run dma transfers, if any */
|
||||
DMA_run();
|
||||
}
|
||||
|
||||
|
||||
/* real time timers */
|
||||
qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
|
||||
qemu_get_clock(rt_clock));
|
||||
|
||||
/* Check bottom-halves last in case any of the earlier events triggered
|
||||
them. */
|
||||
qemu_bh_poll();
|
||||
|
||||
}
|
||||
|
||||
static CPUState *cur_cpu;
|
||||
|
Loading…
x
Reference in New Issue
Block a user