m68k comments break patch submission due to being incorrectly formatted
Altering all comments in target/m68k to match Qemu coding styles so that future patches wont fail due to style breaches. Signed-off-by: Lucien Murray-Pitts <lucienmp.qemu@gmail.com> Reviewed-by: Laurent Vivier <laurent@vivier.eu> Message-Id: <20190606234125.GA4830@localhost.localdomain> Signed-off-by: Laurent Vivier <laurent@vivier.eu>
This commit is contained in:
parent
bf1fa6912d
commit
808d77bc5f
@ -31,7 +31,7 @@
|
||||
#define M68K_CPU_GET_CLASS(obj) \
|
||||
OBJECT_GET_CLASS(M68kCPUClass, (obj), TYPE_M68K_CPU)
|
||||
|
||||
/**
|
||||
/*
|
||||
* M68kCPUClass:
|
||||
* @parent_realize: The parent class' realize handler.
|
||||
* @parent_reset: The parent class' reset handler.
|
||||
|
@ -203,8 +203,10 @@ static void any_cpu_initfn(Object *obj)
|
||||
m68k_set_feature(env, M68K_FEATURE_CF_ISA_APLUSC);
|
||||
m68k_set_feature(env, M68K_FEATURE_BRAL);
|
||||
m68k_set_feature(env, M68K_FEATURE_CF_FPU);
|
||||
/* MAC and EMAC are mututally exclusive, so pick EMAC.
|
||||
It's mostly backwards compatible. */
|
||||
/*
|
||||
* MAC and EMAC are mututally exclusive, so pick EMAC.
|
||||
* It's mostly backwards compatible.
|
||||
*/
|
||||
m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
|
||||
m68k_set_feature(env, M68K_FEATURE_CF_EMAC_B);
|
||||
m68k_set_feature(env, M68K_FEATURE_USP);
|
||||
|
@ -106,9 +106,11 @@ typedef struct CPUM68KState {
|
||||
float_status fp_status;
|
||||
|
||||
uint64_t mactmp;
|
||||
/* EMAC Hardware deals with 48-bit values composed of one 32-bit and
|
||||
two 8-bit parts. We store a single 64-bit value and
|
||||
rearrange/extend this when changing modes. */
|
||||
/*
|
||||
* EMAC Hardware deals with 48-bit values composed of one 32-bit and
|
||||
* two 8-bit parts. We store a single 64-bit value and
|
||||
* rearrange/extend this when changing modes.
|
||||
*/
|
||||
uint64_t macc[4];
|
||||
uint32_t macsr;
|
||||
uint32_t mac_mask;
|
||||
@ -146,7 +148,7 @@ typedef struct CPUM68KState {
|
||||
uint32_t features;
|
||||
} CPUM68KState;
|
||||
|
||||
/**
|
||||
/*
|
||||
* M68kCPU:
|
||||
* @env: #CPUM68KState
|
||||
*
|
||||
@ -171,9 +173,11 @@ int m68k_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
|
||||
|
||||
void m68k_tcg_init(void);
|
||||
void m68k_cpu_init_gdb(M68kCPU *cpu);
|
||||
/* you can call this signal handler from your SIGBUS and SIGSEGV
|
||||
signal handlers to inform the virtual CPU of exceptions. non zero
|
||||
is returned if the signal was handled by the virtual CPU. */
|
||||
/*
|
||||
* you can call this signal handler from your SIGBUS and SIGSEGV
|
||||
* signal handlers to inform the virtual CPU of exceptions. non zero
|
||||
* is returned if the signal was handled by the virtual CPU.
|
||||
*/
|
||||
int cpu_m68k_signal_handler(int host_signum, void *pinfo,
|
||||
void *puc);
|
||||
uint32_t cpu_m68k_get_ccr(CPUM68KState *env);
|
||||
@ -182,7 +186,8 @@ void cpu_m68k_set_sr(CPUM68KState *env, uint32_t);
|
||||
void cpu_m68k_set_fpcr(CPUM68KState *env, uint32_t val);
|
||||
|
||||
|
||||
/* Instead of computing the condition codes after each m68k instruction,
|
||||
/*
|
||||
* Instead of computing the condition codes after each m68k instruction,
|
||||
* QEMU just stores one operand (called CC_SRC), the result
|
||||
* (called CC_DEST) and the type of operation (called CC_OP). When the
|
||||
* condition codes are needed, the condition codes can be calculated
|
||||
@ -447,9 +452,11 @@ void m68k_switch_sp(CPUM68KState *env);
|
||||
|
||||
void do_m68k_semihosting(CPUM68KState *env, int nr);
|
||||
|
||||
/* There are 4 ColdFire core ISA revisions: A, A+, B and C.
|
||||
Each feature covers the subset of instructions common to the
|
||||
ISA revisions mentioned. */
|
||||
/*
|
||||
* There are 4 ColdFire core ISA revisions: A, A+, B and C.
|
||||
* Each feature covers the subset of instructions common to the
|
||||
* ISA revisions mentioned.
|
||||
*/
|
||||
|
||||
enum m68k_features {
|
||||
M68K_FEATURE_M68000,
|
||||
|
@ -25,7 +25,8 @@
|
||||
#include "exec/cpu_ldst.h"
|
||||
#include "softfloat.h"
|
||||
|
||||
/* Undefined offsets may be different on various FPU.
|
||||
/*
|
||||
* Undefined offsets may be different on various FPU.
|
||||
* On 68040 they return 0.0 (floatx80_zero)
|
||||
*/
|
||||
|
||||
@ -611,7 +612,8 @@ void HELPER(fcos)(CPUM68KState *env, FPReg *res, FPReg *val)
|
||||
void HELPER(fsincos)(CPUM68KState *env, FPReg *res0, FPReg *res1, FPReg *val)
|
||||
{
|
||||
floatx80 a = val->d;
|
||||
/* If res0 and res1 specify the same floating-point data register,
|
||||
/*
|
||||
* If res0 and res1 specify the same floating-point data register,
|
||||
* the sine result is stored in the register, and the cosine
|
||||
* result is discarded.
|
||||
*/
|
||||
|
@ -41,8 +41,10 @@ int m68k_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
|
||||
return gdb_get_reg32(mem_buf, env->pc);
|
||||
}
|
||||
}
|
||||
/* FP registers not included here because they vary between
|
||||
ColdFire and m68k. Use XML bits for these. */
|
||||
/*
|
||||
* FP registers not included here because they vary between
|
||||
* ColdFire and m68k. Use XML bits for these.
|
||||
*/
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -965,9 +965,11 @@ void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
|
||||
}
|
||||
|
||||
/* MAC unit. */
|
||||
/* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
|
||||
take values, others take register numbers and manipulate the contents
|
||||
in-place. */
|
||||
/*
|
||||
* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
|
||||
* take values, others take register numbers and manipulate the contents
|
||||
* in-place.
|
||||
*/
|
||||
void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
|
||||
{
|
||||
uint32_t mask;
|
||||
@ -1047,9 +1049,11 @@ void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
|
||||
if (env->macsr & MACSR_V) {
|
||||
env->macsr |= MACSR_PAV0 << acc;
|
||||
if (env->macsr & MACSR_OMC) {
|
||||
/* The result is saturated to 32 bits, despite overflow occurring
|
||||
at 48 bits. Seems weird, but that's what the hardware docs
|
||||
say. */
|
||||
/*
|
||||
* The result is saturated to 32 bits, despite overflow occurring
|
||||
* at 48 bits. Seems weird, but that's what the hardware docs
|
||||
* say.
|
||||
*/
|
||||
result = (result >> 63) ^ 0x7fffffff;
|
||||
}
|
||||
}
|
||||
|
@ -130,7 +130,8 @@ static void m68k_semi_return_u32(CPUM68KState *env, uint32_t ret, uint32_t err)
|
||||
target_ulong args = env->dregs[1];
|
||||
if (put_user_u32(ret, args) ||
|
||||
put_user_u32(err, args + 4)) {
|
||||
/* The m68k semihosting ABI does not provide any way to report this
|
||||
/*
|
||||
* The m68k semihosting ABI does not provide any way to report this
|
||||
* error to the guest, so the best we can do is log it in qemu.
|
||||
* It is always a guest error not to pass us a valid argument block.
|
||||
*/
|
||||
@ -159,8 +160,10 @@ static void m68k_semi_cb(CPUState *cs, target_ulong ret, target_ulong err)
|
||||
CPUM68KState *env = &cpu->env;
|
||||
|
||||
if (m68k_semi_is_fseek) {
|
||||
/* FIXME: We've already lost the high bits of the fseek
|
||||
return value. */
|
||||
/*
|
||||
* FIXME: We've already lost the high bits of the fseek
|
||||
* return value.
|
||||
*/
|
||||
m68k_semi_return_u64(env, ret, err);
|
||||
m68k_semi_is_fseek = 0;
|
||||
} else {
|
||||
@ -168,7 +171,8 @@ static void m68k_semi_cb(CPUState *cs, target_ulong ret, target_ulong err)
|
||||
}
|
||||
}
|
||||
|
||||
/* Read the input value from the argument block; fail the semihosting
|
||||
/*
|
||||
* Read the input value from the argument block; fail the semihosting
|
||||
* call if the memory read fails.
|
||||
*/
|
||||
#define GET_ARG(n) do { \
|
||||
@ -440,14 +444,18 @@ void do_m68k_semihosting(CPUM68KState *env, int nr)
|
||||
}
|
||||
ts->heap_limit = base + size;
|
||||
}
|
||||
/* This call may happen before we have writable memory, so return
|
||||
values directly in registers. */
|
||||
/*
|
||||
* This call may happen before we have writable memory, so return
|
||||
* values directly in registers.
|
||||
*/
|
||||
env->dregs[1] = ts->heap_limit;
|
||||
env->aregs[7] = ts->stack_base;
|
||||
}
|
||||
#else
|
||||
/* FIXME: This is wrong for boards where RAM does not start at
|
||||
address zero. */
|
||||
/*
|
||||
* FIXME: This is wrong for boards where RAM does not start at
|
||||
* address zero.
|
||||
*/
|
||||
env->dregs[1] = ram_size;
|
||||
env->aregs[7] = ram_size;
|
||||
#endif
|
||||
|
@ -494,10 +494,12 @@ bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
||||
|
||||
if (interrupt_request & CPU_INTERRUPT_HARD
|
||||
&& ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
|
||||
/* Real hardware gets the interrupt vector via an IACK cycle
|
||||
at this point. Current emulated hardware doesn't rely on
|
||||
this, so we provide/save the vector when the interrupt is
|
||||
first signalled. */
|
||||
/*
|
||||
* Real hardware gets the interrupt vector via an IACK cycle
|
||||
* at this point. Current emulated hardware doesn't rely on
|
||||
* this, so we provide/save the vector when the interrupt is
|
||||
* first signalled.
|
||||
*/
|
||||
cs->exception_index = env->pending_vector;
|
||||
do_interrupt_m68k_hardirq(env);
|
||||
return true;
|
||||
@ -537,7 +539,8 @@ void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
|
||||
env->cc_c = 0; /* always cleared, even if overflow */
|
||||
if (quot > 0xffff) {
|
||||
env->cc_v = -1;
|
||||
/* real 68040 keeps N and unset Z on overflow,
|
||||
/*
|
||||
* real 68040 keeps N and unset Z on overflow,
|
||||
* whereas documentation says "undefined"
|
||||
*/
|
||||
env->cc_z = 1;
|
||||
@ -564,7 +567,8 @@ void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
|
||||
if (quot != (int16_t)quot) {
|
||||
env->cc_v = -1;
|
||||
/* nothing else is modified */
|
||||
/* real 68040 keeps N and unset Z on overflow,
|
||||
/*
|
||||
* real 68040 keeps N and unset Z on overflow,
|
||||
* whereas documentation says "undefined"
|
||||
*/
|
||||
env->cc_z = 1;
|
||||
@ -647,7 +651,8 @@ void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
|
||||
env->cc_c = 0; /* always cleared, even if overflow */
|
||||
if (quot > 0xffffffffULL) {
|
||||
env->cc_v = -1;
|
||||
/* real 68040 keeps N and unset Z on overflow,
|
||||
/*
|
||||
* real 68040 keeps N and unset Z on overflow,
|
||||
* whereas documentation says "undefined"
|
||||
*/
|
||||
env->cc_z = 1;
|
||||
@ -681,7 +686,8 @@ void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
|
||||
env->cc_c = 0; /* always cleared, even if overflow */
|
||||
if (quot != (int32_t)quot) {
|
||||
env->cc_v = -1;
|
||||
/* real 68040 keeps N and unset Z on overflow,
|
||||
/*
|
||||
* real 68040 keeps N and unset Z on overflow,
|
||||
* whereas documentation says "undefined"
|
||||
*/
|
||||
env->cc_z = 1;
|
||||
@ -838,14 +844,18 @@ static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
|
||||
addr -= 1;
|
||||
}
|
||||
|
||||
/* Compute the number of bytes required (minus one) to
|
||||
satisfy the bitfield. */
|
||||
/*
|
||||
* Compute the number of bytes required (minus one) to
|
||||
* satisfy the bitfield.
|
||||
*/
|
||||
blen = (bofs + len - 1) / 8;
|
||||
|
||||
/* Canonicalize the bit offset for data loaded into a 64-bit big-endian
|
||||
word. For the cases where BLEN is not a power of 2, adjust ADDR so
|
||||
that we can use the next power of two sized load without crossing a
|
||||
page boundary, unless the field itself crosses the boundary. */
|
||||
/*
|
||||
* Canonicalize the bit offset for data loaded into a 64-bit big-endian
|
||||
* word. For the cases where BLEN is not a power of 2, adjust ADDR so
|
||||
* that we can use the next power of two sized load without crossing a
|
||||
* page boundary, unless the field itself crosses the boundary.
|
||||
*/
|
||||
switch (blen) {
|
||||
case 0:
|
||||
bofs += 56;
|
||||
@ -937,8 +947,10 @@ uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
|
||||
struct bf_data d = bf_prep(addr, ofs, len);
|
||||
uint64_t data = bf_load(env, d.addr, d.blen, ra);
|
||||
|
||||
/* Put CC_N at the top of the high word; put the zero-extended value
|
||||
at the bottom of the low word. */
|
||||
/*
|
||||
* Put CC_N at the top of the high word; put the zero-extended value
|
||||
* at the bottom of the low word.
|
||||
*/
|
||||
data <<= d.bofs;
|
||||
data >>= 64 - d.len;
|
||||
data |= data << (64 - d.len);
|
||||
@ -1016,15 +1028,18 @@ uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
|
||||
uint64_t n = (data & mask) << d.bofs;
|
||||
uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
|
||||
|
||||
/* Return FFO in the low word and N in the high word.
|
||||
Note that because of MASK and the shift, the low word
|
||||
is already zero. */
|
||||
/*
|
||||
* Return FFO in the low word and N in the high word.
|
||||
* Note that because of MASK and the shift, the low word
|
||||
* is already zero.
|
||||
*/
|
||||
return n | ffo;
|
||||
}
|
||||
|
||||
void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
|
||||
{
|
||||
/* From the specs:
|
||||
/*
|
||||
* From the specs:
|
||||
* X: Not affected, C,V,Z: Undefined,
|
||||
* N: Set if val < 0; cleared if val > ub, undefined otherwise
|
||||
* We implement here values found from a real MC68040:
|
||||
@ -1054,7 +1069,8 @@ void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
|
||||
|
||||
void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
|
||||
{
|
||||
/* From the specs:
|
||||
/*
|
||||
* From the specs:
|
||||
* X: Not affected, N,V: Undefined,
|
||||
* Z: Set if val is equal to lb or ub
|
||||
* C: Set if val < lb or val > ub, cleared otherwise
|
||||
|
@ -14,7 +14,8 @@
|
||||
* the Softfloat-2a license unless specifically indicated otherwise.
|
||||
*/
|
||||
|
||||
/* Portions of this work are licensed under the terms of the GNU GPL,
|
||||
/*
|
||||
* Portions of this work are licensed under the terms of the GNU GPL,
|
||||
* version 2 or later. See the COPYING file in the top-level directory.
|
||||
*/
|
||||
|
||||
@ -41,10 +42,10 @@ static floatx80 propagateFloatx80NaNOneArg(floatx80 a, float_status *status)
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the modulo remainder of the extended double-precision floating-point
|
||||
| value `a' with respect to the corresponding value `b'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Returns the modulo remainder of the extended double-precision floating-point
|
||||
* value `a' with respect to the corresponding value `b'.
|
||||
*/
|
||||
|
||||
floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)
|
||||
{
|
||||
@ -124,10 +125,10 @@ floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)
|
||||
80, zSign, bExp + expDiff, aSig0, aSig1, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the mantissa of the extended double-precision floating-point
|
||||
| value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Returns the mantissa of the extended double-precision floating-point
|
||||
* value `a'.
|
||||
*/
|
||||
|
||||
floatx80 floatx80_getman(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -158,10 +159,10 @@ floatx80 floatx80_getman(floatx80 a, float_status *status)
|
||||
0x3FFF, aSig, 0, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the exponent of the extended double-precision floating-point
|
||||
| value `a' as an extended double-precision value.
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Returns the exponent of the extended double-precision floating-point
|
||||
* value `a' as an extended double-precision value.
|
||||
*/
|
||||
|
||||
floatx80 floatx80_getexp(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -191,13 +192,13 @@ floatx80 floatx80_getexp(floatx80 a, float_status *status)
|
||||
return int32_to_floatx80(aExp - 0x3FFF, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Scales extended double-precision floating-point value in operand `a' by
|
||||
| value `b'. The function truncates the value in the second operand 'b' to
|
||||
| an integral value and adds that value to the exponent of the operand 'a'.
|
||||
| The operation performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Scales extended double-precision floating-point value in operand `a' by
|
||||
* value `b'. The function truncates the value in the second operand 'b' to
|
||||
* an integral value and adds that value to the exponent of the operand 'a'.
|
||||
* The operation performed according to the IEC/IEEE Standard for Binary
|
||||
* Floating-Point Arithmetic.
|
||||
*/
|
||||
|
||||
floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status *status)
|
||||
{
|
||||
@ -282,26 +283,26 @@ floatx80 floatx80_move(floatx80 a, float_status *status)
|
||||
aExp, aSig, 0, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Algorithms for transcendental functions supported by MC68881 and MC68882
|
||||
| mathematical coprocessors. The functions are derived from FPSP library.
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Algorithms for transcendental functions supported by MC68881 and MC68882
|
||||
* mathematical coprocessors. The functions are derived from FPSP library.
|
||||
*/
|
||||
|
||||
#define one_exp 0x3FFF
|
||||
#define one_sig LIT64(0x8000000000000000)
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Function for compactifying extended double-precision floating point values.
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Function for compactifying extended double-precision floating point values.
|
||||
*/
|
||||
|
||||
static int32_t floatx80_make_compact(int32_t aExp, uint64_t aSig)
|
||||
{
|
||||
return (aExp << 16) | (aSig >> 48);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Log base e of x plus 1
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Log base e of x plus 1
|
||||
*/
|
||||
|
||||
floatx80 floatx80_lognp1(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -498,9 +499,9 @@ floatx80 floatx80_lognp1(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Log base e
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Log base e
|
||||
*/
|
||||
|
||||
floatx80 floatx80_logn(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -666,9 +667,9 @@ floatx80 floatx80_logn(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Log base 10
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Log base 10
|
||||
*/
|
||||
|
||||
floatx80 floatx80_log10(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -723,9 +724,9 @@ floatx80 floatx80_log10(floatx80 a, float_status *status)
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Log base 2
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Log base 2
|
||||
*/
|
||||
|
||||
floatx80 floatx80_log2(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -790,9 +791,9 @@ floatx80 floatx80_log2(floatx80 a, float_status *status)
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| e to x
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* e to x
|
||||
*/
|
||||
|
||||
floatx80 floatx80_etox(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -848,7 +849,8 @@ floatx80 floatx80_etox(floatx80 a, float_status *status)
|
||||
j = n & 0x3F; /* J = N mod 64 */
|
||||
m = n / 64; /* NOTE: this is really arithmetic right shift by 6 */
|
||||
if (n < 0 && j) {
|
||||
/* arithmetic right shift is division and
|
||||
/*
|
||||
* arithmetic right shift is division and
|
||||
* round towards minus infinity
|
||||
*/
|
||||
m--;
|
||||
@ -973,9 +975,9 @@ floatx80 floatx80_etox(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| 2 to x
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* 2 to x
|
||||
*/
|
||||
|
||||
floatx80 floatx80_twotox(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -1051,14 +1053,16 @@ floatx80 floatx80_twotox(floatx80 a, float_status *status)
|
||||
j = n & 0x3F;
|
||||
l = n / 64; /* NOTE: this is really arithmetic right shift by 6 */
|
||||
if (n < 0 && j) {
|
||||
/* arithmetic right shift is division and
|
||||
/*
|
||||
* arithmetic right shift is division and
|
||||
* round towards minus infinity
|
||||
*/
|
||||
l--;
|
||||
}
|
||||
m = l / 2; /* NOTE: this is really arithmetic right shift by 1 */
|
||||
if (l < 0 && (l & 1)) {
|
||||
/* arithmetic right shift is division and
|
||||
/*
|
||||
* arithmetic right shift is division and
|
||||
* round towards minus infinity
|
||||
*/
|
||||
m--;
|
||||
@ -1121,9 +1125,9 @@ floatx80 floatx80_twotox(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| 10 to x
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* 10 to x
|
||||
*/
|
||||
|
||||
floatx80 floatx80_tentox(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -1200,14 +1204,16 @@ floatx80 floatx80_tentox(floatx80 a, float_status *status)
|
||||
j = n & 0x3F;
|
||||
l = n / 64; /* NOTE: this is really arithmetic right shift by 6 */
|
||||
if (n < 0 && j) {
|
||||
/* arithmetic right shift is division and
|
||||
/*
|
||||
* arithmetic right shift is division and
|
||||
* round towards minus infinity
|
||||
*/
|
||||
l--;
|
||||
}
|
||||
m = l / 2; /* NOTE: this is really arithmetic right shift by 1 */
|
||||
if (l < 0 && (l & 1)) {
|
||||
/* arithmetic right shift is division and
|
||||
/*
|
||||
* arithmetic right shift is division and
|
||||
* round towards minus infinity
|
||||
*/
|
||||
m--;
|
||||
@ -1274,9 +1280,9 @@ floatx80 floatx80_tentox(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Tangent
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Tangent
|
||||
*/
|
||||
|
||||
floatx80 floatx80_tan(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -1484,9 +1490,9 @@ floatx80 floatx80_tan(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Sine
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Sine
|
||||
*/
|
||||
|
||||
floatx80 floatx80_sin(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -1723,9 +1729,9 @@ floatx80 floatx80_sin(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Cosine
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Cosine
|
||||
*/
|
||||
|
||||
floatx80 floatx80_cos(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -1960,9 +1966,9 @@ floatx80 floatx80_cos(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Arc tangent
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Arc tangent
|
||||
*/
|
||||
|
||||
floatx80 floatx80_atan(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2157,9 +2163,9 @@ floatx80 floatx80_atan(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Arc sine
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Arc sine
|
||||
*/
|
||||
|
||||
floatx80 floatx80_asin(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2222,9 +2228,9 @@ floatx80 floatx80_asin(floatx80 a, float_status *status)
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Arc cosine
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Arc cosine
|
||||
*/
|
||||
|
||||
floatx80 floatx80_acos(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2291,9 +2297,9 @@ floatx80 floatx80_acos(floatx80 a, float_status *status)
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Hyperbolic arc tangent
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Hyperbolic arc tangent
|
||||
*/
|
||||
|
||||
floatx80 floatx80_atanh(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2356,9 +2362,9 @@ floatx80 floatx80_atanh(floatx80 a, float_status *status)
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| e to x minus 1
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* e to x minus 1
|
||||
*/
|
||||
|
||||
floatx80 floatx80_etoxm1(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2410,7 +2416,8 @@ floatx80 floatx80_etoxm1(floatx80 a, float_status *status)
|
||||
j = n & 0x3F; /* J = N mod 64 */
|
||||
m = n / 64; /* NOTE: this is really arithmetic right shift by 6 */
|
||||
if (n < 0 && j) {
|
||||
/* arithmetic right shift is division and
|
||||
/*
|
||||
* arithmetic right shift is division and
|
||||
* round towards minus infinity
|
||||
*/
|
||||
m--;
|
||||
@ -2607,9 +2614,9 @@ floatx80 floatx80_etoxm1(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Hyperbolic tangent
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Hyperbolic tangent
|
||||
*/
|
||||
|
||||
floatx80 floatx80_tanh(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2722,9 +2729,9 @@ floatx80 floatx80_tanh(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Hyperbolic sine
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Hyperbolic sine
|
||||
*/
|
||||
|
||||
floatx80 floatx80_sinh(floatx80 a, float_status *status)
|
||||
{
|
||||
@ -2811,9 +2818,9 @@ floatx80 floatx80_sinh(floatx80 a, float_status *status)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Hyperbolic cosine
|
||||
*----------------------------------------------------------------------------*/
|
||||
/*
|
||||
* Hyperbolic cosine
|
||||
*/
|
||||
|
||||
floatx80 floatx80_cosh(floatx80 a, float_status *status)
|
||||
{
|
||||
|
@ -14,7 +14,8 @@
|
||||
* the Softfloat-2a license unless specifically indicated otherwise.
|
||||
*/
|
||||
|
||||
/* Portions of this work are licensed under the terms of the GNU GPL,
|
||||
/*
|
||||
* Portions of this work are licensed under the terms of the GNU GPL,
|
||||
* version 2 or later. See the COPYING file in the top-level directory.
|
||||
*/
|
||||
|
||||
|
@ -14,7 +14,8 @@
|
||||
* the Softfloat-2a license unless specifically indicated otherwise.
|
||||
*/
|
||||
|
||||
/* Portions of this work are licensed under the terms of the GNU GPL,
|
||||
/*
|
||||
* Portions of this work are licensed under the terms of the GNU GPL,
|
||||
* version 2 or later. See the COPYING file in the top-level directory.
|
||||
*/
|
||||
|
||||
|
@ -248,8 +248,10 @@ static void set_cc_op(DisasContext *s, CCOp op)
|
||||
s->cc_op = op;
|
||||
s->cc_op_synced = 0;
|
||||
|
||||
/* Discard CC computation that will no longer be used.
|
||||
Note that X and N are never dead. */
|
||||
/*
|
||||
* Discard CC computation that will no longer be used.
|
||||
* Note that X and N are never dead.
|
||||
*/
|
||||
dead = cc_op_live[old_op] & ~cc_op_live[op];
|
||||
if (dead & CCF_C) {
|
||||
tcg_gen_discard_i32(QREG_CC_C);
|
||||
@ -306,8 +308,10 @@ static inline void gen_addr_fault(DisasContext *s)
|
||||
gen_exception(s, s->base.pc_next, EXCP_ADDRESS);
|
||||
}
|
||||
|
||||
/* Generate a load from the specified address. Narrow values are
|
||||
sign extended to full register width. */
|
||||
/*
|
||||
* Generate a load from the specified address. Narrow values are
|
||||
* sign extended to full register width.
|
||||
*/
|
||||
static inline TCGv gen_load(DisasContext *s, int opsize, TCGv addr,
|
||||
int sign, int index)
|
||||
{
|
||||
@ -360,8 +364,10 @@ typedef enum {
|
||||
EA_LOADS
|
||||
} ea_what;
|
||||
|
||||
/* Generate an unsigned load if VAL is 0 a signed load if val is -1,
|
||||
otherwise generate a store. */
|
||||
/*
|
||||
* Generate an unsigned load if VAL is 0 a signed load if val is -1,
|
||||
* otherwise generate a store.
|
||||
*/
|
||||
static TCGv gen_ldst(DisasContext *s, int opsize, TCGv addr, TCGv val,
|
||||
ea_what what, int index)
|
||||
{
|
||||
@ -426,8 +432,10 @@ static TCGv gen_addr_index(DisasContext *s, uint16_t ext, TCGv tmp)
|
||||
return add;
|
||||
}
|
||||
|
||||
/* Handle a base + index + displacement effective addresss.
|
||||
A NULL_QREG base means pc-relative. */
|
||||
/*
|
||||
* Handle a base + index + displacement effective addresss.
|
||||
* A NULL_QREG base means pc-relative.
|
||||
*/
|
||||
static TCGv gen_lea_indexed(CPUM68KState *env, DisasContext *s, TCGv base)
|
||||
{
|
||||
uint32_t offset;
|
||||
@ -714,8 +722,10 @@ static inline int ext_opsize(int ext, int pos)
|
||||
}
|
||||
}
|
||||
|
||||
/* Assign value to a register. If the width is less than the register width
|
||||
only the low part of the register is set. */
|
||||
/*
|
||||
* Assign value to a register. If the width is less than the register width
|
||||
* only the low part of the register is set.
|
||||
*/
|
||||
static void gen_partset_reg(int opsize, TCGv reg, TCGv val)
|
||||
{
|
||||
TCGv tmp;
|
||||
@ -743,8 +753,10 @@ static void gen_partset_reg(int opsize, TCGv reg, TCGv val)
|
||||
}
|
||||
}
|
||||
|
||||
/* Generate code for an "effective address". Does not adjust the base
|
||||
register for autoincrement addressing modes. */
|
||||
/*
|
||||
* Generate code for an "effective address". Does not adjust the base
|
||||
* register for autoincrement addressing modes.
|
||||
*/
|
||||
static TCGv gen_lea_mode(CPUM68KState *env, DisasContext *s,
|
||||
int mode, int reg0, int opsize)
|
||||
{
|
||||
@ -817,9 +829,11 @@ static TCGv gen_lea(CPUM68KState *env, DisasContext *s, uint16_t insn,
|
||||
return gen_lea_mode(env, s, mode, reg0, opsize);
|
||||
}
|
||||
|
||||
/* Generate code to load/store a value from/into an EA. If WHAT > 0 this is
|
||||
a write otherwise it is a read (0 == sign extend, -1 == zero extend).
|
||||
ADDRP is non-null for readwrite operands. */
|
||||
/*
|
||||
* Generate code to load/store a value from/into an EA. If WHAT > 0 this is
|
||||
* a write otherwise it is a read (0 == sign extend, -1 == zero extend).
|
||||
* ADDRP is non-null for readwrite operands.
|
||||
*/
|
||||
static TCGv gen_ea_mode(CPUM68KState *env, DisasContext *s, int mode, int reg0,
|
||||
int opsize, TCGv val, TCGv *addrp, ea_what what,
|
||||
int index)
|
||||
@ -1012,7 +1026,8 @@ static void gen_load_fp(DisasContext *s, int opsize, TCGv addr, TCGv_ptr fp,
|
||||
tcg_gen_st_i64(t64, fp, offsetof(FPReg, l.lower));
|
||||
break;
|
||||
case OS_PACKED:
|
||||
/* unimplemented data type on 68040/ColdFire
|
||||
/*
|
||||
* unimplemented data type on 68040/ColdFire
|
||||
* FIXME if needed for another FPU
|
||||
*/
|
||||
gen_exception(s, s->base.pc_next, EXCP_FP_UNIMP);
|
||||
@ -1066,7 +1081,8 @@ static void gen_store_fp(DisasContext *s, int opsize, TCGv addr, TCGv_ptr fp,
|
||||
tcg_gen_qemu_st64(t64, tmp, index);
|
||||
break;
|
||||
case OS_PACKED:
|
||||
/* unimplemented data type on 68040/ColdFire
|
||||
/*
|
||||
* unimplemented data type on 68040/ColdFire
|
||||
* FIXME if needed for another FPU
|
||||
*/
|
||||
gen_exception(s, s->base.pc_next, EXCP_FP_UNIMP);
|
||||
@ -1212,7 +1228,8 @@ static int gen_ea_mode_fp(CPUM68KState *env, DisasContext *s, int mode,
|
||||
tcg_temp_free_i64(t64);
|
||||
break;
|
||||
case OS_PACKED:
|
||||
/* unimplemented data type on 68040/ColdFire
|
||||
/*
|
||||
* unimplemented data type on 68040/ColdFire
|
||||
* FIXME if needed for another FPU
|
||||
*/
|
||||
gen_exception(s, s->base.pc_next, EXCP_FP_UNIMP);
|
||||
@ -1299,9 +1316,11 @@ static void gen_cc_cond(DisasCompare *c, DisasContext *s, int cond)
|
||||
goto done;
|
||||
case 14: /* GT (!(Z || (N ^ V))) */
|
||||
case 15: /* LE (Z || (N ^ V)) */
|
||||
/* Logic operations clear V, which simplifies LE to (Z || N),
|
||||
and since Z and N are co-located, this becomes a normal
|
||||
comparison vs N. */
|
||||
/*
|
||||
* Logic operations clear V, which simplifies LE to (Z || N),
|
||||
* and since Z and N are co-located, this becomes a normal
|
||||
* comparison vs N.
|
||||
*/
|
||||
if (op == CC_OP_LOGIC) {
|
||||
c->v1 = QREG_CC_N;
|
||||
tcond = TCG_COND_LE;
|
||||
@ -1549,9 +1568,11 @@ DISAS_INSN(undef_fpu)
|
||||
|
||||
DISAS_INSN(undef)
|
||||
{
|
||||
/* ??? This is both instructions that are as yet unimplemented
|
||||
for the 680x0 series, as well as those that are implemented
|
||||
but actually illegal for CPU32 or pre-68020. */
|
||||
/*
|
||||
* ??? This is both instructions that are as yet unimplemented
|
||||
* for the 680x0 series, as well as those that are implemented
|
||||
* but actually illegal for CPU32 or pre-68020.
|
||||
*/
|
||||
qemu_log_mask(LOG_UNIMP, "Illegal instruction: %04x @ %08x\n",
|
||||
insn, s->base.pc_next);
|
||||
gen_exception(s, s->base.pc_next, EXCP_ILLEGAL);
|
||||
@ -1655,7 +1676,8 @@ static void bcd_add(TCGv dest, TCGv src)
|
||||
{
|
||||
TCGv t0, t1;
|
||||
|
||||
/* dest10 = dest10 + src10 + X
|
||||
/*
|
||||
* dest10 = dest10 + src10 + X
|
||||
*
|
||||
* t1 = src
|
||||
* t2 = t1 + 0x066
|
||||
@ -1667,7 +1689,8 @@ static void bcd_add(TCGv dest, TCGv src)
|
||||
* return t3 - t7
|
||||
*/
|
||||
|
||||
/* t1 = (src + 0x066) + dest + X
|
||||
/*
|
||||
* t1 = (src + 0x066) + dest + X
|
||||
* = result with some possible exceding 0x6
|
||||
*/
|
||||
|
||||
@ -1680,20 +1703,23 @@ static void bcd_add(TCGv dest, TCGv src)
|
||||
|
||||
/* we will remove exceding 0x6 where there is no carry */
|
||||
|
||||
/* t0 = (src + 0x0066) ^ dest
|
||||
/*
|
||||
* t0 = (src + 0x0066) ^ dest
|
||||
* = t1 without carries
|
||||
*/
|
||||
|
||||
tcg_gen_xor_i32(t0, t0, dest);
|
||||
|
||||
/* extract the carries
|
||||
/*
|
||||
* extract the carries
|
||||
* t0 = t0 ^ t1
|
||||
* = only the carries
|
||||
*/
|
||||
|
||||
tcg_gen_xor_i32(t0, t0, t1);
|
||||
|
||||
/* generate 0x1 where there is no carry
|
||||
/*
|
||||
* generate 0x1 where there is no carry
|
||||
* and for each 0x10, generate a 0x6
|
||||
*/
|
||||
|
||||
@ -1704,7 +1730,8 @@ static void bcd_add(TCGv dest, TCGv src)
|
||||
tcg_gen_add_i32(dest, dest, t0);
|
||||
tcg_temp_free(t0);
|
||||
|
||||
/* remove the exceding 0x6
|
||||
/*
|
||||
* remove the exceding 0x6
|
||||
* for digits that have not generated a carry
|
||||
*/
|
||||
|
||||
@ -1716,7 +1743,8 @@ static void bcd_sub(TCGv dest, TCGv src)
|
||||
{
|
||||
TCGv t0, t1, t2;
|
||||
|
||||
/* dest10 = dest10 - src10 - X
|
||||
/*
|
||||
* dest10 = dest10 - src10 - X
|
||||
* = bcd_add(dest + 1 - X, 0x199 - src)
|
||||
*/
|
||||
|
||||
@ -1741,7 +1769,8 @@ static void bcd_sub(TCGv dest, TCGv src)
|
||||
|
||||
tcg_gen_xor_i32(t0, t1, t2);
|
||||
|
||||
/* t2 = ~t0 & 0x110
|
||||
/*
|
||||
* t2 = ~t0 & 0x110
|
||||
* t0 = (t2 >> 2) | (t2 >> 3)
|
||||
*
|
||||
* to fit on 8bit operands, changed in:
|
||||
@ -2029,8 +2058,10 @@ DISAS_INSN(movem)
|
||||
/* pre-decrement is not allowed */
|
||||
goto do_addr_fault;
|
||||
}
|
||||
/* We want a bare copy of the address reg, without any pre-decrement
|
||||
adjustment, as gen_lea would provide. */
|
||||
/*
|
||||
* We want a bare copy of the address reg, without any pre-decrement
|
||||
* adjustment, as gen_lea would provide.
|
||||
*/
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -2072,7 +2103,8 @@ DISAS_INSN(movem)
|
||||
tcg_gen_sub_i32(addr, addr, incr);
|
||||
if (reg0 + 8 == i &&
|
||||
m68k_feature(s->env, M68K_FEATURE_EXT_FULL)) {
|
||||
/* M68020+: if the addressing register is the
|
||||
/*
|
||||
* M68020+: if the addressing register is the
|
||||
* register moved to memory, the value written
|
||||
* is the initial value decremented by the size of
|
||||
* the operation, regardless of how many actual
|
||||
@ -2413,7 +2445,8 @@ DISAS_INSN(cas)
|
||||
|
||||
cmp = gen_extend(s, DREG(ext, 0), opsize, 1);
|
||||
|
||||
/* if <EA> == Dc then
|
||||
/*
|
||||
* if <EA> == Dc then
|
||||
* <EA> = Du
|
||||
* Dc = <EA> (because <EA> == Dc)
|
||||
* else
|
||||
@ -2466,7 +2499,8 @@ DISAS_INSN(cas2w)
|
||||
addr2 = DREG(ext2, 12);
|
||||
}
|
||||
|
||||
/* if (R1) == Dc1 && (R2) == Dc2 then
|
||||
/*
|
||||
* if (R1) == Dc1 && (R2) == Dc2 then
|
||||
* (R1) = Du1
|
||||
* (R2) = Du2
|
||||
* else
|
||||
@ -2516,7 +2550,8 @@ DISAS_INSN(cas2l)
|
||||
addr2 = DREG(ext2, 12);
|
||||
}
|
||||
|
||||
/* if (R1) == Dc1 && (R2) == Dc2 then
|
||||
/*
|
||||
* if (R1) == Dc1 && (R2) == Dc2 then
|
||||
* (R1) = Du1
|
||||
* (R2) = Du2
|
||||
* else
|
||||
@ -2597,7 +2632,8 @@ DISAS_INSN(negx)
|
||||
|
||||
gen_flush_flags(s); /* compute old Z */
|
||||
|
||||
/* Perform substract with borrow.
|
||||
/*
|
||||
* Perform substract with borrow.
|
||||
* (X, N) = -(src + X);
|
||||
*/
|
||||
|
||||
@ -2609,7 +2645,8 @@ DISAS_INSN(negx)
|
||||
|
||||
tcg_gen_andi_i32(QREG_CC_X, QREG_CC_X, 1);
|
||||
|
||||
/* Compute signed-overflow for negation. The normal formula for
|
||||
/*
|
||||
* Compute signed-overflow for negation. The normal formula for
|
||||
* subtraction is (res ^ src) & (src ^ dest), but with dest==0
|
||||
* this simplies to res & src.
|
||||
*/
|
||||
@ -2844,8 +2881,10 @@ DISAS_INSN(mull)
|
||||
|
||||
set_cc_op(s, CC_OP_FLAGS);
|
||||
} else {
|
||||
/* The upper 32 bits of the product are discarded, so
|
||||
muls.l and mulu.l are functionally equivalent. */
|
||||
/*
|
||||
* The upper 32 bits of the product are discarded, so
|
||||
* muls.l and mulu.l are functionally equivalent.
|
||||
*/
|
||||
tcg_gen_mul_i32(DREG(ext, 12), src1, DREG(ext, 12));
|
||||
gen_logic_cc(s, DREG(ext, 12), OS_LONG);
|
||||
}
|
||||
@ -2938,8 +2977,10 @@ DISAS_INSN(jump)
|
||||
{
|
||||
TCGv tmp;
|
||||
|
||||
/* Load the target address first to ensure correct exception
|
||||
behavior. */
|
||||
/*
|
||||
* Load the target address first to ensure correct exception
|
||||
* behavior.
|
||||
*/
|
||||
tmp = gen_lea(env, s, insn, OS_LONG);
|
||||
if (IS_NULL_QREG(tmp)) {
|
||||
gen_addr_fault(s);
|
||||
@ -2976,8 +3017,10 @@ DISAS_INSN(addsubq)
|
||||
dest = tcg_temp_new();
|
||||
tcg_gen_mov_i32(dest, src);
|
||||
if ((insn & 0x38) == 0x08) {
|
||||
/* Don't update condition codes if the destination is an
|
||||
address register. */
|
||||
/*
|
||||
* Don't update condition codes if the destination is an
|
||||
* address register.
|
||||
*/
|
||||
if (insn & 0x0100) {
|
||||
tcg_gen_sub_i32(dest, dest, val);
|
||||
} else {
|
||||
@ -3110,7 +3153,8 @@ static inline void gen_subx(DisasContext *s, TCGv src, TCGv dest, int opsize)
|
||||
|
||||
gen_flush_flags(s); /* compute old Z */
|
||||
|
||||
/* Perform substract with borrow.
|
||||
/*
|
||||
* Perform substract with borrow.
|
||||
* (X, N) = dest - (src + X);
|
||||
*/
|
||||
|
||||
@ -3320,7 +3364,8 @@ static inline void gen_addx(DisasContext *s, TCGv src, TCGv dest, int opsize)
|
||||
|
||||
gen_flush_flags(s); /* compute old Z */
|
||||
|
||||
/* Perform addition with carry.
|
||||
/*
|
||||
* Perform addition with carry.
|
||||
* (X, N) = src + dest + X;
|
||||
*/
|
||||
|
||||
@ -3404,9 +3449,11 @@ static inline void shift_im(DisasContext *s, uint16_t insn, int opsize)
|
||||
tcg_gen_shri_i32(QREG_CC_C, reg, bits - count);
|
||||
tcg_gen_shli_i32(QREG_CC_N, reg, count);
|
||||
|
||||
/* Note that ColdFire always clears V (done above),
|
||||
while M68000 sets if the most significant bit is changed at
|
||||
any time during the shift operation */
|
||||
/*
|
||||
* Note that ColdFire always clears V (done above),
|
||||
* while M68000 sets if the most significant bit is changed at
|
||||
* any time during the shift operation.
|
||||
*/
|
||||
if (!logical && m68k_feature(s->env, M68K_FEATURE_M68000)) {
|
||||
/* if shift count >= bits, V is (reg != 0) */
|
||||
if (count >= bits) {
|
||||
@ -3451,9 +3498,11 @@ static inline void shift_reg(DisasContext *s, uint16_t insn, int opsize)
|
||||
s64 = tcg_temp_new_i64();
|
||||
s32 = tcg_temp_new();
|
||||
|
||||
/* Note that m68k truncates the shift count modulo 64, not 32.
|
||||
In addition, a 64-bit shift makes it easy to find "the last
|
||||
bit shifted out", for the carry flag. */
|
||||
/*
|
||||
* Note that m68k truncates the shift count modulo 64, not 32.
|
||||
* In addition, a 64-bit shift makes it easy to find "the last
|
||||
* bit shifted out", for the carry flag.
|
||||
*/
|
||||
tcg_gen_andi_i32(s32, DREG(insn, 9), 63);
|
||||
tcg_gen_extu_i32_i64(s64, s32);
|
||||
tcg_gen_extu_i32_i64(t64, reg);
|
||||
@ -3480,7 +3529,8 @@ static inline void shift_reg(DisasContext *s, uint16_t insn, int opsize)
|
||||
tcg_gen_movcond_i32(TCG_COND_NE, QREG_CC_X, s32, QREG_CC_V,
|
||||
QREG_CC_C, QREG_CC_X);
|
||||
|
||||
/* M68000 sets V if the most significant bit is changed at
|
||||
/*
|
||||
* M68000 sets V if the most significant bit is changed at
|
||||
* any time during the shift operation. Do this via creating
|
||||
* an extension of the sign bit, comparing, and discarding
|
||||
* the bits below the sign bit. I.e.
|
||||
@ -3576,9 +3626,11 @@ DISAS_INSN(shift_mem)
|
||||
tcg_gen_shri_i32(QREG_CC_C, src, 15);
|
||||
tcg_gen_shli_i32(QREG_CC_N, src, 1);
|
||||
|
||||
/* Note that ColdFire always clears V,
|
||||
while M68000 sets if the most significant bit is changed at
|
||||
any time during the shift operation */
|
||||
/*
|
||||
* Note that ColdFire always clears V,
|
||||
* while M68000 sets if the most significant bit is changed at
|
||||
* any time during the shift operation
|
||||
*/
|
||||
if (!logical && m68k_feature(s->env, M68K_FEATURE_M68000)) {
|
||||
src = gen_extend(s, src, OS_WORD, 1);
|
||||
tcg_gen_xor_i32(QREG_CC_V, QREG_CC_N, src);
|
||||
@ -3996,9 +4048,11 @@ DISAS_INSN(bfext_reg)
|
||||
TCGv tmp = tcg_temp_new();
|
||||
TCGv shift;
|
||||
|
||||
/* In general, we're going to rotate the field so that it's at the
|
||||
top of the word and then right-shift by the complement of the
|
||||
width to extend the field. */
|
||||
/*
|
||||
* In general, we're going to rotate the field so that it's at the
|
||||
* top of the word and then right-shift by the complement of the
|
||||
* width to extend the field.
|
||||
*/
|
||||
if (ext & 0x20) {
|
||||
/* Variable width. */
|
||||
if (ext & 0x800) {
|
||||
@ -4028,8 +4082,10 @@ DISAS_INSN(bfext_reg)
|
||||
src = tmp;
|
||||
pos = 32 - len;
|
||||
} else {
|
||||
/* Immediate offset. If the field doesn't wrap around the
|
||||
end of the word, rely on (s)extract completely. */
|
||||
/*
|
||||
* Immediate offset. If the field doesn't wrap around the
|
||||
* end of the word, rely on (s)extract completely.
|
||||
*/
|
||||
if (pos < 0) {
|
||||
tcg_gen_rotli_i32(tmp, src, ofs);
|
||||
src = tmp;
|
||||
@ -4888,7 +4944,8 @@ static void gen_op_fmove_fcr(CPUM68KState *env, DisasContext *s,
|
||||
addr = tcg_temp_new();
|
||||
tcg_gen_mov_i32(addr, tmp);
|
||||
|
||||
/* mask:
|
||||
/*
|
||||
* mask:
|
||||
*
|
||||
* 0b100 Floating-Point Control Register
|
||||
* 0b010 Floating-Point Status Register
|
||||
@ -4956,7 +5013,8 @@ static void gen_op_fmovem(CPUM68KState *env, DisasContext *s,
|
||||
}
|
||||
|
||||
if (!is_load && (mode & 2) == 0) {
|
||||
/* predecrement addressing mode
|
||||
/*
|
||||
* predecrement addressing mode
|
||||
* only available to store register to memory
|
||||
*/
|
||||
if (opsize == OS_EXTENDED) {
|
||||
@ -4986,8 +5044,10 @@ static void gen_op_fmovem(CPUM68KState *env, DisasContext *s,
|
||||
tcg_temp_free(tmp);
|
||||
}
|
||||
|
||||
/* ??? FP exceptions are not implemented. Most exceptions are deferred until
|
||||
immediately before the next FP instruction is executed. */
|
||||
/*
|
||||
* ??? FP exceptions are not implemented. Most exceptions are deferred until
|
||||
* immediately before the next FP instruction is executed.
|
||||
*/
|
||||
DISAS_INSN(fpu)
|
||||
{
|
||||
uint16_t ext;
|
||||
@ -5511,8 +5571,10 @@ DISAS_INSN(mac)
|
||||
tmp = gen_lea(env, s, insn, OS_LONG);
|
||||
addr = tcg_temp_new();
|
||||
tcg_gen_and_i32(addr, tmp, QREG_MAC_MASK);
|
||||
/* Load the value now to ensure correct exception behavior.
|
||||
Perform writeback after reading the MAC inputs. */
|
||||
/*
|
||||
* Load the value now to ensure correct exception behavior.
|
||||
* Perform writeback after reading the MAC inputs.
|
||||
*/
|
||||
loadval = gen_load(s, OS_LONG, addr, 0, IS_USER(s));
|
||||
|
||||
acc ^= 1;
|
||||
@ -5633,8 +5695,10 @@ DISAS_INSN(mac)
|
||||
TCGv rw;
|
||||
rw = (insn & 0x40) ? AREG(insn, 9) : DREG(insn, 9);
|
||||
tcg_gen_mov_i32(rw, loadval);
|
||||
/* FIXME: Should address writeback happen with the masked or
|
||||
unmasked value? */
|
||||
/*
|
||||
* FIXME: Should address writeback happen with the masked or
|
||||
* unmasked value?
|
||||
*/
|
||||
switch ((insn >> 3) & 7) {
|
||||
case 3: /* Post-increment. */
|
||||
tcg_gen_addi_i32(AREG(insn, 0), addr, 4);
|
||||
@ -5784,8 +5848,10 @@ register_opcode (disas_proc proc, uint16_t opcode, uint16_t mask)
|
||||
opcode, mask);
|
||||
abort();
|
||||
}
|
||||
/* This could probably be cleverer. For now just optimize the case where
|
||||
the top bits are known. */
|
||||
/*
|
||||
* This could probably be cleverer. For now just optimize the case where
|
||||
* the top bits are known.
|
||||
*/
|
||||
/* Find the first zero bit in the mask. */
|
||||
i = 0x8000;
|
||||
while ((i & mask) != 0)
|
||||
@ -5803,17 +5869,22 @@ register_opcode (disas_proc proc, uint16_t opcode, uint16_t mask)
|
||||
}
|
||||
}
|
||||
|
||||
/* Register m68k opcode handlers. Order is important.
|
||||
Later insn override earlier ones. */
|
||||
/*
|
||||
* Register m68k opcode handlers. Order is important.
|
||||
* Later insn override earlier ones.
|
||||
*/
|
||||
void register_m68k_insns (CPUM68KState *env)
|
||||
{
|
||||
/* Build the opcode table only once to avoid
|
||||
multithreading issues. */
|
||||
/*
|
||||
* Build the opcode table only once to avoid
|
||||
* multithreading issues.
|
||||
*/
|
||||
if (opcode_table[0] != NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* use BASE() for instruction available
|
||||
/*
|
||||
* use BASE() for instruction available
|
||||
* for CF_ISA_A and M68000.
|
||||
*/
|
||||
#define BASE(name, opcode, mask) \
|
||||
@ -6077,10 +6148,12 @@ static bool m68k_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
|
||||
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
||||
|
||||
gen_exception(dc, dc->base.pc_next, EXCP_DEBUG);
|
||||
/* The address covered by the breakpoint must be included in
|
||||
[tb->pc, tb->pc + tb->size) in order to for it to be
|
||||
properly cleared -- thus we increment the PC here so that
|
||||
the logic setting tb->size below does the right thing. */
|
||||
/*
|
||||
* The address covered by the breakpoint must be included in
|
||||
* [tb->pc, tb->pc + tb->size) in order to for it to be
|
||||
* properly cleared -- thus we increment the PC here so that
|
||||
* the logic setting tb->size below does the right thing.
|
||||
*/
|
||||
dc->base.pc_next += 2;
|
||||
|
||||
return true;
|
||||
@ -6099,7 +6172,8 @@ static void m68k_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
|
||||
dc->base.pc_next = dc->pc;
|
||||
|
||||
if (dc->base.is_jmp == DISAS_NEXT) {
|
||||
/* Stop translation when the next insn might touch a new page.
|
||||
/*
|
||||
* Stop translation when the next insn might touch a new page.
|
||||
* This ensures that prefetch aborts at the right place.
|
||||
*
|
||||
* We cannot determine the size of the next insn without
|
||||
@ -6142,8 +6216,10 @@ static void m68k_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
|
||||
tcg_gen_lookup_and_goto_ptr();
|
||||
break;
|
||||
case DISAS_EXIT:
|
||||
/* We updated CC_OP and PC in gen_exit_tb, but also modified
|
||||
other state that may require returning to the main loop. */
|
||||
/*
|
||||
* We updated CC_OP and PC in gen_exit_tb, but also modified
|
||||
* other state that may require returning to the main loop.
|
||||
*/
|
||||
tcg_gen_exit_tb(NULL, 0);
|
||||
break;
|
||||
default:
|
||||
|
Loading…
Reference in New Issue
Block a user