hw/block/pflash_cfi02: Implement nonuniform sector sizes

Some flash chips support sectors of different sizes. For example, the
AMD AM29LV160DT has 31 64 kB sectors, one 32 kB sector, two 8 kB
sectors, and a 16 kB sector, in that order. The AM29LV160DB has those in
the reverse order.

The `num-blocks` and `sector-length` properties work exactly as they did
before: a flash device with uniform sector lengths. To get non-uniform
sector lengths for up to four regions, the following properties may be
set
- region 0. `num-blocks0` and `sector-length0`;
- region 1. `num-blocks1` and `sector-length1`;
- region 2. `num-blocks2` and `sector-length2`; and
- region 3. `num-blocks3` and `sector-length3`.

If the uniform and nonuniform properties are set, then both must specify
a flash device with the same total size. It would be better to disallow
both being set, or make `num-blocks0` and `sector-length0` alias
`num-blocks` and `sector-length`, but that would make testing currently
impossible.

Signed-off-by: Stephen Checkoway <stephen.checkoway@oberlin.edu>
Message-Id: <20190426162624.55977-6-stephen.checkoway@oberlin.edu>
Acked-by: Thomas Huth <thuth@redhat.com>
Acked-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
[PMD: Rebased, add assert() on pri_offset]
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
This commit is contained in:
Stephen Checkoway 2019-04-26 12:26:19 -04:00 committed by Philippe Mathieu-Daudé
parent c2c1bf44a9
commit 6465905355
2 changed files with 231 additions and 65 deletions

View File

@ -29,7 +29,6 @@
* - CFI queries
*
* It does not support flash interleaving.
* It does not implement boot blocs with reduced size
* It does not implement software data protection as found in many real chips
* It does not implement erase suspend/resume commands
* It does not implement multiple sectors erase
@ -57,6 +56,13 @@ do { \
#define PFLASH_LAZY_ROMD_THRESHOLD 42
/*
* The size of the cfi_table indirectly depends on this and the start of the
* PRI table directly depends on it. 4 is the maximum size (and also what
* seems common) without changing the PRT table address.
*/
#define PFLASH_MAX_ERASE_REGIONS 4
/* Special write cycles for CFI queries. */
enum {
WCYCLE_CFI = 7,
@ -68,8 +74,10 @@ struct PFlashCFI02 {
/*< public >*/
BlockBackend *blk;
uint32_t sector_len;
uint32_t nb_blocs;
uint32_t uniform_nb_blocs;
uint32_t uniform_sector_len;
uint32_t nb_blocs[PFLASH_MAX_ERASE_REGIONS];
uint32_t sector_len[PFLASH_MAX_ERASE_REGIONS];
uint32_t chip_len;
uint8_t mappings;
uint8_t width;
@ -86,7 +94,7 @@ struct PFlashCFI02 {
uint16_t ident3;
uint16_t unlock_addr0;
uint16_t unlock_addr1;
uint8_t cfi_table[0x52];
uint8_t cfi_table[0x4d];
QEMUTimer timer;
/* The device replicates the flash memory across its memory space. Emulate
* that by having a container (.mem) filled with an array of aliases
@ -177,6 +185,25 @@ static uint64_t pflash_data_read(PFlashCFI02 *pfl, hwaddr offset,
return ret;
}
/*
* offset should be a byte offset of the QEMU device and _not_ a device
* offset.
*/
static uint32_t pflash_sector_len(PFlashCFI02 *pfl, hwaddr offset)
{
assert(offset < pfl->chip_len);
int nb_regions = pfl->cfi_table[0x2C];
hwaddr addr = 0;
for (int i = 0; i < nb_regions; ++i) {
uint64_t region_size = (uint64_t)pfl->nb_blocs[i] * pfl->sector_len[i];
if (addr <= offset && offset < addr + region_size) {
return pfl->sector_len[i];
}
addr += region_size;
}
abort();
}
static uint64_t pflash_read(void *opaque, hwaddr offset, unsigned int width)
{
PFlashCFI02 *pfl = opaque;
@ -191,10 +218,11 @@ static uint64_t pflash_read(void *opaque, hwaddr offset, unsigned int width)
}
offset &= pfl->chip_len - 1;
boff = offset & 0xFF;
if (pfl->width == 2)
if (pfl->width == 2) {
boff = boff >> 1;
else if (pfl->width == 4)
} else if (pfl->width == 4) {
boff = boff >> 2;
}
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read*/
@ -273,6 +301,7 @@ static void pflash_write(void *opaque, hwaddr offset, uint64_t value,
hwaddr boff;
uint8_t *p;
uint8_t cmd;
uint32_t sector_len;
trace_pflash_io_write(offset, width, width << 1, value, pfl->wcycle);
cmd = value;
@ -282,10 +311,11 @@ static void pflash_write(void *opaque, hwaddr offset, uint64_t value,
offset &= pfl->chip_len - 1;
boff = offset;
if (pfl->width == 2)
if (pfl->width == 2) {
boff = boff >> 1;
else if (pfl->width == 4)
} else if (pfl->width == 4) {
boff = boff >> 2;
}
/* Only the least-significant 11 bits are used in most cases. */
boff &= 0x7FF;
switch (pfl->wcycle) {
@ -420,12 +450,14 @@ static void pflash_write(void *opaque, hwaddr offset, uint64_t value,
case 0x30:
/* Sector erase */
p = pfl->storage;
offset &= ~(pfl->sector_len - 1);
DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
offset);
sector_len = pflash_sector_len(pfl, offset);
offset &= ~(sector_len - 1);
DPRINTF("%s: start sector erase at %0*" PRIx64 "-%0*" PRIx64 "\n",
__func__, pfl->width * 2, offset,
pfl->width * 2, offset + sector_len - 1);
if (!pfl->ro) {
memset(p + offset, 0xFF, pfl->sector_len);
pflash_update(pfl, offset, pfl->sector_len);
memset(p + offset, 0xff, sector_len);
pflash_update(pfl, offset, sector_len);
}
set_dq7(pfl, 0x00);
/* Let's wait 1/2 second before sector erase is done */
@ -493,11 +525,11 @@ static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
int ret;
Error *local_err = NULL;
if (pfl->sector_len == 0) {
if (pfl->uniform_sector_len == 0 && pfl->sector_len[0] == 0) {
error_setg(errp, "attribute \"sector-length\" not specified or zero.");
return;
}
if (pfl->nb_blocs == 0) {
if (pfl->uniform_nb_blocs == 0 && pfl->nb_blocs[0] == 0) {
error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
return;
}
@ -506,7 +538,51 @@ static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
return;
}
pfl->chip_len = pfl->sector_len * pfl->nb_blocs;
int nb_regions;
pfl->chip_len = 0;
for (nb_regions = 0; nb_regions < PFLASH_MAX_ERASE_REGIONS; ++nb_regions) {
if (pfl->nb_blocs[nb_regions] == 0) {
break;
}
uint64_t sector_len_per_device = pfl->sector_len[nb_regions];
/*
* The size of each flash sector must be a power of 2 and it must be
* aligned at the same power of 2.
*/
if (sector_len_per_device & 0xff ||
sector_len_per_device >= (1 << 24) ||
!is_power_of_2(sector_len_per_device))
{
error_setg(errp, "unsupported configuration: "
"sector length[%d] per device = %" PRIx64 ".",
nb_regions, sector_len_per_device);
return;
}
if (pfl->chip_len & (sector_len_per_device - 1)) {
error_setg(errp, "unsupported configuration: "
"flash region %d not correctly aligned.",
nb_regions);
return;
}
pfl->chip_len += (uint64_t)pfl->sector_len[nb_regions] *
pfl->nb_blocs[nb_regions];
}
uint64_t uniform_len = (uint64_t)pfl->uniform_nb_blocs *
pfl->uniform_sector_len;
if (nb_regions == 0) {
nb_regions = 1;
pfl->nb_blocs[0] = pfl->uniform_nb_blocs;
pfl->sector_len[0] = pfl->uniform_sector_len;
pfl->chip_len = uniform_len;
} else if (uniform_len != 0 && uniform_len != pfl->chip_len) {
error_setg(errp, "\"num-blocks\"*\"sector-length\" "
"different from \"num-blocks0\"*\'sector-length0\" + ... + "
"\"num-blocks3\"*\"sector-length3\"");
return;
}
memory_region_init_rom_device(&pfl->orig_mem, OBJECT(pfl),
&pflash_cfi02_ops, pfl, pfl->name,
@ -552,7 +628,7 @@ static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
pfl->status = 0;
/* Hardcoded CFI table (mostly from SG29 Spansion flash) */
const uint16_t pri_ofs = 0x31;
const uint16_t pri_ofs = 0x40;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
@ -603,14 +679,17 @@ static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
// pfl->cfi_table[0x2A] = 0x05;
pfl->cfi_table[0x2A] = 0x00;
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions (uniform) */
pfl->cfi_table[0x2C] = 0x01;
/* Erase block region 1 */
pfl->cfi_table[0x2D] = pfl->nb_blocs - 1;
pfl->cfi_table[0x2E] = (pfl->nb_blocs - 1) >> 8;
pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
pfl->cfi_table[0x30] = pfl->sector_len >> 16;
assert(0x30 < pri_ofs);
/* Number of erase block regions */
pfl->cfi_table[0x2c] = nb_regions;
/* Erase block regions */
for (int i = 0; i < nb_regions; ++i) {
uint32_t sector_len_per_device = pfl->sector_len[i];
pfl->cfi_table[0x2d + 4 * i] = pfl->nb_blocs[i] - 1;
pfl->cfi_table[0x2e + 4 * i] = (pfl->nb_blocs[i] - 1) >> 8;
pfl->cfi_table[0x2f + 4 * i] = sector_len_per_device >> 8;
pfl->cfi_table[0x30 + 4 * i] = sector_len_per_device >> 16;
}
assert(0x2c + 4 * nb_regions < pri_ofs);
/* Extended */
pfl->cfi_table[0x00 + pri_ofs] = 'P';
@ -644,8 +723,16 @@ static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
static Property pflash_cfi02_properties[] = {
DEFINE_PROP_DRIVE("drive", PFlashCFI02, blk),
DEFINE_PROP_UINT32("num-blocks", PFlashCFI02, nb_blocs, 0),
DEFINE_PROP_UINT32("sector-length", PFlashCFI02, sector_len, 0),
DEFINE_PROP_UINT32("num-blocks", PFlashCFI02, uniform_nb_blocs, 0),
DEFINE_PROP_UINT32("sector-length", PFlashCFI02, uniform_sector_len, 0),
DEFINE_PROP_UINT32("num-blocks0", PFlashCFI02, nb_blocs[0], 0),
DEFINE_PROP_UINT32("sector-length0", PFlashCFI02, sector_len[0], 0),
DEFINE_PROP_UINT32("num-blocks1", PFlashCFI02, nb_blocs[1], 0),
DEFINE_PROP_UINT32("sector-length1", PFlashCFI02, sector_len[1], 0),
DEFINE_PROP_UINT32("num-blocks2", PFlashCFI02, nb_blocs[2], 0),
DEFINE_PROP_UINT32("sector-length2", PFlashCFI02, sector_len[2], 0),
DEFINE_PROP_UINT32("num-blocks3", PFlashCFI02, nb_blocs[3], 0),
DEFINE_PROP_UINT32("sector-length3", PFlashCFI02, sector_len[3], 0),
DEFINE_PROP_UINT8("width", PFlashCFI02, width, 0),
DEFINE_PROP_UINT8("mappings", PFlashCFI02, mappings, 0),
DEFINE_PROP_UINT8("big-endian", PFlashCFI02, be, 0),

View File

@ -17,9 +17,11 @@
*/
#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
#define FLASH_SIZE (8 * 1024 * 1024)
#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
#define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
#define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)
/* Use a newtype to keep flash addresses separate from byte addresses. */
typedef struct {
uint64_t addr;
@ -44,6 +46,10 @@ typedef struct {
typedef struct {
int bank_width;
/* Nonuniform block size. */
int nb_blocs[4];
int sector_len[4];
QTestState *qtest;
} FlashConfig;
@ -62,6 +68,10 @@ static FlashConfig expand_config_defaults(const FlashConfig *c)
if (ret.bank_width == 0) {
ret.bank_width = 2;
}
if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
}
/* XXX: Limitations of test harness. */
assert(ret.bank_width == 2);
@ -230,13 +240,41 @@ static void chip_erase(const FlashConfig *c)
flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
}
static void test_flash(const void *opaque)
/*
* Test flash commands with a variety of device geometry.
*/
static void test_geometry(const void *opaque)
{
const FlashConfig *config = opaque;
QTestState *qtest;
qtest = qtest_initf("-M musicpal,accel=qtest"
" -drive if=pflash,file=%s,format=raw,copy-on-read",
image_path);
" -drive if=pflash,file=%s,format=raw,copy-on-read"
/* Device geometry properties. */
" -global driver=cfi.pflash02,"
"property=num-blocks0,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length0,value=%d"
" -global driver=cfi.pflash02,"
"property=num-blocks1,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length1,value=%d"
" -global driver=cfi.pflash02,"
"property=num-blocks2,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length2,value=%d"
" -global driver=cfi.pflash02,"
"property=num-blocks3,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length3,value=%d",
image_path,
config->nb_blocs[0],
config->sector_len[0],
config->nb_blocs[1],
config->sector_len[1],
config->nb_blocs[2],
config->sector_len[2],
config->nb_blocs[3],
config->sector_len[3]);
FlashConfig explicit_config = expand_config_defaults(config);
explicit_config.qtest = qtest;
const FlashConfig *c = &explicit_config;
@ -264,39 +302,56 @@ static void test_flash(const void *opaque)
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
/* Num erase regions. */
g_assert_cmphex(flash_query_1(c, FLASH_ADDR(0x2C)), >=, 1);
int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
g_assert_cmphex(nb_erase_regions, ==,
!!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
!!c->nb_blocs[3]);
/* Check device length. */
uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);
uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(0x2D)) +
(flash_query_1(c, FLASH_ADDR(0x2E)) << 8) + 1;
uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(0x2F)) << 8) +
(flash_query_1(c, FLASH_ADDR(0x30)) << 16);
reset(c);
const uint64_t dq7 = replicate(c, 0x80);
const uint64_t dq6 = replicate(c, 0x40);
/* Erase and program sector. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
uint64_t byte_addr = i * sector_len;
sector_erase(c, byte_addr);
/* Read toggle. */
uint64_t status0 = flash_read(c, byte_addr);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & dq7, ==, 0);
uint64_t status1 = flash_read(c, byte_addr);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
uint64_t byte_addr = 0;
for (int region = 0; region < nb_erase_regions; ++region) {
uint64_t base = 0x2D + 4 * region;
flash_cmd(c, CFI_ADDR, CFI_CMD);
uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
(flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
(flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
g_assert_cmphex(sector_len, ==, c->sector_len[region]);
reset(c);
/* Program a bit pattern. */
program(c, byte_addr, 0x55);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
program(c, byte_addr, 0xA5);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
/* Erase and program sector. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
sector_erase(c, byte_addr);
/* Read toggle. */
uint64_t status0 = flash_read(c, byte_addr);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & dq7, ==, 0);
uint64_t status1 = flash_read(c, byte_addr);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(c, byte_addr), ==,
flash_read(c, byte_addr));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
/* Program a bit pattern. */
program(c, byte_addr, 0x55);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
program(c, byte_addr, 0xA5);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
byte_addr += sector_len;
}
}
/* Erase the chip. */
@ -314,9 +369,11 @@ static void test_flash(const void *opaque)
g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
/* Now the data should be valid. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
uint64_t byte_addr = i * sector_len;
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
for (int region = 0; region < nb_erase_regions; ++region) {
for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
uint64_t byte_addr = i * c->sector_len[region];
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
}
}
/* Unlock bypass */
@ -364,6 +421,18 @@ static const FlashConfig configuration[] = {
{
.bank_width = 2,
},
/* Nonuniform sectors (top boot). */
{
.bank_width = 2,
.nb_blocs = { 127, 1, 2, 1 },
.sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
},
/* Nonuniform sectors (bottom boot). */
{
.bank_width = 2,
.nb_blocs = { 1, 2, 1, 127 },
.sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
},
};
int main(int argc, char **argv)
@ -374,12 +443,12 @@ int main(int argc, char **argv)
strerror(errno));
exit(EXIT_FAILURE);
}
if (ftruncate(fd, FLASH_SIZE) < 0) {
if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
int error_code = errno;
close(fd);
unlink(image_path);
g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
FLASH_SIZE, strerror(error_code));
UNIFORM_FLASH_SIZE, strerror(error_code));
exit(EXIT_FAILURE);
}
close(fd);
@ -390,9 +459,19 @@ int main(int argc, char **argv)
size_t nb_configurations = sizeof configuration / sizeof configuration[0];
for (size_t i = 0; i < nb_configurations; ++i) {
const FlashConfig *config = &configuration[i];
char *path = g_strdup_printf("pflash-cfi02/%d",
char *path = g_strdup_printf("pflash-cfi02"
"/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
"/%d",
config->nb_blocs[0],
config->sector_len[0],
config->nb_blocs[1],
config->sector_len[1],
config->nb_blocs[2],
config->sector_len[2],
config->nb_blocs[3],
config->sector_len[3],
config->bank_width);
qtest_add_data_func(path, config, test_flash);
qtest_add_data_func(path, config, test_geometry);
g_free(path);
}
int result = g_test_run();