Implement user mode for timers

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3337 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
blueswir1 2007-10-06 11:25:43 +00:00
parent aa6ad6fee2
commit 81732d1926
3 changed files with 78 additions and 21 deletions

View File

@ -47,6 +47,8 @@ do { printf("TIMER: " fmt , ##args); } while (0)
* *
*/ */
#define MAX_CPUS 16
typedef struct SLAVIO_TIMERState { typedef struct SLAVIO_TIMERState {
qemu_irq irq; qemu_irq irq;
ptimer_state *timer; ptimer_state *timer;
@ -54,10 +56,13 @@ typedef struct SLAVIO_TIMERState {
uint64_t limit; uint64_t limit;
int stopped; int stopped;
int mode; // 0 = processor, 1 = user, 2 = system int mode; // 0 = processor, 1 = user, 2 = system
struct SLAVIO_TIMERState *slave[MAX_CPUS];
uint32_t slave_mode;
} SLAVIO_TIMERState; } SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f #define TIMER_MAXADDR 0x1f
#define TIMER_SIZE (TIMER_MAXADDR + 1) #define TIMER_SIZE (TIMER_MAXADDR + 1)
#define CPU_TIMER_SIZE 0x10
// Update count, set irq, update expire_time // Update count, set irq, update expire_time
// Convert from ptimer countdown units // Convert from ptimer countdown units
@ -120,7 +125,7 @@ static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
break; break;
case 4: case 4:
// read user/system mode // read user/system mode
ret = s->mode & 1; ret = s->slave_mode;
break; break;
default: default:
ret = 0; ret = 0;
@ -141,10 +146,20 @@ static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint3
saddr = (addr & TIMER_MAXADDR) >> 2; saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) { switch (saddr) {
case 0: case 0:
// set limit, reset counter if (s->mode == 1) {
// set user counter limit MSW, reset counter
qemu_irq_lower(s->irq);
s->limit &= 0xfffffe00ULL;
s->limit |= (uint64_t)val << 32;
if (!s->limit)
s->limit = 0x7ffffffffffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, 1);
break;
}
// set limit, reset counter
reload = 1; reload = 1;
qemu_irq_lower(s->irq); qemu_irq_lower(s->irq);
// fall through // fall through
case 2: case 2:
// set limit without resetting counter // set limit without resetting counter
s->limit = val & 0x7ffffe00ULL; s->limit = val & 0x7ffffe00ULL;
@ -152,6 +167,17 @@ static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint3
s->limit = 0x7ffffe00ULL; s->limit = 0x7ffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, reload); ptimer_set_limit(s->timer, s->limit >> 9, reload);
break; break;
case 1:
// set user counter limit LSW, reset counter
if (s->mode == 1) {
qemu_irq_lower(s->irq);
s->limit &= 0x7fffffff00000000ULL;
s->limit |= val & 0xfffffe00ULL;
if (!s->limit)
s->limit = 0x7ffffffffffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, 1);
}
break;
case 3: case 3:
// start/stop user counter // start/stop user counter
if (s->mode == 1) { if (s->mode == 1) {
@ -167,13 +193,24 @@ static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint3
break; break;
case 4: case 4:
// bit 0: user (1) or system (0) counter mode // bit 0: user (1) or system (0) counter mode
if (s->mode == 0 || s->mode == 1) {
s->mode = val & 1; unsigned int i;
if (s->mode == 1) {
qemu_irq_lower(s->irq); for (i = 0; i < MAX_CPUS; i++) {
s->limit = -1ULL; if (val & (1 << i)) {
qemu_irq_lower(s->slave[i]->irq);
s->slave[i]->limit = -1ULL;
s->slave[i]->mode = 1;
} else {
s->slave[i]->mode = 0;
}
ptimer_stop(s->slave[i]->timer);
ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9,
1);
ptimer_run(s->slave[i]->timer, 0);
}
s->slave_mode = val & ((1 << MAX_CPUS) - 1);
} }
ptimer_set_limit(s->timer, s->limit >> 9, 1);
break; break;
default: default:
break; break;
@ -240,7 +277,8 @@ static void slavio_timer_reset(void *opaque)
qemu_irq_lower(s->irq); qemu_irq_lower(s->irq);
} }
void slavio_timer_init(target_phys_addr_t addr, qemu_irq irq, int mode) static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
qemu_irq irq, int mode)
{ {
int slavio_timer_io_memory; int slavio_timer_io_memory;
SLAVIO_TIMERState *s; SLAVIO_TIMERState *s;
@ -248,7 +286,7 @@ void slavio_timer_init(target_phys_addr_t addr, qemu_irq irq, int mode)
s = qemu_mallocz(sizeof(SLAVIO_TIMERState)); s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
if (!s) if (!s)
return; return s;
s->irq = irq; s->irq = irq;
s->mode = mode; s->mode = mode;
bh = qemu_bh_new(slavio_timer_irq, s); bh = qemu_bh_new(slavio_timer_irq, s);
@ -257,8 +295,29 @@ void slavio_timer_init(target_phys_addr_t addr, qemu_irq irq, int mode)
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s); slavio_timer_mem_write, s);
cpu_register_physical_memory(addr, TIMER_SIZE, slavio_timer_io_memory); if (mode < 2)
cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
else
cpu_register_physical_memory(addr, TIMER_SIZE,
slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s); register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s); qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s); slavio_timer_reset(s);
return s;
}
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs)
{
SLAVIO_TIMERState *master;
unsigned int i;
master = slavio_timer_init(base + 0x10000ULL, master_irq, 2);
for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
(i * TARGET_PAGE_SIZE),
cpu_irqs[i], 0);
}
} }

View File

@ -380,13 +380,10 @@ static void *sun4m_hw_init(const struct hwdef *hwdef, int RAM_size,
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
hwdef->nvram_size, 8); hwdef->nvram_size, 8);
for (i = 0; i < MAX_CPUS; i++) {
slavio_timer_init(hwdef->counter_base + slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq],
(target_phys_addr_t)(i * TARGET_PAGE_SIZE), slavio_cpu_irq);
slavio_cpu_irq[i], 0);
}
slavio_timer_init(hwdef->counter_base + 0x10000ULL,
slavio_irq[hwdef->clock1_irq], 2);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq]); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq]);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device

3
vl.h
View File

@ -1287,7 +1287,8 @@ int load_aout(const char *filename, uint8_t *addr);
int load_uboot(const char *filename, target_ulong *ep, int *is_linux); int load_uboot(const char *filename, target_ulong *ep, int *is_linux);
/* slavio_timer.c */ /* slavio_timer.c */
void slavio_timer_init(target_phys_addr_t addr, qemu_irq irq, int mode); void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs);
/* slavio_serial.c */ /* slavio_serial.c */
SerialState *slavio_serial_init(target_phys_addr_t base, qemu_irq irq, SerialState *slavio_serial_init(target_phys_addr_t base, qemu_irq irq,