target/arm/arch_dump: Add SVE notes
When dumping a guest with dump-guest-memory also dump the SVE registers if they are in use. Signed-off-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20200120101832.18781-1-drjones@redhat.com [PMM: fixed checkpatch nits] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
acab923dce
commit
538baab245
@ -1650,6 +1650,7 @@ typedef struct elf64_shdr {
|
|||||||
#define NT_ARM_HW_BREAK 0x402 /* ARM hardware breakpoint registers */
|
#define NT_ARM_HW_BREAK 0x402 /* ARM hardware breakpoint registers */
|
||||||
#define NT_ARM_HW_WATCH 0x403 /* ARM hardware watchpoint registers */
|
#define NT_ARM_HW_WATCH 0x403 /* ARM hardware watchpoint registers */
|
||||||
#define NT_ARM_SYSTEM_CALL 0x404 /* ARM system call number */
|
#define NT_ARM_SYSTEM_CALL 0x404 /* ARM system call number */
|
||||||
|
#define NT_ARM_SVE 0x405 /* ARM Scalable Vector Extension regs */
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Physical entry point into the kernel.
|
* Physical entry point into the kernel.
|
||||||
|
@ -62,12 +62,23 @@ struct aarch64_user_vfp_state {
|
|||||||
|
|
||||||
QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
|
QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
|
||||||
|
|
||||||
|
/* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
|
||||||
|
struct aarch64_user_sve_header {
|
||||||
|
uint32_t size;
|
||||||
|
uint32_t max_size;
|
||||||
|
uint16_t vl;
|
||||||
|
uint16_t max_vl;
|
||||||
|
uint16_t flags;
|
||||||
|
uint16_t reserved;
|
||||||
|
} QEMU_PACKED;
|
||||||
|
|
||||||
struct aarch64_note {
|
struct aarch64_note {
|
||||||
Elf64_Nhdr hdr;
|
Elf64_Nhdr hdr;
|
||||||
char name[8]; /* align_up(sizeof("CORE"), 4) */
|
char name[8]; /* align_up(sizeof("CORE"), 4) */
|
||||||
union {
|
union {
|
||||||
struct aarch64_elf_prstatus prstatus;
|
struct aarch64_elf_prstatus prstatus;
|
||||||
struct aarch64_user_vfp_state vfp;
|
struct aarch64_user_vfp_state vfp;
|
||||||
|
struct aarch64_user_sve_header sve;
|
||||||
};
|
};
|
||||||
} QEMU_PACKED;
|
} QEMU_PACKED;
|
||||||
|
|
||||||
@ -76,6 +87,8 @@ struct aarch64_note {
|
|||||||
(AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
|
(AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
|
||||||
#define AARCH64_PRFPREG_NOTE_SIZE \
|
#define AARCH64_PRFPREG_NOTE_SIZE \
|
||||||
(AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
|
(AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
|
||||||
|
#define AARCH64_SVE_NOTE_SIZE(env) \
|
||||||
|
(AARCH64_NOTE_HEADER_SIZE + sve_size(env))
|
||||||
|
|
||||||
static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
|
static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
|
||||||
const char *name, Elf64_Word namesz,
|
const char *name, Elf64_Word namesz,
|
||||||
@ -128,11 +141,102 @@ static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef TARGET_AARCH64
|
||||||
|
static off_t sve_zreg_offset(uint32_t vq, int n)
|
||||||
|
{
|
||||||
|
off_t off = sizeof(struct aarch64_user_sve_header);
|
||||||
|
return ROUND_UP(off, 16) + vq * 16 * n;
|
||||||
|
}
|
||||||
|
|
||||||
|
static off_t sve_preg_offset(uint32_t vq, int n)
|
||||||
|
{
|
||||||
|
return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
|
||||||
|
}
|
||||||
|
|
||||||
|
static off_t sve_fpsr_offset(uint32_t vq)
|
||||||
|
{
|
||||||
|
off_t off = sve_preg_offset(vq, 17);
|
||||||
|
return ROUND_UP(off, 16);
|
||||||
|
}
|
||||||
|
|
||||||
|
static off_t sve_fpcr_offset(uint32_t vq)
|
||||||
|
{
|
||||||
|
return sve_fpsr_offset(vq) + sizeof(uint32_t);
|
||||||
|
}
|
||||||
|
|
||||||
|
static uint32_t sve_current_vq(CPUARMState *env)
|
||||||
|
{
|
||||||
|
return sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t sve_size_vq(uint32_t vq)
|
||||||
|
{
|
||||||
|
off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
|
||||||
|
return ROUND_UP(off, 16);
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t sve_size(CPUARMState *env)
|
||||||
|
{
|
||||||
|
return sve_size_vq(sve_current_vq(env));
|
||||||
|
}
|
||||||
|
|
||||||
|
static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
|
||||||
|
CPUARMState *env, int cpuid,
|
||||||
|
DumpState *s)
|
||||||
|
{
|
||||||
|
struct aarch64_note *note;
|
||||||
|
ARMCPU *cpu = env_archcpu(env);
|
||||||
|
uint32_t vq = sve_current_vq(env);
|
||||||
|
uint64_t tmp[ARM_MAX_VQ * 2], *r;
|
||||||
|
uint32_t fpr;
|
||||||
|
uint8_t *buf;
|
||||||
|
int ret, i;
|
||||||
|
|
||||||
|
note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
|
||||||
|
buf = (uint8_t *)¬e->sve;
|
||||||
|
|
||||||
|
aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
|
||||||
|
|
||||||
|
note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
|
||||||
|
note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
|
||||||
|
note->sve.vl = cpu_to_dump16(s, vq * 16);
|
||||||
|
note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
|
||||||
|
note->sve.flags = cpu_to_dump16(s, 1);
|
||||||
|
|
||||||
|
for (i = 0; i < 32; ++i) {
|
||||||
|
r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
|
||||||
|
memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 0; i < 17; ++i) {
|
||||||
|
r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
|
||||||
|
DIV_ROUND_UP(vq * 2, 8));
|
||||||
|
memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
|
||||||
|
}
|
||||||
|
|
||||||
|
fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
|
||||||
|
memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
|
||||||
|
|
||||||
|
fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
|
||||||
|
memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
|
||||||
|
|
||||||
|
ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
|
||||||
|
g_free(note);
|
||||||
|
|
||||||
|
if (ret < 0) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
|
int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
|
||||||
int cpuid, void *opaque)
|
int cpuid, void *opaque)
|
||||||
{
|
{
|
||||||
struct aarch64_note note;
|
struct aarch64_note note;
|
||||||
CPUARMState *env = &ARM_CPU(cs)->env;
|
ARMCPU *cpu = ARM_CPU(cs);
|
||||||
|
CPUARMState *env = &cpu->env;
|
||||||
DumpState *s = opaque;
|
DumpState *s = opaque;
|
||||||
uint64_t pstate, sp;
|
uint64_t pstate, sp;
|
||||||
int ret, i;
|
int ret, i;
|
||||||
@ -163,7 +267,18 @@ int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
return aarch64_write_elf64_prfpreg(f, env, cpuid, s);
|
ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
|
||||||
|
if (ret) {
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef TARGET_AARCH64
|
||||||
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
||||||
|
ret = aarch64_write_elf64_sve(f, env, cpuid, s);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* struct pt_regs from arch/arm/include/asm/ptrace.h */
|
/* struct pt_regs from arch/arm/include/asm/ptrace.h */
|
||||||
@ -335,6 +450,11 @@ ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
|
|||||||
if (class == ELFCLASS64) {
|
if (class == ELFCLASS64) {
|
||||||
note_size = AARCH64_PRSTATUS_NOTE_SIZE;
|
note_size = AARCH64_PRSTATUS_NOTE_SIZE;
|
||||||
note_size += AARCH64_PRFPREG_NOTE_SIZE;
|
note_size += AARCH64_PRFPREG_NOTE_SIZE;
|
||||||
|
#ifdef TARGET_AARCH64
|
||||||
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
||||||
|
note_size += AARCH64_SVE_NOTE_SIZE(env);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
} else {
|
} else {
|
||||||
note_size = ARM_PRSTATUS_NOTE_SIZE;
|
note_size = ARM_PRSTATUS_NOTE_SIZE;
|
||||||
if (arm_feature(env, ARM_FEATURE_VFP)) {
|
if (arm_feature(env, ARM_FEATURE_VFP)) {
|
||||||
|
@ -980,6 +980,31 @@ void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
|
|||||||
void aarch64_sve_change_el(CPUARMState *env, int old_el,
|
void aarch64_sve_change_el(CPUARMState *env, int old_el,
|
||||||
int new_el, bool el0_a64);
|
int new_el, bool el0_a64);
|
||||||
void aarch64_add_sve_properties(Object *obj);
|
void aarch64_add_sve_properties(Object *obj);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* SVE registers are encoded in KVM's memory in an endianness-invariant format.
|
||||||
|
* The byte at offset i from the start of the in-memory representation contains
|
||||||
|
* the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
|
||||||
|
* lowest offsets are stored in the lowest memory addresses, then that nearly
|
||||||
|
* matches QEMU's representation, which is to use an array of host-endian
|
||||||
|
* uint64_t's, where the lower offsets are at the lower indices. To complete
|
||||||
|
* the translation we just need to byte swap the uint64_t's on big-endian hosts.
|
||||||
|
*/
|
||||||
|
static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
|
||||||
|
{
|
||||||
|
#ifdef HOST_WORDS_BIGENDIAN
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for (i = 0; i < nr; ++i) {
|
||||||
|
dst[i] = bswap64(src[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return dst;
|
||||||
|
#else
|
||||||
|
return src;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
#else
|
#else
|
||||||
static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
|
static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
|
||||||
static inline void aarch64_sve_change_el(CPUARMState *env, int o,
|
static inline void aarch64_sve_change_el(CPUARMState *env, int o,
|
||||||
|
@ -876,30 +876,6 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
* SVE registers are encoded in KVM's memory in an endianness-invariant format.
|
|
||||||
* The byte at offset i from the start of the in-memory representation contains
|
|
||||||
* the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
|
|
||||||
* lowest offsets are stored in the lowest memory addresses, then that nearly
|
|
||||||
* matches QEMU's representation, which is to use an array of host-endian
|
|
||||||
* uint64_t's, where the lower offsets are at the lower indices. To complete
|
|
||||||
* the translation we just need to byte swap the uint64_t's on big-endian hosts.
|
|
||||||
*/
|
|
||||||
static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
|
|
||||||
{
|
|
||||||
#ifdef HOST_WORDS_BIGENDIAN
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for (i = 0; i < nr; ++i) {
|
|
||||||
dst[i] = bswap64(src[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
return dst;
|
|
||||||
#else
|
|
||||||
return src;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
||||||
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
||||||
|
Loading…
Reference in New Issue
Block a user