intel-iommu: Document iova_tree

It seems not super clear on when iova_tree is used, and why.  Add a rich
comment above iova_tree to track why we needed the iova_tree, and when we
need it.

Also comment for the map/unmap messages, on how they're used and
implications (e.g. unmap can be larger than the mapped ranges).

Suggested-by: Jason Wang <jasowang@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20230109193727.1360190-1-peterx@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit is contained in:
Peter Xu 2023-01-09 14:37:27 -05:00 committed by Michael S. Tsirkin
parent bad9c5a516
commit 8a7c606016
2 changed files with 63 additions and 1 deletions

View File

@ -129,6 +129,32 @@ struct IOMMUTLBEntry {
/*
* Bitmap for different IOMMUNotifier capabilities. Each notifier can
* register with one or multiple IOMMU Notifier capability bit(s).
*
* Normally there're two use cases for the notifiers:
*
* (1) When the device needs accurate synchronizations of the vIOMMU page
* tables, it needs to register with both MAP|UNMAP notifies (which
* is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
*
* Regarding to accurate synchronization, it's when the notified
* device maintains a shadow page table and must be notified on each
* guest MAP (page table entry creation) and UNMAP (invalidation)
* events (e.g. VFIO). Both notifications must be accurate so that
* the shadow page table is fully in sync with the guest view.
*
* (2) When the device doesn't need accurate synchronizations of the
* vIOMMU page tables, it needs to register only with UNMAP or
* DEVIOTLB_UNMAP notifies.
*
* It's when the device maintains a cache of IOMMU translations
* (IOTLB) and is able to fill that cache by requesting translations
* from the vIOMMU through a protocol similar to ATS (Address
* Translation Service).
*
* Note that in this mode the vIOMMU will not maintain a shadowed
* page table for the address space, and the UNMAP messages can cover
* more than the pages that used to get mapped. The IOMMU notifiee
* should be able to take care of over-sized invalidations.
*/
typedef enum {
IOMMU_NOTIFIER_NONE = 0,

View File

@ -109,7 +109,43 @@ struct VTDAddressSpace {
QLIST_ENTRY(VTDAddressSpace) next;
/* Superset of notifier flags that this address space has */
IOMMUNotifierFlag notifier_flags;
IOVATree *iova_tree; /* Traces mapped IOVA ranges */
/*
* @iova_tree traces mapped IOVA ranges.
*
* The tree is not needed if no MAP notifier is registered with current
* VTD address space, because all guest invalidate commands can be
* directly passed to the IOMMU UNMAP notifiers without any further
* reshuffling.
*
* The tree OTOH is required for MAP typed iommu notifiers for a few
* reasons.
*
* Firstly, there's no way to identify whether an PSI (Page Selective
* Invalidations) or DSI (Domain Selective Invalidations) event is an
* MAP or UNMAP event within the message itself. Without having prior
* knowledge of existing state vIOMMU doesn't know whether it should
* notify MAP or UNMAP for a PSI message it received when caching mode
* is enabled (for MAP notifiers).
*
* Secondly, PSI messages received from guest driver can be enlarged in
* range, covers but not limited to what the guest driver wanted to
* invalidate. When the range to invalidates gets bigger than the
* limit of a PSI message, it can even become a DSI which will
* invalidate the whole domain. If the vIOMMU directly notifies the
* registered device with the unmodified range, it may confuse the
* registered drivers (e.g. vfio-pci) on either:
*
* (1) Trying to map the same region more than once (for
* VFIO_IOMMU_MAP_DMA, -EEXIST will trigger), or,
*
* (2) Trying to UNMAP a range that is still partially mapped.
*
* That accuracy is not required for UNMAP-only notifiers, but it is a
* must-to-have for notifiers registered with MAP events, because the
* vIOMMU needs to make sure the shadow page table is always in sync
* with the guest IOMMU pgtables for a device.
*/
IOVATree *iova_tree;
};
struct VTDIOTLBEntry {