target-arm: Fix "no 64-bit EL2" assumption in arm_excp_unmasked()

The code in arm_excp_unmasked() suppresses the ability of PSTATE.AIF
to mask exceptions from a lower EL targeting EL2 or EL3 if the
CPU is 64-bit. This is correct for a target of EL3, but not correct
for targeting EL2. Further, we go to some effort to calculate
scr and hcr values which are not used at all for the 64-bit CPU
case.

Rearrange the code to correctly implement the 64-bit CPU logic
and keep the hcr/scr calculations in the 32-bit CPU codepath.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1444327729-4120-1-git-send-email-peter.maydell@linaro.org
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
This commit is contained in:
Peter Maydell 2015-10-27 12:00:50 +00:00
parent 7e038b94e7
commit 7cd6de3bb1

View File

@ -1525,8 +1525,6 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
CPUARMState *env = cs->env_ptr;
unsigned int cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
bool scr;
bool hcr;
bool pstate_unmasked;
int8_t unmasked = 0;
@ -1540,31 +1538,10 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
switch (excp_idx) {
case EXCP_FIQ:
/* If FIQs are routed to EL3 or EL2 then there are cases where we
* override the CPSR.F in determining if the exception is masked or
* not. If neither of these are set then we fall back to the CPSR.F
* setting otherwise we further assess the state below.
*/
hcr = (env->cp15.hcr_el2 & HCR_FMO);
scr = (env->cp15.scr_el3 & SCR_FIQ);
/* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
* masks FIQ interrupts when taken in non-secure state. If SCR.FW is
* set then FIQs can be masked by CPSR.F when non-secure but only
* when FIQs are only routed to EL3.
*/
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
pstate_unmasked = !(env->daif & PSTATE_F);
break;
case EXCP_IRQ:
/* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
* override the CPSR.I masking when in non-secure state. The SCR.IRQ
* setting has already been taken into consideration when setting the
* target EL, so it does not have a further affect here.
*/
hcr = (env->cp15.hcr_el2 & HCR_IMO);
scr = false;
pstate_unmasked = !(env->daif & PSTATE_I);
break;
@ -1589,13 +1566,58 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
* interrupt.
*/
if ((target_el > cur_el) && (target_el != 1)) {
/* ARM_FEATURE_AARCH64 enabled means the highest EL is AArch64.
* This code currently assumes that EL2 is not implemented
* (and so that highest EL will be 3 and the target_el also 3).
*/
if (arm_feature(env, ARM_FEATURE_AARCH64) ||
((scr || hcr) && (!secure))) {
unmasked = 1;
/* Exceptions targeting a higher EL may not be maskable */
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 64-bit masking rules are simple: exceptions to EL3
* can't be masked, and exceptions to EL2 can only be
* masked from Secure state. The HCR and SCR settings
* don't affect the masking logic, only the interrupt routing.
*/
if (target_el == 3 || !secure) {
unmasked = 1;
}
} else {
/* The old 32-bit-only environment has a more complicated
* masking setup. HCR and SCR bits not only affect interrupt
* routing but also change the behaviour of masking.
*/
bool hcr, scr;
switch (excp_idx) {
case EXCP_FIQ:
/* If FIQs are routed to EL3 or EL2 then there are cases where
* we override the CPSR.F in determining if the exception is
* masked or not. If neither of these are set then we fall back
* to the CPSR.F setting otherwise we further assess the state
* below.
*/
hcr = (env->cp15.hcr_el2 & HCR_FMO);
scr = (env->cp15.scr_el3 & SCR_FIQ);
/* When EL3 is 32-bit, the SCR.FW bit controls whether the
* CPSR.F bit masks FIQ interrupts when taken in non-secure
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
* when non-secure but only when FIQs are only routed to EL3.
*/
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
break;
case EXCP_IRQ:
/* When EL3 execution state is 32-bit, if HCR.IMO is set then
* we may override the CPSR.I masking when in non-secure state.
* The SCR.IRQ setting has already been taken into consideration
* when setting the target EL, so it does not have a further
* affect here.
*/
hcr = (env->cp15.hcr_el2 & HCR_IMO);
scr = false;
break;
default:
g_assert_not_reached();
}
if ((scr || hcr) && !secure) {
unmasked = 1;
}
}
}