target/xtensa updates:

- add libisa to the xtensa target;
 - change xtensa instruction translator to use it;
 - switch existing xtensa cores to use it;
 - add support for a number of instructions: salt/saltu, const16,
   GPIO32 group, debug mode and MMU-related;
 - add disassembler for Xtensa.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJaVQW2AAoJEFH5zJH4P6BEQ4EP/01BnD+SoHkDDRx8O59RgvUa
 r4kkJIqRNpObzzjhoHmh9RbGstir9r1u3ZYKbdlhPgZWK/ItUVzS8yJp8KcQ8x4B
 Z+4JzwX82PwAvvVdP7TD6iB23jqgUcoEdCtpaUb1jsK0tyvVHwIHnwF3qINY6Nsn
 yIzmupdIc47MEFlQNSxF/ZuvQI6CT8uDFuRJlK02dv8lEozUXCi9UHotICnqOybY
 ezgXCoMrOv7UqBdSEX7SQHvs5CD8zRbfhrwpeMc59YsbWp4j5JmQi1QI2ihFHyDN
 wp5vBDMI31SRdIqpEJiNEP5J+VnVg2oaJZcFP12JGXfTvSyB2WWSfqvQX+go394r
 4NbWu1rA/a0vQVUfI7xVqY9mXqGnRbDS01ILYHbjRl14o7kZY0IpX2UIoGXI2eO9
 toC+shIv/yNIJoaTlQf3ER+0nUvNFEGbBq3LNB+dlom8yqv7UY2LgpRy4zGqEfyL
 bB4pfEkaZVqP8vAJeq0TALMTmpvPjgFs1XxnHJAcpoAF3NM8dHiuGpO3li1jPiVu
 ZxN/8rWSWdJX7IvXFmu3Cy2ogLpdTxsTPIdtpKc+OLHNW6b5wx28Godig7JlfNil
 8p9F1t6ZNvs4fPM2JFWP9VTXhzSuynWYz/UEr1+OF7vxni/x7dgrX2h9Houx36/e
 3fn34SXgQUqhgtN+8BFR
 =PNwZ
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/xtensa/tags/20180109-xtensa' into staging

target/xtensa updates:

- add libisa to the xtensa target;
- change xtensa instruction translator to use it;
- switch existing xtensa cores to use it;
- add support for a number of instructions: salt/saltu, const16,
  GPIO32 group, debug mode and MMU-related;
- add disassembler for Xtensa.

# gpg: Signature made Tue 09 Jan 2018 18:11:02 GMT
# gpg:                using RSA key 0x51F9CC91F83FA044
# gpg: Good signature from "Max Filippov <filippov@cadence.com>"
# gpg:                 aka "Max Filippov <max.filippov@cogentembedded.com>"
# gpg:                 aka "Max Filippov <jcmvbkbc@gmail.com>"
# Primary key fingerprint: 2B67 854B 98E5 327D CDEB  17D8 51F9 CC91 F83F A044

* remotes/xtensa/tags/20180109-xtensa:
  target/xtensa: implement disassembler
  target/xtensa: implement const16
  target/xtensa: implement GPIO32
  target/xtensa: implement salt/saltu
  target/xtensa: add internal/noop SRs and opcodes
  target/xtensa: drop DisasContext::litbase
  target/xtensa: tests: fix memctl SR test
  target/xtensa: use libisa for instruction decoding
  target/xtensa: switch fsf to libisa
  target/xtensa: switch dc233c to libisa
  target/xtensa: switch dc232b to libisa
  target/xtensa: update import_core.sh script for libisa
  target/xtensa: extract FPU2000 opcode translators
  target/xtensa: extract core opcode translators
  target/xtensa: import libisa source
  target/xtensa: pass actual frame size to the entry helper

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2018-01-09 18:23:27 +00:00
commit 76302a95e7
22 changed files with 45939 additions and 2168 deletions

View File

@ -259,6 +259,7 @@ S: Maintained
F: target/xtensa/
F: hw/xtensa/
F: tests/tcg/xtensa/
F: disas/xtensa.c
TriCore
M: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>

View File

@ -21,6 +21,7 @@ common-obj-$(CONFIG_S390_DIS) += s390.o
common-obj-$(CONFIG_SH4_DIS) += sh4.o
common-obj-$(CONFIG_SPARC_DIS) += sparc.o
common-obj-$(CONFIG_LM32_DIS) += lm32.o
common-obj-$(CONFIG_XTENSA_DIS) += xtensa.o
# TODO: As long as the TCG interpreter and its generated code depend
# on the QEMU target, we cannot compile the disassembler here.

133
disas/xtensa.c Normal file
View File

@ -0,0 +1,133 @@
/*
* Copyright (c) 2017, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "disas/bfd.h"
#include "hw/xtensa/xtensa-isa.h"
int print_insn_xtensa(bfd_vma memaddr, struct disassemble_info *info)
{
xtensa_isa isa = info->private_data;
xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc(isa);
xtensa_insnbuf slotbuf = xtensa_insnbuf_alloc(isa);
bfd_byte *buffer = g_malloc(1);
int status = info->read_memory_func(memaddr, buffer, 1, info);
xtensa_format fmt;
unsigned slot, slots;
unsigned len;
if (status) {
info->memory_error_func(status, memaddr, info);
len = -1;
goto out;
}
len = xtensa_isa_length_from_chars(isa, buffer);
if (len == XTENSA_UNDEFINED) {
info->fprintf_func(info->stream, ".byte 0x%02x", buffer[0]);
len = 1;
goto out;
}
buffer = g_realloc(buffer, len);
status = info->read_memory_func(memaddr + 1, buffer + 1, len - 1, info);
if (status) {
info->fprintf_func(info->stream, ".byte 0x%02x", buffer[0]);
info->memory_error_func(status, memaddr + 1, info);
len = 1;
goto out;
}
xtensa_insnbuf_from_chars(isa, insnbuf, buffer, len);
fmt = xtensa_format_decode(isa, insnbuf);
if (fmt == XTENSA_UNDEFINED) {
unsigned i;
for (i = 0; i < len; ++i) {
info->fprintf_func(info->stream, "%s 0x%02x",
i ? ", " : ".byte ", buffer[i]);
}
goto out;
}
slots = xtensa_format_num_slots(isa, fmt);
if (slots > 1) {
info->fprintf_func(info->stream, "{ ");
}
for (slot = 0; slot < slots; ++slot) {
xtensa_opcode opc;
unsigned opnd, vopnd, opnds;
if (slot) {
info->fprintf_func(info->stream, "; ");
}
xtensa_format_get_slot(isa, fmt, slot, insnbuf, slotbuf);
opc = xtensa_opcode_decode(isa, fmt, slot, slotbuf);
if (opc == XTENSA_UNDEFINED) {
info->fprintf_func(info->stream, "???");
continue;
}
opnds = xtensa_opcode_num_operands(isa, opc);
info->fprintf_func(info->stream, "%s", xtensa_opcode_name(isa, opc));
for (opnd = vopnd = 0; opnd < opnds; ++opnd) {
if (xtensa_operand_is_visible(isa, opc, opnd)) {
uint32_t v = 0xbadc0de;
int rc;
info->fprintf_func(info->stream, vopnd ? ", " : "\t");
xtensa_operand_get_field(isa, opc, opnd, fmt, slot,
slotbuf, &v);
rc = xtensa_operand_decode(isa, opc, opnd, &v);
if (rc == XTENSA_UNDEFINED) {
info->fprintf_func(info->stream, "???");
} else if (xtensa_operand_is_register(isa, opc, opnd)) {
xtensa_regfile rf = xtensa_operand_regfile(isa, opc, opnd);
info->fprintf_func(info->stream, "%s%d",
xtensa_regfile_shortname(isa, rf), v);
} else if (xtensa_operand_is_PCrelative(isa, opc, opnd)) {
xtensa_operand_undo_reloc(isa, opc, opnd, &v, memaddr);
info->fprintf_func(info->stream, "0x%x", v);
} else {
info->fprintf_func(info->stream, "%d", v);
}
++vopnd;
}
}
}
if (slots > 1) {
info->fprintf_func(info->stream, " }");
}
out:
g_free(buffer);
xtensa_insnbuf_free(isa, insnbuf);
xtensa_insnbuf_free(isa, slotbuf);
return len;
}

View File

@ -428,6 +428,7 @@ int print_insn_ia64 (bfd_vma, disassemble_info*);
int print_insn_lm32 (bfd_vma, disassemble_info*);
int print_insn_big_nios2 (bfd_vma, disassemble_info*);
int print_insn_little_nios2 (bfd_vma, disassemble_info*);
int print_insn_xtensa (bfd_vma, disassemble_info*);
#if 0
/* Fetch the disassembler for a given BFD, if that support is available. */

View File

@ -0,0 +1,838 @@
/* Interface definition for configurable Xtensa ISA support.
*
* Copyright (c) 2001-2013 Tensilica Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef XTENSA_LIBISA_H
#define XTENSA_LIBISA_H
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Version number: This is intended to help support code that works with
* versions of this library from multiple Xtensa releases.
*/
#define XTENSA_ISA_VERSION 7000
/*
* This file defines the interface to the Xtensa ISA library. This
* library contains most of the ISA-specific information for a
* particular Xtensa processor. For example, the set of valid
* instructions, their opcode encodings and operand fields are all
* included here.
*
* This interface basically defines a number of abstract data types.
*
* . an instruction buffer - for holding the raw instruction bits
* . ISA info - information about the ISA as a whole
* . instruction formats - instruction size and slot structure
* . opcodes - information about individual instructions
* . operands - information about register and immediate instruction operands
* . stateOperands - information about processor state instruction operands
* . interfaceOperands - information about interface instruction operands
* . register files - register file information
* . processor states - internal processor state information
* . system registers - "special registers" and "user registers"
* . interfaces - TIE interfaces that are external to the processor
* . functional units - TIE shared functions
*
* The interface defines a set of functions to access each data type.
* With the exception of the instruction buffer, the internal
* representations of the data structures are hidden. All accesses must
* be made through the functions defined here.
*/
typedef struct xtensa_isa_opaque { int unused; } *xtensa_isa;
/*
* Most of the Xtensa ISA entities (e.g., opcodes, regfiles, etc.) are
* represented here using sequential integers beginning with 0. The
* specific values are only fixed for a particular instantiation of an
* xtensa_isa structure, so these values should only be used
* internally.
*/
typedef int xtensa_opcode;
typedef int xtensa_format;
typedef int xtensa_regfile;
typedef int xtensa_state;
typedef int xtensa_sysreg;
typedef int xtensa_interface;
typedef int xtensa_funcUnit;
/* Define a unique value for undefined items. */
#define XTENSA_UNDEFINED -1
/*
* Overview of using this interface to decode/encode instructions:
*
* Each Xtensa instruction is associated with a particular instruction
* format, where the format defines a fixed number of slots for
* operations. The formats for the core Xtensa ISA have only one slot,
* but FLIX instructions may have multiple slots. Within each slot,
* there is a single opcode and some number of associated operands.
*
* The encoding and decoding functions operate on instruction buffers,
* not on the raw bytes of the instructions. The same instruction
* buffer data structure is used for both entire instructions and
* individual slots in those instructions -- the contents of a slot need
* to be extracted from or inserted into the buffer for the instruction
* as a whole.
*
* Decoding an instruction involves first finding the format, which
* identifies the number of slots, and then decoding each slot
* separately. A slot is decoded by finding the opcode and then using
* the opcode to determine how many operands there are. For example:
*
* xtensa_insnbuf_from_chars
* xtensa_format_decode
* for each slot {
* xtensa_format_get_slot
* xtensa_opcode_decode
* for each operand {
* xtensa_operand_get_field
* xtensa_operand_decode
* }
* }
*
* Encoding an instruction is roughly the same procedure in reverse:
*
* xtensa_format_encode
* for each slot {
* xtensa_opcode_encode
* for each operand {
* xtensa_operand_encode
* xtensa_operand_set_field
* }
* xtensa_format_set_slot
* }
* xtensa_insnbuf_to_chars
*/
/* Error handling. */
/*
* Error codes. The code for the most recent error condition can be
* retrieved with the "errno" function. For any result other than
* xtensa_isa_ok, an error message containing additional information
* about the problem can be retrieved using the "error_msg" function.
* The error messages are stored in an internal buffer, which should
* not be freed and may be overwritten by subsequent operations.
*/
typedef enum xtensa_isa_status_enum {
xtensa_isa_ok = 0,
xtensa_isa_bad_format,
xtensa_isa_bad_slot,
xtensa_isa_bad_opcode,
xtensa_isa_bad_operand,
xtensa_isa_bad_field,
xtensa_isa_bad_iclass,
xtensa_isa_bad_regfile,
xtensa_isa_bad_sysreg,
xtensa_isa_bad_state,
xtensa_isa_bad_interface,
xtensa_isa_bad_funcUnit,
xtensa_isa_wrong_slot,
xtensa_isa_no_field,
xtensa_isa_out_of_memory,
xtensa_isa_buffer_overflow,
xtensa_isa_internal_error,
xtensa_isa_bad_value
} xtensa_isa_status;
xtensa_isa_status xtensa_isa_errno(xtensa_isa isa);
char *xtensa_isa_error_msg(xtensa_isa isa);
/* Instruction buffers. */
typedef uint32_t xtensa_insnbuf_word;
typedef xtensa_insnbuf_word *xtensa_insnbuf;
/* Get the size in "insnbuf_words" of the xtensa_insnbuf array. */
int xtensa_insnbuf_size(xtensa_isa isa);
/* Allocate an xtensa_insnbuf of the right size. */
xtensa_insnbuf xtensa_insnbuf_alloc(xtensa_isa isa);
/* Release an xtensa_insnbuf. */
void xtensa_insnbuf_free(xtensa_isa isa, xtensa_insnbuf buf);
/*
* Conversion between raw memory (char arrays) and our internal
* instruction representation. This is complicated by the Xtensa ISA's
* variable instruction lengths. When converting to chars, the buffer
* must contain a valid instruction so we know how many bytes to copy;
* thus, the "to_chars" function returns the number of bytes copied or
* XTENSA_UNDEFINED on error. The "from_chars" function first reads the
* minimal number of bytes required to decode the instruction length and
* then proceeds to copy the entire instruction into the buffer; if the
* memory does not contain a valid instruction, it copies the maximum
* number of bytes required for the longest Xtensa instruction. The
* "num_chars" argument may be used to limit the number of bytes that
* can be read or written. Otherwise, if "num_chars" is zero, the
* functions may read or write past the end of the code.
*/
int xtensa_insnbuf_to_chars(xtensa_isa isa, const xtensa_insnbuf insn,
unsigned char *cp, int num_chars);
void xtensa_insnbuf_from_chars(xtensa_isa isa, xtensa_insnbuf insn,
const unsigned char *cp, int num_chars);
/* ISA information. */
/* Initialize the ISA information. */
xtensa_isa xtensa_isa_init(void *xtensa_modules, xtensa_isa_status *errno_p,
char **error_msg_p);
/* Deallocate an xtensa_isa structure. */
void xtensa_isa_free(xtensa_isa isa);
/* Get the maximum instruction size in bytes. */
int xtensa_isa_maxlength(xtensa_isa isa);
/*
* Decode the length in bytes of an instruction in raw memory (not an
* insnbuf). This function reads only the minimal number of bytes
* required to decode the instruction length. Returns
* XTENSA_UNDEFINED on error.
*/
int xtensa_isa_length_from_chars(xtensa_isa isa, const unsigned char *cp);
/*
* Get the number of stages in the processor's pipeline. The pipeline
* stage values returned by other functions in this library will range
* from 0 to N-1, where N is the value returned by this function.
* Note that the stage numbers used here may not correspond to the
* actual processor hardware, e.g., the hardware may have additional
* stages before stage 0. Returns XTENSA_UNDEFINED on error.
*/
int xtensa_isa_num_pipe_stages(xtensa_isa isa);
/* Get the number of various entities that are defined for this processor. */
int xtensa_isa_num_formats(xtensa_isa isa);
int xtensa_isa_num_opcodes(xtensa_isa isa);
int xtensa_isa_num_regfiles(xtensa_isa isa);
int xtensa_isa_num_states(xtensa_isa isa);
int xtensa_isa_num_sysregs(xtensa_isa isa);
int xtensa_isa_num_interfaces(xtensa_isa isa);
int xtensa_isa_num_funcUnits(xtensa_isa isa);
/* Instruction formats. */
/* Get the name of a format. Returns null on error. */
const char *xtensa_format_name(xtensa_isa isa, xtensa_format fmt);
/*
* Given a format name, return the format number. Returns
* XTENSA_UNDEFINED if the name is not a valid format.
*/
xtensa_format xtensa_format_lookup(xtensa_isa isa, const char *fmtname);
/*
* Decode the instruction format from a binary instruction buffer.
* Returns XTENSA_UNDEFINED if the format is not recognized.
*/
xtensa_format xtensa_format_decode(xtensa_isa isa, const xtensa_insnbuf insn);
/*
* Set the instruction format field(s) in a binary instruction buffer.
* All the other fields are set to zero. Returns non-zero on error.
*/
int xtensa_format_encode(xtensa_isa isa, xtensa_format fmt,
xtensa_insnbuf insn);
/*
* Find the length (in bytes) of an instruction. Returns
* XTENSA_UNDEFINED on error.
*/
int xtensa_format_length(xtensa_isa isa, xtensa_format fmt);
/*
* Get the number of slots in an instruction. Returns XTENSA_UNDEFINED
* on error.
*/
int xtensa_format_num_slots(xtensa_isa isa, xtensa_format fmt);
/*
* Get the opcode for a no-op in a particular slot.
* Returns XTENSA_UNDEFINED on error.
*/
xtensa_opcode xtensa_format_slot_nop_opcode(xtensa_isa isa, xtensa_format fmt,
int slot);
/*
* Get the bits for a specified slot out of an insnbuf for the
* instruction as a whole and put them into an insnbuf for that one
* slot, and do the opposite to set a slot. Return non-zero on error.
*/
int xtensa_format_get_slot(xtensa_isa isa, xtensa_format fmt, int slot,
const xtensa_insnbuf insn, xtensa_insnbuf slotbuf);
int xtensa_format_set_slot(xtensa_isa isa, xtensa_format fmt, int slot,
xtensa_insnbuf insn, const xtensa_insnbuf slotbuf);
/* Opcode information. */
/*
* Translate a mnemonic name to an opcode. Returns XTENSA_UNDEFINED if
* the name is not a valid opcode mnemonic.
*/
xtensa_opcode xtensa_opcode_lookup(xtensa_isa isa, const char *opname);
/*
* Decode the opcode for one instruction slot from a binary instruction
* buffer. Returns the opcode or XTENSA_UNDEFINED if the opcode is
* illegal.
*/
xtensa_opcode xtensa_opcode_decode(xtensa_isa isa, xtensa_format fmt, int slot,
const xtensa_insnbuf slotbuf);
/*
* Set the opcode field(s) for an instruction slot. All other fields
* in the slot are set to zero. Returns non-zero if the opcode cannot
* be encoded.
*/
int xtensa_opcode_encode(xtensa_isa isa, xtensa_format fmt, int slot,
xtensa_insnbuf slotbuf, xtensa_opcode opc);
/* Get the mnemonic name for an opcode. Returns null on error. */
const char *xtensa_opcode_name(xtensa_isa isa, xtensa_opcode opc);
/* Check various properties of opcodes. These functions return 0 if
* the condition is false, 1 if the condition is true, and
* XTENSA_UNDEFINED on error. The instructions are classified as
* follows:
*
* branch: conditional branch; may fall through to next instruction (B*)
* jump: unconditional branch (J, JX, RET*, RF*)
* loop: zero-overhead loop (LOOP*)
* call: unconditional call; control returns to next instruction (CALL*)
*
* For the opcodes that affect control flow in some way, the branch
* target may be specified by an immediate operand or it may be an
* address stored in a register. You can distinguish these by
* checking if the instruction has a PC-relative immediate
* operand.
*/
int xtensa_opcode_is_branch(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_is_jump(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_is_loop(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_is_call(xtensa_isa isa, xtensa_opcode opc);
/*
* Find the number of ordinary operands, state operands, and interface
* operands for an instruction. These return XTENSA_UNDEFINED on
* error.
*/
int xtensa_opcode_num_operands(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_num_stateOperands(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_num_interfaceOperands(xtensa_isa isa, xtensa_opcode opc);
/*
* Get functional unit usage requirements for an opcode. Each "use"
* is identified by a <functional unit, pipeline stage> pair. The
* "num_funcUnit_uses" function returns the number of these "uses" or
* XTENSA_UNDEFINED on error. The "funcUnit_use" function returns
* a pointer to a "use" pair or null on error.
*/
typedef struct xtensa_funcUnit_use_struct {
xtensa_funcUnit unit;
int stage;
} xtensa_funcUnit_use;
int xtensa_opcode_num_funcUnit_uses(xtensa_isa isa, xtensa_opcode opc);
xtensa_funcUnit_use *xtensa_opcode_funcUnit_use(xtensa_isa isa,
xtensa_opcode opc, int u);
/* Operand information. */
/* Get the name of an operand. Returns null on error. */
const char *xtensa_operand_name(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Some operands are "invisible", i.e., not explicitly specified in
* assembly language. When assembling an instruction, you need not set
* the values of invisible operands, since they are either hardwired or
* derived from other field values. The values of invisible operands
* can be examined in the same way as other operands, but remember that
* an invisible operand may get its value from another visible one, so
* the entire instruction must be available before examining the
* invisible operand values. This function returns 1 if an operand is
* visible, 0 if it is invisible, or XTENSA_UNDEFINED on error. Note
* that whether an operand is visible is orthogonal to whether it is
* "implicit", i.e., whether it is encoded in a field in the
* instruction.
*/
int xtensa_operand_is_visible(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Check if an operand is an input ('i'), output ('o'), or inout ('m')
* operand. Note: The output operand of a conditional assignment
* (e.g., movnez) appears here as an inout ('m') even if it is declared
* in the TIE code as an output ('o'); this allows the compiler to
* properly handle register allocation for conditional assignments.
* Returns 0 on error.
*/
char xtensa_operand_inout(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Get and set the raw (encoded) value of the field for the specified
* operand. The "set" function does not check if the value fits in the
* field; that is done by the "encode" function below. Both of these
* functions return non-zero on error, e.g., if the field is not defined
* for the specified slot.
*/
int xtensa_operand_get_field(xtensa_isa isa, xtensa_opcode opc, int opnd,
xtensa_format fmt, int slot,
const xtensa_insnbuf slotbuf, uint32_t *valp);
int xtensa_operand_set_field(xtensa_isa isa, xtensa_opcode opc, int opnd,
xtensa_format fmt, int slot,
xtensa_insnbuf slotbuf, uint32_t val);
/*
* Encode and decode operands. The raw bits in the operand field may
* be encoded in a variety of different ways. These functions hide
* the details of that encoding. The result values are returned through
* the argument pointer. The return value is non-zero on error.
*/
int xtensa_operand_encode(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp);
int xtensa_operand_decode(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp);
/*
* An operand may be either a register operand or an immediate of some
* sort (e.g., PC-relative or not). The "is_register" function returns
* 0 if the operand is an immediate, 1 if it is a register, and
* XTENSA_UNDEFINED on error. The "regfile" function returns the
* regfile for a register operand, or XTENSA_UNDEFINED on error.
*/
int xtensa_operand_is_register(xtensa_isa isa, xtensa_opcode opc, int opnd);
xtensa_regfile xtensa_operand_regfile(xtensa_isa isa, xtensa_opcode opc,
int opnd);
/*
* Register operands may span multiple consecutive registers, e.g., a
* 64-bit data type may occupy two 32-bit registers. Only the first
* register is encoded in the operand field. This function specifies
* the number of consecutive registers occupied by this operand. For
* non-register operands, the return value is undefined. Returns
* XTENSA_UNDEFINED on error.
*/
int xtensa_operand_num_regs(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Some register operands do not completely identify the register being
* accessed. For example, the operand value may be added to an internal
* state value. By definition, this implies that the corresponding
* regfile is not allocatable. Unknown registers should generally be
* treated with worst-case assumptions. The function returns 0 if the
* register value is unknown, 1 if known, and XTENSA_UNDEFINED on
* error.
*/
int xtensa_operand_is_known_reg(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Check if an immediate operand is PC-relative. Returns 0 for register
* operands and non-PC-relative immediates, 1 for PC-relative
* immediates, and XTENSA_UNDEFINED on error.
*/
int xtensa_operand_is_PCrelative(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* For PC-relative offset operands, the interpretation of the offset may
* vary between opcodes, e.g., is it relative to the current PC or that
* of the next instruction? The following functions are defined to
* perform PC-relative relocations and to undo them (as in the
* disassembler). The "do_reloc" function takes the desired address
* value and the PC of the current instruction and sets the value to the
* corresponding PC-relative offset (which can then be encoded and
* stored into the operand field). The "undo_reloc" function takes the
* unencoded offset value and the current PC and sets the value to the
* appropriate address. The return values are non-zero on error. Note
* that these functions do not replace the encode/decode functions; the
* operands must be encoded/decoded separately and the encode functions
* are responsible for detecting invalid operand values.
*/
int xtensa_operand_do_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp, uint32_t pc);
int xtensa_operand_undo_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp, uint32_t pc);
/* State Operands. */
/*
* Get the state accessed by a state operand. Returns XTENSA_UNDEFINED
* on error.
*/
xtensa_state xtensa_stateOperand_state(xtensa_isa isa, xtensa_opcode opc,
int stOp);
/*
* Check if a state operand is an input ('i'), output ('o'), or inout
* ('m') operand. Returns 0 on error.
*/
char xtensa_stateOperand_inout(xtensa_isa isa, xtensa_opcode opc, int stOp);
/* Interface Operands. */
/*
* Get the external interface accessed by an interface operand.
* Returns XTENSA_UNDEFINED on error.
*/
xtensa_interface xtensa_interfaceOperand_interface(xtensa_isa isa,
xtensa_opcode opc,
int ifOp);
/* Register Files. */
/*
* Regfiles include both "real" regfiles and "views", where a view
* allows a group of adjacent registers in a real "parent" regfile to be
* viewed as a single register. A regfile view has all the same
* properties as its parent except for its (long) name, bit width, number
* of entries, and default ctype. You can use the parent function to
* distinguish these two classes.
*/
/*
* Look up a regfile by either its name or its abbreviated "short name".
* Returns XTENSA_UNDEFINED on error. The "lookup_shortname" function
* ignores "view" regfiles since they always have the same shortname as
* their parents.
*/
xtensa_regfile xtensa_regfile_lookup(xtensa_isa isa, const char *name);
xtensa_regfile xtensa_regfile_lookup_shortname(xtensa_isa isa,
const char *shortname);
/*
* Get the name or abbreviated "short name" of a regfile.
* Returns null on error.
*/
const char *xtensa_regfile_name(xtensa_isa isa, xtensa_regfile rf);
const char *xtensa_regfile_shortname(xtensa_isa isa, xtensa_regfile rf);
/*
* Get the parent regfile of a "view" regfile. If the regfile is not a
* view, the result is the same as the input parameter. Returns
* XTENSA_UNDEFINED on error.
*/
xtensa_regfile xtensa_regfile_view_parent(xtensa_isa isa, xtensa_regfile rf);
/*
* Get the bit width of a regfile or regfile view.
* Returns XTENSA_UNDEFINED on error.
*/
int xtensa_regfile_num_bits(xtensa_isa isa, xtensa_regfile rf);
/*
* Get the number of regfile entries. Returns XTENSA_UNDEFINED on
* error.
*/
int xtensa_regfile_num_entries(xtensa_isa isa, xtensa_regfile rf);
/* Processor States. */
/* Look up a state by name. Returns XTENSA_UNDEFINED on error. */
xtensa_state xtensa_state_lookup(xtensa_isa isa, const char *name);
/* Get the name for a processor state. Returns null on error. */
const char *xtensa_state_name(xtensa_isa isa, xtensa_state st);
/*
* Get the bit width for a processor state.
* Returns XTENSA_UNDEFINED on error.
*/
int xtensa_state_num_bits(xtensa_isa isa, xtensa_state st);
/*
* Check if a state is exported from the processor core. Returns 0 if
* the condition is false, 1 if the condition is true, and
* XTENSA_UNDEFINED on error.
*/
int xtensa_state_is_exported(xtensa_isa isa, xtensa_state st);
/*
* Check for a "shared_or" state. Returns 0 if the condition is false,
* 1 if the condition is true, and XTENSA_UNDEFINED on error.
*/
int xtensa_state_is_shared_or(xtensa_isa isa, xtensa_state st);
/* Sysregs ("special registers" and "user registers"). */
/*
* Look up a register by its number and whether it is a "user register"
* or a "special register". Returns XTENSA_UNDEFINED if the sysreg does
* not exist.
*/
xtensa_sysreg xtensa_sysreg_lookup(xtensa_isa isa, int num, int is_user);
/*
* Check if there exists a sysreg with a given name.
* If not, this function returns XTENSA_UNDEFINED.
*/
xtensa_sysreg xtensa_sysreg_lookup_name(xtensa_isa isa, const char *name);
/* Get the name of a sysreg. Returns null on error. */
const char *xtensa_sysreg_name(xtensa_isa isa, xtensa_sysreg sysreg);
/* Get the register number. Returns XTENSA_UNDEFINED on error. */
int xtensa_sysreg_number(xtensa_isa isa, xtensa_sysreg sysreg);
/*
* Check if a sysreg is a "special register" or a "user register".
* Returns 0 for special registers, 1 for user registers and
* XTENSA_UNDEFINED on error.
*/
int xtensa_sysreg_is_user(xtensa_isa isa, xtensa_sysreg sysreg);
/* Interfaces. */
/*
* Find an interface by name. The return value is XTENSA_UNDEFINED if
* the specified interface is not found.
*/
xtensa_interface xtensa_interface_lookup(xtensa_isa isa, const char *ifname);
/* Get the name of an interface. Returns null on error. */
const char *xtensa_interface_name(xtensa_isa isa, xtensa_interface intf);
/*
* Get the bit width for an interface.
* Returns XTENSA_UNDEFINED on error.
*/
int xtensa_interface_num_bits(xtensa_isa isa, xtensa_interface intf);
/*
* Check if an interface is an input ('i') or output ('o') with respect
* to the Xtensa processor core. Returns 0 on error.
*/
char xtensa_interface_inout(xtensa_isa isa, xtensa_interface intf);
/*
* Check if accessing an interface has potential side effects.
* Currently "data" interfaces have side effects and "control"
* interfaces do not. Returns 1 if there are side effects, 0 if not,
* and XTENSA_UNDEFINED on error.
*/
int xtensa_interface_has_side_effect(xtensa_isa isa, xtensa_interface intf);
/*
* Some interfaces may be related such that accessing one interface
* has side effects on a set of related interfaces. The interfaces
* are partitioned into equivalence classes of related interfaces, and
* each class is assigned a unique identifier number. This function
* returns the class identifier for an interface, or XTENSA_UNDEFINED
* on error. These identifiers can be compared to determine if two
* interfaces are related; the specific values of the identifiers have
* no particular meaning otherwise.
*/
int xtensa_interface_class_id(xtensa_isa isa, xtensa_interface intf);
/* Functional Units. */
/*
* Find a functional unit by name. The return value is XTENSA_UNDEFINED if
* the specified unit is not found.
*/
xtensa_funcUnit xtensa_funcUnit_lookup(xtensa_isa isa, const char *fname);
/* Get the name of a functional unit. Returns null on error. */
const char *xtensa_funcUnit_name(xtensa_isa isa, xtensa_funcUnit fun);
/*
* Functional units may be replicated. See how many instances of a
* particular function unit exist. Returns XTENSA_UNDEFINED on error.
*/
int xtensa_funcUnit_num_copies(xtensa_isa isa, xtensa_funcUnit fun);
#ifdef __cplusplus
}
#endif
#endif /* XTENSA_LIBISA_H */

View File

@ -3,5 +3,6 @@ obj-y += core-dc232b.o
obj-y += core-dc233c.o
obj-y += core-fsf.o
obj-$(CONFIG_SOFTMMU) += monitor.o
obj-y += xtensa-isa.o
obj-y += translate.o op_helper.o helper.o cpu.o
obj-y += gdbstub.o

View File

@ -34,6 +34,9 @@
#include "core-dc232b/core-isa.h"
#include "overlay_tool.h"
#define xtensa_modules xtensa_modules_dc232b
#include "core-dc232b/xtensa-modules.c"
static XtensaConfig dc232b __attribute__((unused)) = {
.name = "dc232b",
.gdb_regmap = {
@ -43,6 +46,7 @@ static XtensaConfig dc232b __attribute__((unused)) = {
#include "core-dc232b/gdb-config.c"
}
},
.isa_internal = &xtensa_modules,
.clock_freq_khz = 10000,
DEFAULT_SECTIONS
};

File diff suppressed because it is too large Load Diff

View File

@ -35,6 +35,9 @@
#include "core-dc233c/core-isa.h"
#include "overlay_tool.h"
#define xtensa_modules xtensa_modules_dc233c
#include "core-dc233c/xtensa-modules.c"
static XtensaConfig dc233c __attribute__((unused)) = {
.name = "dc233c",
.gdb_regmap = {
@ -44,6 +47,7 @@ static XtensaConfig dc233c __attribute__((unused)) = {
#include "core-dc233c/gdb-config.c"
}
},
.isa_internal = &xtensa_modules,
.clock_freq_khz = 10000,
DEFAULT_SECTIONS
};

File diff suppressed because it is too large Load Diff

View File

@ -29,11 +29,15 @@
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "qemu-common.h"
#include "qemu/host-utils.h"
#include "core-fsf/core-isa.h"
#include "overlay_tool.h"
#define xtensa_modules xtensa_modules_fsf
#include "core-fsf/xtensa-modules.c"
static XtensaConfig fsf __attribute__((unused)) = {
.name = "fsf",
.gdb_regmap = {
@ -42,6 +46,7 @@ static XtensaConfig fsf __attribute__((unused)) = {
XTREG_END
},
},
.isa_internal = &xtensa_modules,
.clock_freq_khz = 10000,
DEFAULT_SECTIONS
};

File diff suppressed because it is too large Load Diff

View File

@ -93,6 +93,14 @@ static ObjectClass *xtensa_cpu_class_by_name(const char *cpu_model)
return oc;
}
static void xtensa_cpu_disas_set_info(CPUState *cs, disassemble_info *info)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
info->private_data = cpu->env.config->isa;
info->print_insn = print_insn_xtensa;
}
static void xtensa_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
@ -164,6 +172,7 @@ static void xtensa_cpu_class_init(ObjectClass *oc, void *data)
cc->do_unassigned_access = xtensa_cpu_do_unassigned_access;
#endif
cc->debug_excp_handler = xtensa_breakpoint_handler;
cc->disas_set_info = xtensa_cpu_disas_set_info;
cc->tcg_initialize = xtensa_translate_init;
dc->vmsd = &vmstate_xtensa_cpu;
}

View File

@ -37,6 +37,7 @@
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#include "fpu/softfloat.h"
#include "xtensa-isa.h"
#define NB_MMU_MODES 4
@ -107,6 +108,7 @@ enum {
};
enum {
EXPSTATE = 230,
THREADPTR = 231,
FCR = 232,
FSR = 233,
@ -126,6 +128,7 @@ enum {
WINDOW_BASE = 72,
WINDOW_START = 73,
PTEVADDR = 83,
MMID = 89,
RASID = 90,
ITLBCFG = 91,
DTLBCFG = 92,
@ -133,6 +136,7 @@ enum {
MEMCTL = 97,
CACHEATTR = 98,
ATOMCTL = 99,
DDR = 104,
IBREAKA = 128,
DBREAKA = 144,
DBREAKC = 160,
@ -205,6 +209,8 @@ enum {
#define MEMCTL_DSNP 0x2
#define MEMCTL_IL0EN 0x1
#define MAX_INSN_LENGTH 64
#define MAX_OPCODE_ARGS 16
#define MAX_NAREG 64
#define MAX_NINTERRUPT 32
#define MAX_NLEVEL 6
@ -330,6 +336,24 @@ typedef struct XtensaMemory {
} location[MAX_NMEMORY];
} XtensaMemory;
typedef struct DisasContext DisasContext;
typedef void (*XtensaOpcodeOp)(DisasContext *dc, const uint32_t arg[],
const uint32_t par[]);
typedef struct XtensaOpcodeOps {
const char *name;
XtensaOpcodeOp translate;
const uint32_t *par;
} XtensaOpcodeOps;
typedef struct XtensaOpcodeTranslators {
unsigned num_opcodes;
const XtensaOpcodeOps *opcode;
} XtensaOpcodeTranslators;
extern const XtensaOpcodeTranslators xtensa_core_opcodes;
extern const XtensaOpcodeTranslators xtensa_fpu2000_opcodes;
struct XtensaConfig {
const char *name;
uint64_t options;
@ -370,6 +394,11 @@ struct XtensaConfig {
uint32_t configid[2];
void *isa_internal;
xtensa_isa isa;
XtensaOpcodeOps **opcode_ops;
const XtensaOpcodeTranslators **opcode_translators;
uint32_t clock_freq_khz;
xtensa_tlb itlb;
@ -522,6 +551,8 @@ static inline void xtensa_select_static_vectors(CPUXtensaState *env,
env->static_vectors = n;
}
void xtensa_runstall(CPUXtensaState *env, bool runstall);
XtensaOpcodeOps *xtensa_find_opcode_ops(const XtensaOpcodeTranslators *t,
const char *opcode);
#define XTENSA_OPTION_BIT(opt) (((uint64_t)1) << (opt))
#define XTENSA_OPTION_ALL (~(uint64_t)0)

View File

@ -52,10 +52,47 @@ static void xtensa_core_class_init(ObjectClass *oc, void *data)
cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
}
static void init_libisa(XtensaConfig *config)
{
unsigned i, j;
unsigned opcodes;
config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
opcodes = xtensa_isa_num_opcodes(config->isa);
config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
for (i = 0; i < opcodes; ++i) {
const char *opc_name = xtensa_opcode_name(config->isa, i);
XtensaOpcodeOps *ops = NULL;
assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
if (!config->opcode_translators) {
ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
} else {
for (j = 0; !ops && config->opcode_translators[j]; ++j) {
ops = xtensa_find_opcode_ops(config->opcode_translators[j],
opc_name);
}
}
#ifdef DEBUG
if (ops == NULL) {
fprintf(stderr,
"opcode translator not found for %s's opcode '%s'\n",
config->name, opc_name);
}
#endif
config->opcode_ops[i] = ops;
}
}
void xtensa_finalize_config(XtensaConfig *config)
{
unsigned i, n = 0;
if (config->isa_internal) {
init_libisa(config);
}
if (config->gdb_regmap.num_regs) {
return;
}

View File

@ -23,6 +23,17 @@ tar -xf "$OVERLAY" -C "$TARGET" --strip-components=1 \
--xform='s/core/core-isa/' config/core.h
tar -xf "$OVERLAY" -O gdb/xtensa-config.c | \
sed -n '1,/*\//p;/XTREG/,/XTREG_END/p' > "$TARGET"/gdb-config.c
#
# Fix up known issues in the xtensa-modules.c
#
tar -xf "$OVERLAY" -O binutils/xtensa-modules.c | \
sed -e 's/\(xtensa_opcode_encode_fn.*\[\] =\)/static \1/' \
-e '/^int num_bypass_groups()/,/}/d' \
-e '/^int num_bypass_group_chunks()/,/}/d' \
-e '/^uint32 \*bypass_entry(int i)/,/}/d' \
-e '/^#include "ansidecl.h"/d' \
-e '/^Slot_[a-zA-Z0-9_]\+_decode (const xtensa_insnbuf insn)/,/^}/s/^ return 0;$/ return XTENSA_UNDEFINED;/' \
> "$TARGET"/xtensa-modules.c
cat <<EOF > "${TARGET}.c"
#include "qemu/osdep.h"
@ -35,6 +46,9 @@ cat <<EOF > "${TARGET}.c"
#include "core-$NAME/core-isa.h"
#include "overlay_tool.h"
#define xtensa_modules xtensa_modules_$NAME
#include "core-$NAME/xtensa-modules.c"
static XtensaConfig $NAME __attribute__((unused)) = {
.name = "$NAME",
.gdb_regmap = {
@ -42,6 +56,7 @@ static XtensaConfig $NAME __attribute__((unused)) = {
#include "core-$NAME/gdb-config.c"
}
},
.isa_internal = &xtensa_modules,
.clock_freq_khz = $FREQ,
DEFAULT_SECTIONS
};

View File

@ -249,7 +249,7 @@ void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
if (windowstart & ((1 << callinc) - 1)) {
HELPER(window_check)(env, pc, callinc);
}
env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm;
rotate_window(env, callinc);
env->sregs[WINDOW_START] |=
windowstart_bit(env->sregs[WINDOW_BASE], env);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,231 @@
/* Internal definitions for the Xtensa ISA library.
*
* Copyright (c) 2004-2011 Tensilica Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef XTENSA_ISA_INTERNAL_H
#define XTENSA_ISA_INTERNAL_H
#ifndef uint32
#define uint32 uint32_t
#endif
/* Flags. */
#define XTENSA_OPERAND_IS_REGISTER 0x00000001
#define XTENSA_OPERAND_IS_PCRELATIVE 0x00000002
#define XTENSA_OPERAND_IS_INVISIBLE 0x00000004
#define XTENSA_OPERAND_IS_UNKNOWN 0x00000008
#define XTENSA_OPCODE_IS_BRANCH 0x00000001
#define XTENSA_OPCODE_IS_JUMP 0x00000002
#define XTENSA_OPCODE_IS_LOOP 0x00000004
#define XTENSA_OPCODE_IS_CALL 0x00000008
#define XTENSA_STATE_IS_EXPORTED 0x00000001
#define XTENSA_STATE_IS_SHARED_OR 0x00000002
#define XTENSA_INTERFACE_HAS_SIDE_EFFECT 0x00000001
/* Function pointer typedefs */
typedef void (*xtensa_format_encode_fn)(xtensa_insnbuf);
typedef void (*xtensa_get_slot_fn)(const xtensa_insnbuf, xtensa_insnbuf);
typedef void (*xtensa_set_slot_fn)(xtensa_insnbuf, const xtensa_insnbuf);
typedef int (*xtensa_opcode_decode_fn)(const xtensa_insnbuf);
typedef uint32_t (*xtensa_get_field_fn)(const xtensa_insnbuf);
typedef void (*xtensa_set_field_fn)(xtensa_insnbuf, uint32_t);
typedef int (*xtensa_immed_decode_fn)(uint32_t *);
typedef int (*xtensa_immed_encode_fn)(uint32_t *);
typedef int (*xtensa_do_reloc_fn)(uint32_t *, uint32_t);
typedef int (*xtensa_undo_reloc_fn)(uint32_t *, uint32_t);
typedef void (*xtensa_opcode_encode_fn)(xtensa_insnbuf);
typedef int (*xtensa_format_decode_fn)(const xtensa_insnbuf);
typedef int (*xtensa_length_decode_fn)(const unsigned char *);
typedef struct xtensa_format_internal_struct {
const char *name; /* Instruction format name. */
int length; /* Instruction length in bytes. */
xtensa_format_encode_fn encode_fn;
int num_slots;
int *slot_id; /* Array[num_slots] of slot IDs. */
} xtensa_format_internal;
typedef struct xtensa_slot_internal_struct {
const char *name; /* Not necessarily unique. */
const char *format;
int position;
xtensa_get_slot_fn get_fn;
xtensa_set_slot_fn set_fn;
xtensa_get_field_fn *get_field_fns; /* Array[field_id]. */
xtensa_set_field_fn *set_field_fns; /* Array[field_id]. */
xtensa_opcode_decode_fn opcode_decode_fn;
const char *nop_name;
} xtensa_slot_internal;
typedef struct xtensa_operand_internal_struct {
const char *name;
int field_id;
xtensa_regfile regfile; /* Register file. */
int num_regs; /* Usually 1; 2 for reg pairs, etc. */
uint32_t flags; /* See XTENSA_OPERAND_* flags. */
xtensa_immed_encode_fn encode; /* Encode the operand value. */
xtensa_immed_decode_fn decode; /* Decode the value from the field. */
xtensa_do_reloc_fn do_reloc; /* Perform a PC-relative reloc. */
xtensa_undo_reloc_fn undo_reloc; /* Undo a PC-relative relocation. */
} xtensa_operand_internal;
typedef struct xtensa_arg_internal_struct {
union {
int operand_id; /* For normal operands. */
xtensa_state state; /* For stateOperands. */
} u;
char inout; /* Direction: 'i', 'o', or 'm'. */
} xtensa_arg_internal;
typedef struct xtensa_iclass_internal_struct {
int num_operands; /* Size of "operands" array. */
xtensa_arg_internal *operands; /* Array[num_operands]. */
int num_stateOperands; /* Size of "stateOperands" array. */
xtensa_arg_internal *stateOperands; /* Array[num_stateOperands]. */
int num_interfaceOperands; /* Size of "interfaceOperands". */
xtensa_interface *interfaceOperands; /* Array[num_interfaceOperands]. */
} xtensa_iclass_internal;
typedef struct xtensa_opcode_internal_struct {
const char *name; /* Opcode mnemonic. */
int iclass_id; /* Iclass for this opcode. */
uint32_t flags; /* See XTENSA_OPCODE_* flags. */
xtensa_opcode_encode_fn *encode_fns; /* Array[slot_id]. */
int num_funcUnit_uses; /* Number of funcUnit_use entries. */
xtensa_funcUnit_use *funcUnit_uses; /* Array[num_funcUnit_uses]. */
} xtensa_opcode_internal;
typedef struct xtensa_regfile_internal_struct {
const char *name; /* Full name of the regfile. */
const char *shortname; /* Abbreviated name. */
xtensa_regfile parent; /* View parent (or identity). */
int num_bits; /* Width of the registers. */
int num_entries; /* Number of registers. */
} xtensa_regfile_internal;
typedef struct xtensa_interface_internal_struct {
const char *name; /* Interface name. */
int num_bits; /* Width of the interface. */
uint32_t flags; /* See XTENSA_INTERFACE_* flags. */
int class_id; /* Class of related interfaces. */
char inout; /* "i" or "o". */
} xtensa_interface_internal;
typedef struct xtensa_funcUnit_internal_struct {
const char *name; /* Functional unit name. */
int num_copies; /* Number of instances. */
} xtensa_funcUnit_internal;
typedef struct xtensa_state_internal_struct {
const char *name; /* State name. */
int num_bits; /* Number of state bits. */
uint32_t flags; /* See XTENSA_STATE_* flags. */
} xtensa_state_internal;
typedef struct xtensa_sysreg_internal_struct {
const char *name; /* Register name. */
int number; /* Register number. */
int is_user; /* Non-zero if a "user register". */
} xtensa_sysreg_internal;
typedef struct xtensa_lookup_entry_struct {
const char *key;
union {
xtensa_opcode opcode; /* Internal opcode number. */
xtensa_sysreg sysreg; /* Internal sysreg number. */
xtensa_state state; /* Internal state number. */
xtensa_interface intf; /* Internal interface number. */
xtensa_funcUnit fun; /* Internal funcUnit number. */
} u;
} xtensa_lookup_entry;
typedef struct xtensa_isa_internal_struct {
int is_big_endian; /* Endianness. */
int insn_size; /* Maximum length in bytes. */
int insnbuf_size; /* Number of insnbuf_words. */
int num_formats;
xtensa_format_internal *formats;
xtensa_format_decode_fn format_decode_fn;
xtensa_length_decode_fn length_decode_fn;
int num_slots;
xtensa_slot_internal *slots;
int num_fields;
int num_operands;
xtensa_operand_internal *operands;
int num_iclasses;
xtensa_iclass_internal *iclasses;
int num_opcodes;
xtensa_opcode_internal *opcodes;
xtensa_lookup_entry *opname_lookup_table;
int num_regfiles;
xtensa_regfile_internal *regfiles;
int num_states;
xtensa_state_internal *states;
xtensa_lookup_entry *state_lookup_table;
int num_sysregs;
xtensa_sysreg_internal *sysregs;
xtensa_lookup_entry *sysreg_lookup_table;
/*
* The current Xtensa ISA only supports 256 of each kind of sysreg so
* we can get away with implementing lookups with tables indexed by
* the register numbers. If we ever allow larger sysreg numbers, this
* may have to be reimplemented. The first entry in the following
* arrays corresponds to "special" registers and the second to "user"
* registers.
*/
int max_sysreg_num[2];
xtensa_sysreg *sysreg_table[2];
int num_interfaces;
xtensa_interface_internal *interfaces;
xtensa_lookup_entry *interface_lookup_table;
int num_funcUnits;
xtensa_funcUnit_internal *funcUnits;
xtensa_lookup_entry *funcUnit_lookup_table;
int num_stages; /* Number of pipe stages. */
} xtensa_isa_internal;
int xtensa_isa_name_compare(const void *, const void *);
extern xtensa_isa_status xtisa_errno;
extern char xtisa_error_msg[];
#endif /* !XTENSA_ISA_INTERNAL_H */

1745
target/xtensa/xtensa-isa.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
#include <hw/xtensa/xtensa-isa.h>

View File

@ -44,7 +44,6 @@ test_end
test_sr acchi, 1
test_sr acclo, 1
test_sr /*memctl*/97, 0
test_sr_mask /*atomctl*/99, 0, 0
test_sr_mask /*br*/4, 0, 0
test_sr_mask /*cacheattr*/98, 0, 0
@ -76,6 +75,7 @@ test_sr lcount, 1
test_sr lend, 1
test_sr litbase, 1
test_sr m0, 1
test_sr_mask /*memctl*/97, 0, 0
test_sr misc0, 1
test_sr_mask /*prefctl*/40, 0, 0
test_sr_mask /*prid*/235, 0, 1