target/arm: Move get_phys_addr to ptw.c

Begin moving all of the page table walking functions
out of helper.c, starting with get_phys_addr().

Create a temporary header file, "ptw.h", in which to
share declarations between the two C files while we
are moving functions.

Move a few declarations to "internals.h", which will
remain used by multiple C files.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220604040607.269301-3-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Richard Henderson 2022-06-08 19:38:48 +01:00 committed by Peter Maydell
parent d8cca960a9
commit 8ae0886002
5 changed files with 372 additions and 309 deletions

View File

@ -37,22 +37,11 @@
#include "semihosting/common-semi.h"
#endif
#include "cpregs.h"
#include "ptw.h"
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
#ifndef CONFIG_USER_ONLY
static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool s1_is_el0,
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
target_ulong *page_size_ptr,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
__attribute__((nonnull));
#endif
static void switch_mode(CPUARMState *env, int mode);
static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
@ -10440,17 +10429,10 @@ uint64_t arm_sctlr(CPUARMState *env, int el)
return env->cp15.sctlr_el[el];
}
/* Return the SCTLR value which controls this address translation regime */
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}
#ifndef CONFIG_USER_ONLY
/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
ARMMMUIdx mmu_idx)
bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
{
uint64_t hcr_el2;
@ -10542,8 +10524,7 @@ ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
#endif /* !CONFIG_USER_ONLY */
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
ARMMMUIdx mmu_idx)
bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
int el = regime_el(env, mmu_idx);
if (el == 2 || arm_el_is_aa64(env, el)) {
@ -10567,7 +10548,7 @@ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
}
#ifndef CONFIG_USER_ONLY
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_SE10_0:
@ -10959,11 +10940,11 @@ static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
return 0;
}
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi)
bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
int level = 1;
@ -11081,10 +11062,10 @@ do_fault:
return true;
}
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size, ARMMMUFaultInfo *fi)
bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size, ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
ARMCPU *cpu = env_archcpu(env);
@ -11360,7 +11341,7 @@ unsigned int arm_pamax(ARMCPU *cpu)
return pamax_map[parange];
}
static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
{
if (regime_has_2_ranges(mmu_idx)) {
return extract64(tcr, 37, 2);
@ -11372,7 +11353,7 @@ static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
}
}
static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
{
if (regime_has_2_ranges(mmu_idx)) {
return extract64(tcr, 51, 2);
@ -11602,12 +11583,12 @@ static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
* @fi: set to fault info if the translation fails
* @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
*/
static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool s1_is_el0,
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
target_ulong *page_size_ptr,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool s1_is_el0,
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
target_ulong *page_size_ptr,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
ARMCPU *cpu = env_archcpu(env);
CPUState *cs = CPU(cpu);
@ -12055,11 +12036,11 @@ static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}
static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi)
bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = env_archcpu(env);
int n;
@ -12501,11 +12482,11 @@ bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
}
static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *txattrs,
int *prot, target_ulong *page_size,
ARMMMUFaultInfo *fi)
bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *txattrs,
int *prot, target_ulong *page_size,
ARMMMUFaultInfo *fi)
{
uint32_t secure = regime_is_secure(env, mmu_idx);
V8M_SAttributes sattrs = {};
@ -12575,10 +12556,10 @@ static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
return ret;
}
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
ARMMMUFaultInfo *fi)
bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
ARMMMUFaultInfo *fi)
{
int n;
uint32_t mask;
@ -12795,8 +12776,8 @@ static uint8_t combined_attrs_fwb(CPUARMState *env,
* @s1: Attributes from stage 1 walk
* @s2: Attributes from stage 2 walk
*/
static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
ARMCacheAttrs s1, ARMCacheAttrs s2)
ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
ARMCacheAttrs s1, ARMCacheAttrs s2)
{
ARMCacheAttrs ret;
bool tagged = false;
@ -12848,256 +12829,6 @@ static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
return ret;
}
/* get_phys_addr - get the physical address for this virtual address
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
* prot and page_size may not be filled in, and the populated fsr value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for PSMAv5 based systems we don't bother to return a full FSR format
* value.
*
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @phys_ptr: set to the physical address corresponding to the virtual address
* @attrs: set to the memory transaction attributes to use
* @prot: set to the permissions for the page containing phys_ptr
* @page_size: set to the size of the page containing phys_ptr
* @fi: set to fault info if the translation fails
* @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
*/
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
if (mmu_idx != s1_mmu_idx) {
/* Call ourselves recursively to do the stage 1 and then stage 2
* translations if mmu_idx is a two-stage regime.
*/
if (arm_feature(env, ARM_FEATURE_EL2)) {
hwaddr ipa;
int s2_prot;
int ret;
bool ipa_secure;
ARMCacheAttrs cacheattrs2 = {};
ARMMMUIdx s2_mmu_idx;
bool is_el0;
ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
attrs, prot, page_size, fi, cacheattrs);
/* If S1 fails or S2 is disabled, return early. */
if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
*phys_ptr = ipa;
return ret;
}
ipa_secure = attrs->secure;
if (arm_is_secure_below_el3(env)) {
if (ipa_secure) {
attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
} else {
attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
}
} else {
assert(!ipa_secure);
}
s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
/* S1 is done. Now do S2 translation. */
ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
phys_ptr, attrs, &s2_prot,
page_size, fi, &cacheattrs2);
fi->s2addr = ipa;
/* Combine the S1 and S2 perms. */
*prot &= s2_prot;
/* If S2 fails, return early. */
if (ret) {
return ret;
}
/* Combine the S1 and S2 cache attributes. */
if (arm_hcr_el2_eff(env) & HCR_DC) {
/*
* HCR.DC forces the first stage attributes to
* Normal Non-Shareable,
* Inner Write-Back Read-Allocate Write-Allocate,
* Outer Write-Back Read-Allocate Write-Allocate.
* Do not overwrite Tagged within attrs.
*/
if (cacheattrs->attrs != 0xf0) {
cacheattrs->attrs = 0xff;
}
cacheattrs->shareability = 0;
}
*cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);
/* Check if IPA translates to secure or non-secure PA space. */
if (arm_is_secure_below_el3(env)) {
if (ipa_secure) {
attrs->secure =
!(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
} else {
attrs->secure =
!((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
|| (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
}
}
return 0;
} else {
/*
* For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
*/
mmu_idx = stage_1_mmu_idx(mmu_idx);
}
}
/* The page table entries may downgrade secure to non-secure, but
* cannot upgrade an non-secure translation regime's attributes
* to secure.
*/
attrs->secure = regime_is_secure(env, mmu_idx);
attrs->user = regime_is_user(env, mmu_idx);
/* Fast Context Switch Extension. This doesn't exist at all in v8.
* In v7 and earlier it affects all stage 1 translations.
*/
if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
&& !arm_feature(env, ARM_FEATURE_V8)) {
if (regime_el(env, mmu_idx) == 3) {
address += env->cp15.fcseidr_s;
} else {
address += env->cp15.fcseidr_ns;
}
}
if (arm_feature(env, ARM_FEATURE_PMSA)) {
bool ret;
*page_size = TARGET_PAGE_SIZE;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
phys_ptr, attrs, prot, page_size, fi);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
/* PMSAv7 */
ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
phys_ptr, prot, page_size, fi);
} else {
/* Pre-v7 MPU */
ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
phys_ptr, prot, fi);
}
qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
" mmu_idx %u -> %s (prot %c%c%c)\n",
access_type == MMU_DATA_LOAD ? "reading" :
(access_type == MMU_DATA_STORE ? "writing" : "execute"),
(uint32_t)address, mmu_idx,
ret ? "Miss" : "Hit",
*prot & PAGE_READ ? 'r' : '-',
*prot & PAGE_WRITE ? 'w' : '-',
*prot & PAGE_EXEC ? 'x' : '-');
return ret;
}
/* Definitely a real MMU, not an MPU */
if (regime_translation_disabled(env, mmu_idx)) {
uint64_t hcr;
uint8_t memattr;
/*
* MMU disabled. S1 addresses within aa64 translation regimes are
* still checked for bounds -- see AArch64.TranslateAddressS1Off.
*/
if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
int r_el = regime_el(env, mmu_idx);
if (arm_el_is_aa64(env, r_el)) {
int pamax = arm_pamax(env_archcpu(env));
uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
int addrtop, tbi;
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
if (access_type == MMU_INST_FETCH) {
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
}
tbi = (tbi >> extract64(address, 55, 1)) & 1;
addrtop = (tbi ? 55 : 63);
if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
fi->type = ARMFault_AddressSize;
fi->level = 0;
fi->stage2 = false;
return 1;
}
/*
* When TBI is disabled, we've just validated that all of the
* bits above PAMax are zero, so logically we only need to
* clear the top byte for TBI. But it's clearer to follow
* the pseudocode set of addrdesc.paddress.
*/
address = extract64(address, 0, 52);
}
}
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*page_size = TARGET_PAGE_SIZE;
/* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
hcr = arm_hcr_el2_eff(env);
cacheattrs->shareability = 0;
cacheattrs->is_s2_format = false;
if (hcr & HCR_DC) {
if (hcr & HCR_DCT) {
memattr = 0xf0; /* Tagged, Normal, WB, RWA */
} else {
memattr = 0xff; /* Normal, WB, RWA */
}
} else if (access_type == MMU_INST_FETCH) {
if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
memattr = 0xee; /* Normal, WT, RA, NT */
} else {
memattr = 0x44; /* Normal, NC, No */
}
cacheattrs->shareability = 2; /* outer sharable */
} else {
memattr = 0x00; /* Device, nGnRnE */
}
cacheattrs->attrs = memattr;
return 0;
}
if (regime_using_lpae_format(env, mmu_idx)) {
return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
phys_ptr, attrs, prot, page_size,
fi, cacheattrs);
} else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
return get_phys_addr_v6(env, address, access_type, mmu_idx,
phys_ptr, attrs, prot, page_size, fi);
} else {
return get_phys_addr_v5(env, address, access_type, mmu_idx,
phys_ptr, prot, page_size, fi);
}
}
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
MemTxAttrs *attrs)
{
@ -13121,7 +12852,6 @@ hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
}
return phys_addr;
}
#endif
/* Note that signed overflow is undefined in C. The following routines are

View File

@ -613,8 +613,13 @@ ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
/* Return the MMU index for a v7M CPU in the specified security state */
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
/* Return true if the stage 1 translation regime is using LPAE format page
* tables */
/* Return true if the translation regime is using LPAE format page tables */
bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
/*
* Return true if the stage 1 translation regime is using LPAE
* format page tables
*/
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
/* Raise a data fault alignment exception for the specified virtual address */
@ -777,6 +782,12 @@ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
}
}
/* Return the SCTLR value which controls this address translation regime */
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}
/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
@ -1095,6 +1106,9 @@ typedef struct ARMVAParameters {
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
ARMMMUIdx mmu_idx, bool data);
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
static inline int exception_target_el(CPUARMState *env)
{
int target_el = MAX(1, arm_current_el(env));

View File

@ -58,6 +58,7 @@ arm_softmmu_ss.add(files(
'machine.c',
'monitor.c',
'psci.c',
'ptw.c',
))
subdir('hvf')

267
target/arm/ptw.c Normal file
View File

@ -0,0 +1,267 @@
/*
* ARM page table walking.
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
#include "ptw.h"
/**
* get_phys_addr - get the physical address for this virtual address
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
* prot and page_size may not be filled in, and the populated fsr value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for PSMAv5 based systems we don't bother to return a full FSR format
* value.
*
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @phys_ptr: set to the physical address corresponding to the virtual address
* @attrs: set to the memory transaction attributes to use
* @prot: set to the permissions for the page containing phys_ptr
* @page_size: set to the size of the page containing phys_ptr
* @fi: set to fault info if the translation fails
* @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
*/
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
if (mmu_idx != s1_mmu_idx) {
/*
* Call ourselves recursively to do the stage 1 and then stage 2
* translations if mmu_idx is a two-stage regime.
*/
if (arm_feature(env, ARM_FEATURE_EL2)) {
hwaddr ipa;
int s2_prot;
int ret;
bool ipa_secure;
ARMCacheAttrs cacheattrs2 = {};
ARMMMUIdx s2_mmu_idx;
bool is_el0;
ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
attrs, prot, page_size, fi, cacheattrs);
/* If S1 fails or S2 is disabled, return early. */
if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
*phys_ptr = ipa;
return ret;
}
ipa_secure = attrs->secure;
if (arm_is_secure_below_el3(env)) {
if (ipa_secure) {
attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
} else {
attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
}
} else {
assert(!ipa_secure);
}
s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
/* S1 is done. Now do S2 translation. */
ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
phys_ptr, attrs, &s2_prot,
page_size, fi, &cacheattrs2);
fi->s2addr = ipa;
/* Combine the S1 and S2 perms. */
*prot &= s2_prot;
/* If S2 fails, return early. */
if (ret) {
return ret;
}
/* Combine the S1 and S2 cache attributes. */
if (arm_hcr_el2_eff(env) & HCR_DC) {
/*
* HCR.DC forces the first stage attributes to
* Normal Non-Shareable,
* Inner Write-Back Read-Allocate Write-Allocate,
* Outer Write-Back Read-Allocate Write-Allocate.
* Do not overwrite Tagged within attrs.
*/
if (cacheattrs->attrs != 0xf0) {
cacheattrs->attrs = 0xff;
}
cacheattrs->shareability = 0;
}
*cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);
/* Check if IPA translates to secure or non-secure PA space. */
if (arm_is_secure_below_el3(env)) {
if (ipa_secure) {
attrs->secure =
!(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
} else {
attrs->secure =
!((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
|| (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
}
}
return 0;
} else {
/*
* For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
*/
mmu_idx = stage_1_mmu_idx(mmu_idx);
}
}
/*
* The page table entries may downgrade secure to non-secure, but
* cannot upgrade an non-secure translation regime's attributes
* to secure.
*/
attrs->secure = regime_is_secure(env, mmu_idx);
attrs->user = regime_is_user(env, mmu_idx);
/*
* Fast Context Switch Extension. This doesn't exist at all in v8.
* In v7 and earlier it affects all stage 1 translations.
*/
if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
&& !arm_feature(env, ARM_FEATURE_V8)) {
if (regime_el(env, mmu_idx) == 3) {
address += env->cp15.fcseidr_s;
} else {
address += env->cp15.fcseidr_ns;
}
}
if (arm_feature(env, ARM_FEATURE_PMSA)) {
bool ret;
*page_size = TARGET_PAGE_SIZE;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
phys_ptr, attrs, prot, page_size, fi);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
/* PMSAv7 */
ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
phys_ptr, prot, page_size, fi);
} else {
/* Pre-v7 MPU */
ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
phys_ptr, prot, fi);
}
qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
" mmu_idx %u -> %s (prot %c%c%c)\n",
access_type == MMU_DATA_LOAD ? "reading" :
(access_type == MMU_DATA_STORE ? "writing" : "execute"),
(uint32_t)address, mmu_idx,
ret ? "Miss" : "Hit",
*prot & PAGE_READ ? 'r' : '-',
*prot & PAGE_WRITE ? 'w' : '-',
*prot & PAGE_EXEC ? 'x' : '-');
return ret;
}
/* Definitely a real MMU, not an MPU */
if (regime_translation_disabled(env, mmu_idx)) {
uint64_t hcr;
uint8_t memattr;
/*
* MMU disabled. S1 addresses within aa64 translation regimes are
* still checked for bounds -- see AArch64.TranslateAddressS1Off.
*/
if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
int r_el = regime_el(env, mmu_idx);
if (arm_el_is_aa64(env, r_el)) {
int pamax = arm_pamax(env_archcpu(env));
uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
int addrtop, tbi;
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
if (access_type == MMU_INST_FETCH) {
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
}
tbi = (tbi >> extract64(address, 55, 1)) & 1;
addrtop = (tbi ? 55 : 63);
if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
fi->type = ARMFault_AddressSize;
fi->level = 0;
fi->stage2 = false;
return 1;
}
/*
* When TBI is disabled, we've just validated that all of the
* bits above PAMax are zero, so logically we only need to
* clear the top byte for TBI. But it's clearer to follow
* the pseudocode set of addrdesc.paddress.
*/
address = extract64(address, 0, 52);
}
}
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*page_size = TARGET_PAGE_SIZE;
/* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
hcr = arm_hcr_el2_eff(env);
cacheattrs->shareability = 0;
cacheattrs->is_s2_format = false;
if (hcr & HCR_DC) {
if (hcr & HCR_DCT) {
memattr = 0xf0; /* Tagged, Normal, WB, RWA */
} else {
memattr = 0xff; /* Normal, WB, RWA */
}
} else if (access_type == MMU_INST_FETCH) {
if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
memattr = 0xee; /* Normal, WT, RA, NT */
} else {
memattr = 0x44; /* Normal, NC, No */
}
cacheattrs->shareability = 2; /* outer sharable */
} else {
memattr = 0x00; /* Device, nGnRnE */
}
cacheattrs->attrs = memattr;
return 0;
}
if (regime_using_lpae_format(env, mmu_idx)) {
return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
phys_ptr, attrs, prot, page_size,
fi, cacheattrs);
} else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
return get_phys_addr_v6(env, address, access_type, mmu_idx,
phys_ptr, attrs, prot, page_size, fi);
} else {
return get_phys_addr_v5(env, address, access_type, mmu_idx,
phys_ptr, prot, page_size, fi);
}
}

51
target/arm/ptw.h Normal file
View File

@ -0,0 +1,51 @@
/*
* ARM page table walking.
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef TARGET_ARM_PTW_H
#define TARGET_ARM_PTW_H
#ifndef CONFIG_USER_ONLY
bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx);
bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx);
ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
ARMCacheAttrs s1, ARMCacheAttrs s2);
bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi);
bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
ARMMMUFaultInfo *fi);
bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size, ARMMMUFaultInfo *fi);
bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi);
bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *txattrs,
int *prot, target_ulong *page_size,
ARMMMUFaultInfo *fi);
bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool s1_is_el0,
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
target_ulong *page_size_ptr,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
__attribute__((nonnull));
#endif /* !CONFIG_USER_ONLY */
#endif /* TARGET_ARM_PTW_H */