docs: merge HACKING.rst contents into CODING_STYLE.rst
The split of information between the two docs is rather arbitary and unclear. It is simpler for contributors if all the information is in one file. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
This commit is contained in:
parent
336a7451e8
commit
637f39568f
296
CODING_STYLE.rst
296
CODING_STYLE.rst
@ -205,6 +205,302 @@ comment anyway.)
|
||||
Rationale: Consistency, and ease of visually picking out a multiline
|
||||
comment from the surrounding code.
|
||||
|
||||
Preprocessor
|
||||
============
|
||||
|
||||
Variadic macros
|
||||
---------------
|
||||
|
||||
For variadic macros, stick with this C99-like syntax:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define DPRINTF(fmt, ...) \
|
||||
do { printf("IRQ: " fmt, ## __VA_ARGS__); } while (0)
|
||||
|
||||
Include directives
|
||||
------------------
|
||||
|
||||
Order include directives as follows:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include "qemu/osdep.h" /* Always first... */
|
||||
#include <...> /* then system headers... */
|
||||
#include "..." /* and finally QEMU headers. */
|
||||
|
||||
The "qemu/osdep.h" header contains preprocessor macros that affect the behavior
|
||||
of core system headers like <stdint.h>. It must be the first include so that
|
||||
core system headers included by external libraries get the preprocessor macros
|
||||
that QEMU depends on.
|
||||
|
||||
Do not include "qemu/osdep.h" from header files since the .c file will have
|
||||
already included it.
|
||||
|
||||
C types
|
||||
=======
|
||||
|
||||
It should be common sense to use the right type, but we have collected
|
||||
a few useful guidelines here.
|
||||
|
||||
Scalars
|
||||
-------
|
||||
|
||||
If you're using "int" or "long", odds are good that there's a better type.
|
||||
If a variable is counting something, it should be declared with an
|
||||
unsigned type.
|
||||
|
||||
If it's host memory-size related, size_t should be a good choice (use
|
||||
ssize_t only if required). Guest RAM memory offsets must use ram_addr_t,
|
||||
but only for RAM, it may not cover whole guest address space.
|
||||
|
||||
If it's file-size related, use off_t.
|
||||
If it's file-offset related (i.e., signed), use off_t.
|
||||
If it's just counting small numbers use "unsigned int";
|
||||
(on all but oddball embedded systems, you can assume that that
|
||||
type is at least four bytes wide).
|
||||
|
||||
In the event that you require a specific width, use a standard type
|
||||
like int32_t, uint32_t, uint64_t, etc. The specific types are
|
||||
mandatory for VMState fields.
|
||||
|
||||
Don't use Linux kernel internal types like u32, __u32 or __le32.
|
||||
|
||||
Use hwaddr for guest physical addresses except pcibus_t
|
||||
for PCI addresses. In addition, ram_addr_t is a QEMU internal address
|
||||
space that maps guest RAM physical addresses into an intermediate
|
||||
address space that can map to host virtual address spaces. Generally
|
||||
speaking, the size of guest memory can always fit into ram_addr_t but
|
||||
it would not be correct to store an actual guest physical address in a
|
||||
ram_addr_t.
|
||||
|
||||
For CPU virtual addresses there are several possible types.
|
||||
vaddr is the best type to use to hold a CPU virtual address in
|
||||
target-independent code. It is guaranteed to be large enough to hold a
|
||||
virtual address for any target, and it does not change size from target
|
||||
to target. It is always unsigned.
|
||||
target_ulong is a type the size of a virtual address on the CPU; this means
|
||||
it may be 32 or 64 bits depending on which target is being built. It should
|
||||
therefore be used only in target-specific code, and in some
|
||||
performance-critical built-per-target core code such as the TLB code.
|
||||
There is also a signed version, target_long.
|
||||
abi_ulong is for the ``*``-user targets, and represents a type the size of
|
||||
'void ``*``' in that target's ABI. (This may not be the same as the size of a
|
||||
full CPU virtual address in the case of target ABIs which use 32 bit pointers
|
||||
on 64 bit CPUs, like sparc32plus.) Definitions of structures that must match
|
||||
the target's ABI must use this type for anything that on the target is defined
|
||||
to be an 'unsigned long' or a pointer type.
|
||||
There is also a signed version, abi_long.
|
||||
|
||||
Of course, take all of the above with a grain of salt. If you're about
|
||||
to use some system interface that requires a type like size_t, pid_t or
|
||||
off_t, use matching types for any corresponding variables.
|
||||
|
||||
Also, if you try to use e.g., "unsigned int" as a type, and that
|
||||
conflicts with the signedness of a related variable, sometimes
|
||||
it's best just to use the *wrong* type, if "pulling the thread"
|
||||
and fixing all related variables would be too invasive.
|
||||
|
||||
Finally, while using descriptive types is important, be careful not to
|
||||
go overboard. If whatever you're doing causes warnings, or requires
|
||||
casts, then reconsider or ask for help.
|
||||
|
||||
Pointers
|
||||
--------
|
||||
|
||||
Ensure that all of your pointers are "const-correct".
|
||||
Unless a pointer is used to modify the pointed-to storage,
|
||||
give it the "const" attribute. That way, the reader knows
|
||||
up-front that this is a read-only pointer. Perhaps more
|
||||
importantly, if we're diligent about this, when you see a non-const
|
||||
pointer, you're guaranteed that it is used to modify the storage
|
||||
it points to, or it is aliased to another pointer that is.
|
||||
|
||||
Typedefs
|
||||
--------
|
||||
|
||||
Typedefs are used to eliminate the redundant 'struct' keyword, since type
|
||||
names have a different style than other identifiers ("CamelCase" versus
|
||||
"snake_case"). Each named struct type should have a CamelCase name and a
|
||||
corresponding typedef.
|
||||
|
||||
Since certain C compilers choke on duplicated typedefs, you should avoid
|
||||
them and declare a typedef only in one header file. For common types,
|
||||
you can use "include/qemu/typedefs.h" for example. However, as a matter
|
||||
of convenience it is also perfectly fine to use forward struct
|
||||
definitions instead of typedefs in headers and function prototypes; this
|
||||
avoids problems with duplicated typedefs and reduces the need to include
|
||||
headers from other headers.
|
||||
|
||||
Reserved namespaces in C and POSIX
|
||||
----------------------------------
|
||||
|
||||
Underscore capital, double underscore, and underscore 't' suffixes should be
|
||||
avoided.
|
||||
|
||||
Low level memory management
|
||||
===========================
|
||||
|
||||
Use of the malloc/free/realloc/calloc/valloc/memalign/posix_memalign
|
||||
APIs is not allowed in the QEMU codebase. Instead of these routines,
|
||||
use the GLib memory allocation routines g_malloc/g_malloc0/g_new/
|
||||
g_new0/g_realloc/g_free or QEMU's qemu_memalign/qemu_blockalign/qemu_vfree
|
||||
APIs.
|
||||
|
||||
Please note that g_malloc will exit on allocation failure, so there
|
||||
is no need to test for failure (as you would have to with malloc).
|
||||
Calling g_malloc with a zero size is valid and will return NULL.
|
||||
|
||||
Prefer g_new(T, n) instead of g_malloc(sizeof(T) ``*`` n) for the following
|
||||
reasons:
|
||||
|
||||
* It catches multiplication overflowing size_t;
|
||||
* It returns T ``*`` instead of void ``*``, letting compiler catch more type errors.
|
||||
|
||||
Declarations like
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
T *v = g_malloc(sizeof(*v))
|
||||
|
||||
are acceptable, though.
|
||||
|
||||
Memory allocated by qemu_memalign or qemu_blockalign must be freed with
|
||||
qemu_vfree, since breaking this will cause problems on Win32.
|
||||
|
||||
String manipulation
|
||||
===================
|
||||
|
||||
Do not use the strncpy function. As mentioned in the man page, it does *not*
|
||||
guarantee a NULL-terminated buffer, which makes it extremely dangerous to use.
|
||||
It also zeros trailing destination bytes out to the specified length. Instead,
|
||||
use this similar function when possible, but note its different signature:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
void pstrcpy(char *dest, int dest_buf_size, const char *src)
|
||||
|
||||
Don't use strcat because it can't check for buffer overflows, but:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
char *pstrcat(char *buf, int buf_size, const char *s)
|
||||
|
||||
The same limitation exists with sprintf and vsprintf, so use snprintf and
|
||||
vsnprintf.
|
||||
|
||||
QEMU provides other useful string functions:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
int strstart(const char *str, const char *val, const char **ptr)
|
||||
int stristart(const char *str, const char *val, const char **ptr)
|
||||
int qemu_strnlen(const char *s, int max_len)
|
||||
|
||||
There are also replacement character processing macros for isxyz and toxyz,
|
||||
so instead of e.g. isalnum you should use qemu_isalnum.
|
||||
|
||||
Because of the memory management rules, you must use g_strdup/g_strndup
|
||||
instead of plain strdup/strndup.
|
||||
|
||||
Printf-style functions
|
||||
======================
|
||||
|
||||
Whenever you add a new printf-style function, i.e., one with a format
|
||||
string argument and following "..." in its prototype, be sure to use
|
||||
gcc's printf attribute directive in the prototype.
|
||||
|
||||
This makes it so gcc's -Wformat and -Wformat-security options can do
|
||||
their jobs and cross-check format strings with the number and types
|
||||
of arguments.
|
||||
|
||||
C standard, implementation defined and undefined behaviors
|
||||
==========================================================
|
||||
|
||||
C code in QEMU should be written to the C99 language specification. A copy
|
||||
of the final version of the C99 standard with corrigenda TC1, TC2, and TC3
|
||||
included, formatted as a draft, can be downloaded from:
|
||||
|
||||
`<http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf>`_
|
||||
|
||||
The C language specification defines regions of undefined behavior and
|
||||
implementation defined behavior (to give compiler authors enough leeway to
|
||||
produce better code). In general, code in QEMU should follow the language
|
||||
specification and avoid both undefined and implementation defined
|
||||
constructs. ("It works fine on the gcc I tested it with" is not a valid
|
||||
argument...) However there are a few areas where we allow ourselves to
|
||||
assume certain behaviors because in practice all the platforms we care about
|
||||
behave in the same way and writing strictly conformant code would be
|
||||
painful. These are:
|
||||
|
||||
* you may assume that integers are 2s complement representation
|
||||
* you may assume that right shift of a signed integer duplicates
|
||||
the sign bit (ie it is an arithmetic shift, not a logical shift)
|
||||
|
||||
In addition, QEMU assumes that the compiler does not use the latitude
|
||||
given in C99 and C11 to treat aspects of signed '<<' as undefined, as
|
||||
documented in the GNU Compiler Collection manual starting at version 4.0.
|
||||
|
||||
Error handling and reporting
|
||||
============================
|
||||
|
||||
Reporting errors to the human user
|
||||
----------------------------------
|
||||
|
||||
Do not use printf(), fprintf() or monitor_printf(). Instead, use
|
||||
error_report() or error_vreport() from error-report.h. This ensures the
|
||||
error is reported in the right place (current monitor or stderr), and in
|
||||
a uniform format.
|
||||
|
||||
Use error_printf() & friends to print additional information.
|
||||
|
||||
error_report() prints the current location. In certain common cases
|
||||
like command line parsing, the current location is tracked
|
||||
automatically. To manipulate it manually, use the loc_``*``() from
|
||||
error-report.h.
|
||||
|
||||
Propagating errors
|
||||
------------------
|
||||
|
||||
An error can't always be reported to the user right where it's detected,
|
||||
but often needs to be propagated up the call chain to a place that can
|
||||
handle it. This can be done in various ways.
|
||||
|
||||
The most flexible one is Error objects. See error.h for usage
|
||||
information.
|
||||
|
||||
Use the simplest suitable method to communicate success / failure to
|
||||
callers. Stick to common methods: non-negative on success / -1 on
|
||||
error, non-negative / -errno, non-null / null, or Error objects.
|
||||
|
||||
Example: when a function returns a non-null pointer on success, and it
|
||||
can fail only in one way (as far as the caller is concerned), returning
|
||||
null on failure is just fine, and certainly simpler and a lot easier on
|
||||
the eyes than propagating an Error object through an Error ``*````*`` parameter.
|
||||
|
||||
Example: when a function's callers need to report details on failure
|
||||
only the function really knows, use Error ``*````*``, and set suitable errors.
|
||||
|
||||
Do not report an error to the user when you're also returning an error
|
||||
for somebody else to handle. Leave the reporting to the place that
|
||||
consumes the error returned.
|
||||
|
||||
Handling errors
|
||||
---------------
|
||||
|
||||
Calling exit() is fine when handling configuration errors during
|
||||
startup. It's problematic during normal operation. In particular,
|
||||
monitor commands should never exit().
|
||||
|
||||
Do not call exit() or abort() to handle an error that can be triggered
|
||||
by the guest (e.g., some unimplemented corner case in guest code
|
||||
translation or device emulation). Guests should not be able to
|
||||
terminate QEMU.
|
||||
|
||||
Note that &error_fatal is just another way to exit(1), and &error_abort
|
||||
is just another way to abort().
|
||||
|
||||
|
||||
trace-events style
|
||||
==================
|
||||
|
||||
|
300
HACKING.rst
300
HACKING.rst
@ -1,300 +0,0 @@
|
||||
============
|
||||
QEMU Hacking
|
||||
============
|
||||
|
||||
.. contents:: Table of Contents
|
||||
|
||||
Preprocessor
|
||||
============
|
||||
|
||||
Variadic macros
|
||||
---------------
|
||||
|
||||
For variadic macros, stick with this C99-like syntax:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define DPRINTF(fmt, ...) \
|
||||
do { printf("IRQ: " fmt, ## __VA_ARGS__); } while (0)
|
||||
|
||||
Include directives
|
||||
------------------
|
||||
|
||||
Order include directives as follows:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include "qemu/osdep.h" /* Always first... */
|
||||
#include <...> /* then system headers... */
|
||||
#include "..." /* and finally QEMU headers. */
|
||||
|
||||
The "qemu/osdep.h" header contains preprocessor macros that affect the behavior
|
||||
of core system headers like <stdint.h>. It must be the first include so that
|
||||
core system headers included by external libraries get the preprocessor macros
|
||||
that QEMU depends on.
|
||||
|
||||
Do not include "qemu/osdep.h" from header files since the .c file will have
|
||||
already included it.
|
||||
|
||||
C types
|
||||
=======
|
||||
|
||||
It should be common sense to use the right type, but we have collected
|
||||
a few useful guidelines here.
|
||||
|
||||
Scalars
|
||||
-------
|
||||
|
||||
If you're using "int" or "long", odds are good that there's a better type.
|
||||
If a variable is counting something, it should be declared with an
|
||||
unsigned type.
|
||||
|
||||
If it's host memory-size related, size_t should be a good choice (use
|
||||
ssize_t only if required). Guest RAM memory offsets must use ram_addr_t,
|
||||
but only for RAM, it may not cover whole guest address space.
|
||||
|
||||
If it's file-size related, use off_t.
|
||||
If it's file-offset related (i.e., signed), use off_t.
|
||||
If it's just counting small numbers use "unsigned int";
|
||||
(on all but oddball embedded systems, you can assume that that
|
||||
type is at least four bytes wide).
|
||||
|
||||
In the event that you require a specific width, use a standard type
|
||||
like int32_t, uint32_t, uint64_t, etc. The specific types are
|
||||
mandatory for VMState fields.
|
||||
|
||||
Don't use Linux kernel internal types like u32, __u32 or __le32.
|
||||
|
||||
Use hwaddr for guest physical addresses except pcibus_t
|
||||
for PCI addresses. In addition, ram_addr_t is a QEMU internal address
|
||||
space that maps guest RAM physical addresses into an intermediate
|
||||
address space that can map to host virtual address spaces. Generally
|
||||
speaking, the size of guest memory can always fit into ram_addr_t but
|
||||
it would not be correct to store an actual guest physical address in a
|
||||
ram_addr_t.
|
||||
|
||||
For CPU virtual addresses there are several possible types.
|
||||
vaddr is the best type to use to hold a CPU virtual address in
|
||||
target-independent code. It is guaranteed to be large enough to hold a
|
||||
virtual address for any target, and it does not change size from target
|
||||
to target. It is always unsigned.
|
||||
target_ulong is a type the size of a virtual address on the CPU; this means
|
||||
it may be 32 or 64 bits depending on which target is being built. It should
|
||||
therefore be used only in target-specific code, and in some
|
||||
performance-critical built-per-target core code such as the TLB code.
|
||||
There is also a signed version, target_long.
|
||||
abi_ulong is for the ``*``-user targets, and represents a type the size of
|
||||
'void ``*``' in that target's ABI. (This may not be the same as the size of a
|
||||
full CPU virtual address in the case of target ABIs which use 32 bit pointers
|
||||
on 64 bit CPUs, like sparc32plus.) Definitions of structures that must match
|
||||
the target's ABI must use this type for anything that on the target is defined
|
||||
to be an 'unsigned long' or a pointer type.
|
||||
There is also a signed version, abi_long.
|
||||
|
||||
Of course, take all of the above with a grain of salt. If you're about
|
||||
to use some system interface that requires a type like size_t, pid_t or
|
||||
off_t, use matching types for any corresponding variables.
|
||||
|
||||
Also, if you try to use e.g., "unsigned int" as a type, and that
|
||||
conflicts with the signedness of a related variable, sometimes
|
||||
it's best just to use the *wrong* type, if "pulling the thread"
|
||||
and fixing all related variables would be too invasive.
|
||||
|
||||
Finally, while using descriptive types is important, be careful not to
|
||||
go overboard. If whatever you're doing causes warnings, or requires
|
||||
casts, then reconsider or ask for help.
|
||||
|
||||
Pointers
|
||||
--------
|
||||
|
||||
Ensure that all of your pointers are "const-correct".
|
||||
Unless a pointer is used to modify the pointed-to storage,
|
||||
give it the "const" attribute. That way, the reader knows
|
||||
up-front that this is a read-only pointer. Perhaps more
|
||||
importantly, if we're diligent about this, when you see a non-const
|
||||
pointer, you're guaranteed that it is used to modify the storage
|
||||
it points to, or it is aliased to another pointer that is.
|
||||
|
||||
Typedefs
|
||||
--------
|
||||
|
||||
Typedefs are used to eliminate the redundant 'struct' keyword, since type
|
||||
names have a different style than other identifiers ("CamelCase" versus
|
||||
"snake_case"). Each named struct type should have a CamelCase name and a
|
||||
corresponding typedef.
|
||||
|
||||
Since certain C compilers choke on duplicated typedefs, you should avoid
|
||||
them and declare a typedef only in one header file. For common types,
|
||||
you can use "include/qemu/typedefs.h" for example. However, as a matter
|
||||
of convenience it is also perfectly fine to use forward struct
|
||||
definitions instead of typedefs in headers and function prototypes; this
|
||||
avoids problems with duplicated typedefs and reduces the need to include
|
||||
headers from other headers.
|
||||
|
||||
Reserved namespaces in C and POSIX
|
||||
----------------------------------
|
||||
|
||||
Underscore capital, double underscore, and underscore 't' suffixes should be
|
||||
avoided.
|
||||
|
||||
Low level memory management
|
||||
===========================
|
||||
|
||||
Use of the malloc/free/realloc/calloc/valloc/memalign/posix_memalign
|
||||
APIs is not allowed in the QEMU codebase. Instead of these routines,
|
||||
use the GLib memory allocation routines g_malloc/g_malloc0/g_new/
|
||||
g_new0/g_realloc/g_free or QEMU's qemu_memalign/qemu_blockalign/qemu_vfree
|
||||
APIs.
|
||||
|
||||
Please note that g_malloc will exit on allocation failure, so there
|
||||
is no need to test for failure (as you would have to with malloc).
|
||||
Calling g_malloc with a zero size is valid and will return NULL.
|
||||
|
||||
Prefer g_new(T, n) instead of g_malloc(sizeof(T) ``*`` n) for the following
|
||||
reasons:
|
||||
|
||||
* It catches multiplication overflowing size_t;
|
||||
* It returns T ``*`` instead of void ``*``, letting compiler catch more type errors.
|
||||
|
||||
Declarations like
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
T *v = g_malloc(sizeof(*v))
|
||||
|
||||
are acceptable, though.
|
||||
|
||||
Memory allocated by qemu_memalign or qemu_blockalign must be freed with
|
||||
qemu_vfree, since breaking this will cause problems on Win32.
|
||||
|
||||
String manipulation
|
||||
===================
|
||||
|
||||
Do not use the strncpy function. As mentioned in the man page, it does *not*
|
||||
guarantee a NULL-terminated buffer, which makes it extremely dangerous to use.
|
||||
It also zeros trailing destination bytes out to the specified length. Instead,
|
||||
use this similar function when possible, but note its different signature:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
void pstrcpy(char *dest, int dest_buf_size, const char *src)
|
||||
|
||||
Don't use strcat because it can't check for buffer overflows, but:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
char *pstrcat(char *buf, int buf_size, const char *s)
|
||||
|
||||
The same limitation exists with sprintf and vsprintf, so use snprintf and
|
||||
vsnprintf.
|
||||
|
||||
QEMU provides other useful string functions:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
int strstart(const char *str, const char *val, const char **ptr)
|
||||
int stristart(const char *str, const char *val, const char **ptr)
|
||||
int qemu_strnlen(const char *s, int max_len)
|
||||
|
||||
There are also replacement character processing macros for isxyz and toxyz,
|
||||
so instead of e.g. isalnum you should use qemu_isalnum.
|
||||
|
||||
Because of the memory management rules, you must use g_strdup/g_strndup
|
||||
instead of plain strdup/strndup.
|
||||
|
||||
Printf-style functions
|
||||
======================
|
||||
|
||||
Whenever you add a new printf-style function, i.e., one with a format
|
||||
string argument and following "..." in its prototype, be sure to use
|
||||
gcc's printf attribute directive in the prototype.
|
||||
|
||||
This makes it so gcc's -Wformat and -Wformat-security options can do
|
||||
their jobs and cross-check format strings with the number and types
|
||||
of arguments.
|
||||
|
||||
C standard, implementation defined and undefined behaviors
|
||||
==========================================================
|
||||
|
||||
C code in QEMU should be written to the C99 language specification. A copy
|
||||
of the final version of the C99 standard with corrigenda TC1, TC2, and TC3
|
||||
included, formatted as a draft, can be downloaded from:
|
||||
|
||||
`<http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf>`_
|
||||
|
||||
The C language specification defines regions of undefined behavior and
|
||||
implementation defined behavior (to give compiler authors enough leeway to
|
||||
produce better code). In general, code in QEMU should follow the language
|
||||
specification and avoid both undefined and implementation defined
|
||||
constructs. ("It works fine on the gcc I tested it with" is not a valid
|
||||
argument...) However there are a few areas where we allow ourselves to
|
||||
assume certain behaviors because in practice all the platforms we care about
|
||||
behave in the same way and writing strictly conformant code would be
|
||||
painful. These are:
|
||||
|
||||
* you may assume that integers are 2s complement representation
|
||||
* you may assume that right shift of a signed integer duplicates
|
||||
the sign bit (ie it is an arithmetic shift, not a logical shift)
|
||||
|
||||
In addition, QEMU assumes that the compiler does not use the latitude
|
||||
given in C99 and C11 to treat aspects of signed '<<' as undefined, as
|
||||
documented in the GNU Compiler Collection manual starting at version 4.0.
|
||||
|
||||
Error handling and reporting
|
||||
============================
|
||||
|
||||
Reporting errors to the human user
|
||||
----------------------------------
|
||||
|
||||
Do not use printf(), fprintf() or monitor_printf(). Instead, use
|
||||
error_report() or error_vreport() from error-report.h. This ensures the
|
||||
error is reported in the right place (current monitor or stderr), and in
|
||||
a uniform format.
|
||||
|
||||
Use error_printf() & friends to print additional information.
|
||||
|
||||
error_report() prints the current location. In certain common cases
|
||||
like command line parsing, the current location is tracked
|
||||
automatically. To manipulate it manually, use the loc_``*``() from
|
||||
error-report.h.
|
||||
|
||||
Propagating errors
|
||||
------------------
|
||||
|
||||
An error can't always be reported to the user right where it's detected,
|
||||
but often needs to be propagated up the call chain to a place that can
|
||||
handle it. This can be done in various ways.
|
||||
|
||||
The most flexible one is Error objects. See error.h for usage
|
||||
information.
|
||||
|
||||
Use the simplest suitable method to communicate success / failure to
|
||||
callers. Stick to common methods: non-negative on success / -1 on
|
||||
error, non-negative / -errno, non-null / null, or Error objects.
|
||||
|
||||
Example: when a function returns a non-null pointer on success, and it
|
||||
can fail only in one way (as far as the caller is concerned), returning
|
||||
null on failure is just fine, and certainly simpler and a lot easier on
|
||||
the eyes than propagating an Error object through an Error ``*````*`` parameter.
|
||||
|
||||
Example: when a function's callers need to report details on failure
|
||||
only the function really knows, use Error ``*````*``, and set suitable errors.
|
||||
|
||||
Do not report an error to the user when you're also returning an error
|
||||
for somebody else to handle. Leave the reporting to the place that
|
||||
consumes the error returned.
|
||||
|
||||
Handling errors
|
||||
---------------
|
||||
|
||||
Calling exit() is fine when handling configuration errors during
|
||||
startup. It's problematic during normal operation. In particular,
|
||||
monitor commands should never exit().
|
||||
|
||||
Do not call exit() or abort() to handle an error that can be triggered
|
||||
by the guest (e.g., some unimplemented corner case in guest code
|
||||
translation or device emulation). Guests should not be able to
|
||||
terminate QEMU.
|
||||
|
||||
Note that &error_fatal is just another way to exit(1), and &error_abort
|
||||
is just another way to abort().
|
@ -66,7 +66,7 @@ When submitting patches, one common approach is to use 'git
|
||||
format-patch' and/or 'git send-email' to format & send the mail to the
|
||||
qemu-devel@nongnu.org mailing list. All patches submitted must contain
|
||||
a 'Signed-off-by' line from the author. Patches should follow the
|
||||
guidelines set out in the HACKING.rst and CODING_STYLE.rst files.
|
||||
guidelines set out in the CODING_STYLE.rst file.
|
||||
|
||||
Additional information on submitting patches can be found online via
|
||||
the QEMU website
|
||||
|
Loading…
Reference in New Issue
Block a user