linux-user: use EXIT_SUCCESS and EXIT_FAILURE

As suggested by Laurent, use EXIT_SUCCESS and EXIT_FAILURE from
stdlib.h instead of numeric values.

Cc: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
This commit is contained in:
Riku Voipio 2015-09-28 16:12:16 +03:00
parent 138940bf08
commit 4d1275c24d
1 changed files with 36 additions and 36 deletions

View File

@ -1414,7 +1414,7 @@ void cpu_loop (CPUSPARCState *env)
default: default:
printf ("Unhandled trap: 0x%x\n", trapnr); printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit (1); exit(EXIT_FAILURE);
} }
process_pending_signals (env); process_pending_signals (env);
} }
@ -2662,7 +2662,7 @@ void cpu_loop(CPUOpenRISCState *env)
switch (trapnr) { switch (trapnr) {
case EXCP_RESET: case EXCP_RESET:
qemu_log("\nReset request, exit, pc is %#x\n", env->pc); qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
exit(1); exit(EXIT_FAILURE);
break; break;
case EXCP_BUSERR: case EXCP_BUSERR:
qemu_log("\nBus error, exit, pc is %#x\n", env->pc); qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
@ -2726,7 +2726,7 @@ void cpu_loop(CPUOpenRISCState *env)
if (gdbsig) { if (gdbsig) {
gdb_handlesig(cs, gdbsig); gdb_handlesig(cs, gdbsig);
if (gdbsig != TARGET_SIGTRAP) { if (gdbsig != TARGET_SIGTRAP) {
exit(1); exit(EXIT_FAILURE);
} }
} }
@ -2791,7 +2791,7 @@ void cpu_loop(CPUSH4State *env)
default: default:
printf ("Unhandled trap: 0x%x\n", trapnr); printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit (1); exit(EXIT_FAILURE);
} }
process_pending_signals (env); process_pending_signals (env);
} }
@ -2852,7 +2852,7 @@ void cpu_loop(CPUCRISState *env)
default: default:
printf ("Unhandled trap: 0x%x\n", trapnr); printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit (1); exit(EXIT_FAILURE);
} }
process_pending_signals (env); process_pending_signals (env);
} }
@ -2933,7 +2933,7 @@ void cpu_loop(CPUMBState *env)
printf ("Unhandled hw-exception: 0x%x\n", printf ("Unhandled hw-exception: 0x%x\n",
env->sregs[SR_ESR] & ESR_EC_MASK); env->sregs[SR_ESR] & ESR_EC_MASK);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit (1); exit(EXIT_FAILURE);
break; break;
} }
break; break;
@ -2954,7 +2954,7 @@ void cpu_loop(CPUMBState *env)
default: default:
printf ("Unhandled trap: 0x%x\n", trapnr); printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit (1); exit(EXIT_FAILURE);
} }
process_pending_signals (env); process_pending_signals (env);
} }
@ -3123,17 +3123,17 @@ void cpu_loop(CPUAlphaState *env)
switch (trapnr) { switch (trapnr) {
case EXCP_RESET: case EXCP_RESET:
fprintf(stderr, "Reset requested. Exit\n"); fprintf(stderr, "Reset requested. Exit\n");
exit(1); exit(EXIT_FAILURE);
break; break;
case EXCP_MCHK: case EXCP_MCHK:
fprintf(stderr, "Machine check exception. Exit\n"); fprintf(stderr, "Machine check exception. Exit\n");
exit(1); exit(EXIT_FAILURE);
break; break;
case EXCP_SMP_INTERRUPT: case EXCP_SMP_INTERRUPT:
case EXCP_CLK_INTERRUPT: case EXCP_CLK_INTERRUPT:
case EXCP_DEV_INTERRUPT: case EXCP_DEV_INTERRUPT:
fprintf(stderr, "External interrupt. Exit\n"); fprintf(stderr, "External interrupt. Exit\n");
exit(1); exit(EXIT_FAILURE);
break; break;
case EXCP_MMFAULT: case EXCP_MMFAULT:
env->lock_addr = -1; env->lock_addr = -1;
@ -3283,7 +3283,7 @@ void cpu_loop(CPUAlphaState *env)
default: default:
printf ("Unhandled trap: 0x%x\n", trapnr); printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit (1); exit(EXIT_FAILURE);
} }
process_pending_signals (env); process_pending_signals (env);
} }
@ -3387,7 +3387,7 @@ void cpu_loop(CPUS390XState *env)
default: default:
fprintf(stderr, "Unhandled program exception: %#x\n", n); fprintf(stderr, "Unhandled program exception: %#x\n", n);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit(1); exit(EXIT_FAILURE);
} }
break; break;
@ -3404,7 +3404,7 @@ void cpu_loop(CPUS390XState *env)
default: default:
fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0); cpu_dump_state(cs, stderr, fprintf, 0);
exit(1); exit(EXIT_FAILURE);
} }
process_pending_signals (env); process_pending_signals (env);
} }
@ -3700,7 +3700,7 @@ CPUArchState *cpu_copy(CPUArchState *env)
static void handle_arg_help(const char *arg) static void handle_arg_help(const char *arg)
{ {
usage(0); usage(EXIT_SUCCESS);
} }
static void handle_arg_log(const char *arg) static void handle_arg_log(const char *arg)
@ -3710,7 +3710,7 @@ static void handle_arg_log(const char *arg)
mask = qemu_str_to_log_mask(arg); mask = qemu_str_to_log_mask(arg);
if (!mask) { if (!mask) {
qemu_print_log_usage(stdout); qemu_print_log_usage(stdout);
exit(1); exit(EXIT_FAILURE);
} }
qemu_set_log(mask); qemu_set_log(mask);
} }
@ -3726,7 +3726,7 @@ static void handle_arg_set_env(const char *arg)
r = p = strdup(arg); r = p = strdup(arg);
while ((token = strsep(&p, ",")) != NULL) { while ((token = strsep(&p, ",")) != NULL) {
if (envlist_setenv(envlist, token) != 0) { if (envlist_setenv(envlist, token) != 0) {
usage(1); usage(EXIT_FAILURE);
} }
} }
free(r); free(r);
@ -3738,7 +3738,7 @@ static void handle_arg_unset_env(const char *arg)
r = p = strdup(arg); r = p = strdup(arg);
while ((token = strsep(&p, ",")) != NULL) { while ((token = strsep(&p, ",")) != NULL) {
if (envlist_unsetenv(envlist, token) != 0) { if (envlist_unsetenv(envlist, token) != 0) {
usage(1); usage(EXIT_FAILURE);
} }
} }
free(r); free(r);
@ -3754,7 +3754,7 @@ static void handle_arg_stack_size(const char *arg)
char *p; char *p;
guest_stack_size = strtoul(arg, &p, 0); guest_stack_size = strtoul(arg, &p, 0);
if (guest_stack_size == 0) { if (guest_stack_size == 0) {
usage(1); usage(EXIT_FAILURE);
} }
if (*p == 'M') { if (*p == 'M') {
@ -3775,7 +3775,7 @@ static void handle_arg_pagesize(const char *arg)
if (qemu_host_page_size == 0 || if (qemu_host_page_size == 0 ||
(qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
fprintf(stderr, "page size must be a power of two\n"); fprintf(stderr, "page size must be a power of two\n");
exit(1); exit(EXIT_FAILURE);
} }
} }
@ -3785,7 +3785,7 @@ static void handle_arg_randseed(const char *arg)
if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
fprintf(stderr, "Invalid seed number: %s\n", arg); fprintf(stderr, "Invalid seed number: %s\n", arg);
exit(1); exit(EXIT_FAILURE);
} }
srand(seed); srand(seed);
} }
@ -3808,7 +3808,7 @@ static void handle_arg_cpu(const char *arg)
#if defined(cpu_list) #if defined(cpu_list)
cpu_list(stdout, &fprintf); cpu_list(stdout, &fprintf);
#endif #endif
exit(1); exit(EXIT_FAILURE);
} }
} }
@ -3845,12 +3845,12 @@ static void handle_arg_reserved_va(const char *arg)
#endif #endif
) { ) {
fprintf(stderr, "Reserved virtual address too big\n"); fprintf(stderr, "Reserved virtual address too big\n");
exit(1); exit(EXIT_FAILURE);
} }
} }
if (*p) { if (*p) {
fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
exit(1); exit(EXIT_FAILURE);
} }
} }
@ -3868,7 +3868,7 @@ static void handle_arg_version(const char *arg)
{ {
printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n"); ", Copyright (c) 2003-2008 Fabrice Bellard\n");
exit(0); exit(EXIT_SUCCESS);
} }
struct qemu_argument { struct qemu_argument {
@ -4031,7 +4031,7 @@ static int parse_args(int argc, char **argv)
if (optind >= argc) { if (optind >= argc) {
(void) fprintf(stderr, (void) fprintf(stderr,
"qemu: missing argument for option '%s'\n", r); "qemu: missing argument for option '%s'\n", r);
exit(1); exit(EXIT_FAILURE);
} }
arginfo->handle_opt(argv[optind]); arginfo->handle_opt(argv[optind]);
optind++; optind++;
@ -4045,13 +4045,13 @@ static int parse_args(int argc, char **argv)
/* no option matched the current argv */ /* no option matched the current argv */
if (arginfo->handle_opt == NULL) { if (arginfo->handle_opt == NULL) {
(void) fprintf(stderr, "qemu: unknown option '%s'\n", r); (void) fprintf(stderr, "qemu: unknown option '%s'\n", r);
exit(1); exit(EXIT_FAILURE);
} }
} }
if (optind >= argc) { if (optind >= argc) {
(void) fprintf(stderr, "qemu: no user program specified\n"); (void) fprintf(stderr, "qemu: no user program specified\n");
exit(1); exit(EXIT_FAILURE);
} }
filename = argv[optind]; filename = argv[optind];
@ -4080,7 +4080,7 @@ int main(int argc, char **argv, char **envp)
if ((envlist = envlist_create()) == NULL) { if ((envlist = envlist_create()) == NULL) {
(void) fprintf(stderr, "Unable to allocate envlist\n"); (void) fprintf(stderr, "Unable to allocate envlist\n");
exit(1); exit(EXIT_FAILURE);
} }
/* add current environment into the list */ /* add current environment into the list */
@ -4166,7 +4166,7 @@ int main(int argc, char **argv, char **envp)
cpu = cpu_init(cpu_model); cpu = cpu_init(cpu_model);
if (!cpu) { if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n"); fprintf(stderr, "Unable to find CPU definition\n");
exit(1); exit(EXIT_FAILURE);
} }
env = cpu->env_ptr; env = cpu->env_ptr;
cpu_reset(cpu); cpu_reset(cpu);
@ -4198,7 +4198,7 @@ int main(int argc, char **argv, char **envp)
"space for use as guest address space (check your virtual " "space for use as guest address space (check your virtual "
"memory ulimit setting or reserve less using -R option)\n", "memory ulimit setting or reserve less using -R option)\n",
reserved_va); reserved_va);
exit(1); exit(EXIT_FAILURE);
} }
if (reserved_va) { if (reserved_va) {
@ -4231,7 +4231,7 @@ int main(int argc, char **argv, char **envp)
target_argv = calloc(target_argc + 1, sizeof (char *)); target_argv = calloc(target_argc + 1, sizeof (char *));
if (target_argv == NULL) { if (target_argv == NULL) {
(void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
exit(1); exit(EXIT_FAILURE);
} }
/* /*
@ -4260,7 +4260,7 @@ int main(int argc, char **argv, char **envp)
execfd = open(filename, O_RDONLY); execfd = open(filename, O_RDONLY);
if (execfd < 0) { if (execfd < 0) {
printf("Error while loading %s: %s\n", filename, strerror(errno)); printf("Error while loading %s: %s\n", filename, strerror(errno));
_exit(1); _exit(EXIT_FAILURE);
} }
} }
@ -4268,7 +4268,7 @@ int main(int argc, char **argv, char **envp)
info, &bprm); info, &bprm);
if (ret != 0) { if (ret != 0) {
printf("Error while loading %s: %s\n", filename, strerror(-ret)); printf("Error while loading %s: %s\n", filename, strerror(-ret));
_exit(1); _exit(EXIT_FAILURE);
} }
for (wrk = target_environ; *wrk; wrk++) { for (wrk = target_environ; *wrk; wrk++) {
@ -4314,7 +4314,7 @@ int main(int argc, char **argv, char **envp)
/* enable 64 bit mode if possible */ /* enable 64 bit mode if possible */
if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
exit(1); exit(EXIT_FAILURE);
} }
env->cr[4] |= CR4_PAE_MASK; env->cr[4] |= CR4_PAE_MASK;
env->efer |= MSR_EFER_LMA | MSR_EFER_LME; env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
@ -4424,7 +4424,7 @@ int main(int argc, char **argv, char **envp)
if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
fprintf(stderr, fprintf(stderr,
"The selected ARM CPU does not support 64 bit mode\n"); "The selected ARM CPU does not support 64 bit mode\n");
exit(1); exit(EXIT_FAILURE);
} }
for (i = 0; i < 31; i++) { for (i = 0; i < 31; i++) {
@ -4636,7 +4636,7 @@ int main(int argc, char **argv, char **envp)
if (gdbserver_start(gdbstub_port) < 0) { if (gdbserver_start(gdbstub_port) < 0) {
fprintf(stderr, "qemu: could not open gdbserver on port %d\n", fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
gdbstub_port); gdbstub_port);
exit(1); exit(EXIT_FAILURE);
} }
gdb_handlesig(cpu, 0); gdb_handlesig(cpu, 0);
} }