Merge remote-tracking branch 'pmaydell/target-arm.for-upstream' into staging
# By Peter Maydell # Via Peter Maydell * pmaydell/target-arm.for-upstream: target-arm: Make LPAE feature imply V7MP target-arm: Use tuple list to sync cp regs with KVM target-arm: Reinitialize all KVM VCPU registers on reset target-arm: Initialize cpreg list from KVM when using KVM target-arm: Convert TCG to using (index,value) list for cp migration target-arm: mark up cpregs for no-migrate or raw access target-arm: Add raw_readfn and raw_writefn to ARMCPRegInfo target-arm: Allow special cpregs to have flags set Message-id: 1372181592-32170-1-git-send-email-peter.maydell@linaro.org Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
commit
8c260b1135
@ -1,5 +1,6 @@
|
||||
obj-y += arm-semi.o
|
||||
obj-$(CONFIG_SOFTMMU) += machine.o
|
||||
obj-$(CONFIG_KVM) += kvm.o
|
||||
obj-$(CONFIG_NO_KVM) += kvm-stub.o
|
||||
obj-y += translate.o op_helper.o helper.o cpu.o
|
||||
obj-y += neon_helper.o iwmmxt_helper.o
|
||||
|
@ -62,6 +62,29 @@ typedef struct ARMCPU {
|
||||
|
||||
/* Coprocessor information */
|
||||
GHashTable *cp_regs;
|
||||
/* For marshalling (mostly coprocessor) register state between the
|
||||
* kernel and QEMU (for KVM) and between two QEMUs (for migration),
|
||||
* we use these arrays.
|
||||
*/
|
||||
/* List of register indexes managed via these arrays; (full KVM style
|
||||
* 64 bit indexes, not CPRegInfo 32 bit indexes)
|
||||
*/
|
||||
uint64_t *cpreg_indexes;
|
||||
/* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
|
||||
uint64_t *cpreg_values;
|
||||
/* When using KVM, keeps a copy of the initial state of the VCPU,
|
||||
* so that on reset we can feed the reset values back into the kernel.
|
||||
*/
|
||||
uint64_t *cpreg_reset_values;
|
||||
/* Length of the indexes, values, reset_values arrays */
|
||||
int32_t cpreg_array_len;
|
||||
/* These are used only for migration: incoming data arrives in
|
||||
* these fields and is sanity checked in post_load before copying
|
||||
* to the working data structures above.
|
||||
*/
|
||||
uint64_t *cpreg_vmstate_indexes;
|
||||
uint64_t *cpreg_vmstate_values;
|
||||
int32_t cpreg_vmstate_array_len;
|
||||
|
||||
/* The instance init functions for implementation-specific subclasses
|
||||
* set these fields to specify the implementation-dependent values of
|
||||
@ -116,6 +139,7 @@ extern const struct VMStateDescription vmstate_arm_cpu;
|
||||
#endif
|
||||
|
||||
void register_cp_regs_for_features(ARMCPU *cpu);
|
||||
void init_cpreg_list(ARMCPU *cpu);
|
||||
|
||||
void arm_cpu_do_interrupt(CPUState *cpu);
|
||||
void arm_v7m_cpu_do_interrupt(CPUState *cpu);
|
||||
|
@ -198,12 +198,15 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
|
||||
set_feature(env, ARM_FEATURE_VFP);
|
||||
}
|
||||
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
||||
set_feature(env, ARM_FEATURE_V7MP);
|
||||
set_feature(env, ARM_FEATURE_PXN);
|
||||
}
|
||||
|
||||
register_cp_regs_for_features(cpu);
|
||||
arm_cpu_register_gdb_regs_for_features(cpu);
|
||||
|
||||
init_cpreg_list(cpu);
|
||||
|
||||
cpu_reset(CPU(cpu));
|
||||
qemu_init_vcpu(env);
|
||||
|
||||
@ -571,7 +574,6 @@ static void cortex_a15_initfn(Object *obj)
|
||||
set_feature(&cpu->env, ARM_FEATURE_NEON);
|
||||
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
|
||||
set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
|
||||
set_feature(&cpu->env, ARM_FEATURE_V7MP);
|
||||
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
|
||||
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
||||
set_feature(&cpu->env, ARM_FEATURE_LPAE);
|
||||
|
@ -424,6 +424,43 @@ void armv7m_nvic_complete_irq(void *opaque, int irq);
|
||||
(((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
|
||||
((crm) << 7) | ((opc1) << 3) | (opc2))
|
||||
|
||||
/* Note that these must line up with the KVM/ARM register
|
||||
* ID field definitions (kvm.c will check this, but we
|
||||
* can't just use the KVM defines here as the kvm headers
|
||||
* are unavailable to non-KVM-specific files)
|
||||
*/
|
||||
#define CP_REG_SIZE_SHIFT 52
|
||||
#define CP_REG_SIZE_MASK 0x00f0000000000000ULL
|
||||
#define CP_REG_SIZE_U32 0x0020000000000000ULL
|
||||
#define CP_REG_SIZE_U64 0x0030000000000000ULL
|
||||
#define CP_REG_ARM 0x4000000000000000ULL
|
||||
|
||||
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
|
||||
* version used as a key for the coprocessor register hashtable
|
||||
*/
|
||||
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
|
||||
{
|
||||
uint32_t cpregid = kvmid;
|
||||
if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
|
||||
cpregid |= (1 << 15);
|
||||
}
|
||||
return cpregid;
|
||||
}
|
||||
|
||||
/* Convert a truncated 32 bit hashtable key into the full
|
||||
* 64 bit KVM register ID.
|
||||
*/
|
||||
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
|
||||
{
|
||||
uint64_t kvmid = cpregid & ~(1 << 15);
|
||||
if (cpregid & (1 << 15)) {
|
||||
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
|
||||
} else {
|
||||
kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
|
||||
}
|
||||
return kvmid;
|
||||
}
|
||||
|
||||
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
|
||||
* special-behaviour cp reg and bits [15..8] indicate what behaviour
|
||||
* it has. Otherwise it is a simple cp reg, where CONST indicates that
|
||||
@ -434,19 +471,22 @@ void armv7m_nvic_complete_irq(void *opaque, int irq);
|
||||
* a register definition to override a previous definition for the
|
||||
* same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
|
||||
* old must have the OVERRIDE bit set.
|
||||
* NO_MIGRATE indicates that this register should be ignored for migration;
|
||||
* (eg because any state is accessed via some other coprocessor register).
|
||||
*/
|
||||
#define ARM_CP_SPECIAL 1
|
||||
#define ARM_CP_CONST 2
|
||||
#define ARM_CP_64BIT 4
|
||||
#define ARM_CP_SUPPRESS_TB_END 8
|
||||
#define ARM_CP_OVERRIDE 16
|
||||
#define ARM_CP_NO_MIGRATE 32
|
||||
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
|
||||
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
|
||||
#define ARM_LAST_SPECIAL ARM_CP_WFI
|
||||
/* Used only as a terminator for ARMCPRegInfo lists */
|
||||
#define ARM_CP_SENTINEL 0xffff
|
||||
/* Mask of only the flag bits in a type field */
|
||||
#define ARM_CP_FLAG_MASK 0x1f
|
||||
#define ARM_CP_FLAG_MASK 0x3f
|
||||
|
||||
/* Return true if cptype is a valid type field. This is used to try to
|
||||
* catch errors where the sentinel has been accidentally left off the end
|
||||
@ -456,7 +496,7 @@ static inline bool cptype_valid(int cptype)
|
||||
{
|
||||
return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
|
||||
|| ((cptype & ARM_CP_SPECIAL) &&
|
||||
(cptype <= ARM_LAST_SPECIAL));
|
||||
((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
|
||||
}
|
||||
|
||||
/* Access rights:
|
||||
@ -562,6 +602,19 @@ struct ARMCPRegInfo {
|
||||
* by fieldoffset.
|
||||
*/
|
||||
CPWriteFn *writefn;
|
||||
/* Function for doing a "raw" read; used when we need to copy
|
||||
* coprocessor state to the kernel for KVM or out for
|
||||
* migration. This only needs to be provided if there is also a
|
||||
* readfn and it makes an access permission check.
|
||||
*/
|
||||
CPReadFn *raw_readfn;
|
||||
/* Function for doing a "raw" write; used when we need to copy KVM
|
||||
* kernel coprocessor state into userspace, or for inbound
|
||||
* migration. This only needs to be provided if there is also a
|
||||
* writefn and it makes an access permission check or masks out
|
||||
* "unwritable" bits or has write-one-to-clear or similar behaviour.
|
||||
*/
|
||||
CPWriteFn *raw_writefn;
|
||||
/* Function for resetting the register. If NULL, then reset will be done
|
||||
* by writing resetvalue to the field specified in fieldoffset. If
|
||||
* fieldoffset is 0 then no reset will be done.
|
||||
@ -605,6 +658,38 @@ static inline bool cp_access_ok(CPUARMState *env,
|
||||
return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* write_list_to_cpustate
|
||||
* @cpu: ARMCPU
|
||||
*
|
||||
* For each register listed in the ARMCPU cpreg_indexes list, write
|
||||
* its value from the cpreg_values list into the ARMCPUState structure.
|
||||
* This updates TCG's working data structures from KVM data or
|
||||
* from incoming migration state.
|
||||
*
|
||||
* Returns: true if all register values were updated correctly,
|
||||
* false if some register was unknown or could not be written.
|
||||
* Note that we do not stop early on failure -- we will attempt
|
||||
* writing all registers in the list.
|
||||
*/
|
||||
bool write_list_to_cpustate(ARMCPU *cpu);
|
||||
|
||||
/**
|
||||
* write_cpustate_to_list:
|
||||
* @cpu: ARMCPU
|
||||
*
|
||||
* For each register listed in the ARMCPU cpreg_indexes list, write
|
||||
* its value from the ARMCPUState structure into the cpreg_values list.
|
||||
* This is used to copy info from TCG's working data structures into
|
||||
* KVM or for outbound migration.
|
||||
*
|
||||
* Returns: true if all register values were read correctly,
|
||||
* false if some register was unknown or could not be read.
|
||||
* Note that we do not stop early on failure -- we will attempt
|
||||
* reading all registers in the list.
|
||||
*/
|
||||
bool write_cpustate_to_list(ARMCPU *cpu);
|
||||
|
||||
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
|
||||
Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
|
||||
conventional cores (ie. Application or Realtime profile). */
|
||||
|
@ -64,6 +64,194 @@ static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t *value)
|
||||
{
|
||||
*value = CPREG_FIELD32(env, ri);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
{
|
||||
CPREG_FIELD32(env, ri) = value;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t *v)
|
||||
{
|
||||
/* Raw read of a coprocessor register (as needed for migration, etc)
|
||||
* return true on success, false if the read is impossible for some reason.
|
||||
*/
|
||||
if (ri->type & ARM_CP_CONST) {
|
||||
*v = ri->resetvalue;
|
||||
} else if (ri->raw_readfn) {
|
||||
return (ri->raw_readfn(env, ri, v) == 0);
|
||||
} else if (ri->readfn) {
|
||||
return (ri->readfn(env, ri, v) == 0);
|
||||
} else {
|
||||
if (ri->type & ARM_CP_64BIT) {
|
||||
*v = CPREG_FIELD64(env, ri);
|
||||
} else {
|
||||
*v = CPREG_FIELD32(env, ri);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
int64_t v)
|
||||
{
|
||||
/* Raw write of a coprocessor register (as needed for migration, etc).
|
||||
* Return true on success, false if the write is impossible for some reason.
|
||||
* Note that constant registers are treated as write-ignored; the
|
||||
* caller should check for success by whether a readback gives the
|
||||
* value written.
|
||||
*/
|
||||
if (ri->type & ARM_CP_CONST) {
|
||||
return true;
|
||||
} else if (ri->raw_writefn) {
|
||||
return (ri->raw_writefn(env, ri, v) == 0);
|
||||
} else if (ri->writefn) {
|
||||
return (ri->writefn(env, ri, v) == 0);
|
||||
} else {
|
||||
if (ri->type & ARM_CP_64BIT) {
|
||||
CPREG_FIELD64(env, ri) = v;
|
||||
} else {
|
||||
CPREG_FIELD32(env, ri) = v;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool write_cpustate_to_list(ARMCPU *cpu)
|
||||
{
|
||||
/* Write the coprocessor state from cpu->env to the (index,value) list. */
|
||||
int i;
|
||||
bool ok = true;
|
||||
|
||||
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
||||
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
||||
const ARMCPRegInfo *ri;
|
||||
uint64_t v;
|
||||
ri = get_arm_cp_reginfo(cpu, regidx);
|
||||
if (!ri) {
|
||||
ok = false;
|
||||
continue;
|
||||
}
|
||||
if (ri->type & ARM_CP_NO_MIGRATE) {
|
||||
continue;
|
||||
}
|
||||
if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
|
||||
ok = false;
|
||||
continue;
|
||||
}
|
||||
cpu->cpreg_values[i] = v;
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
bool write_list_to_cpustate(ARMCPU *cpu)
|
||||
{
|
||||
int i;
|
||||
bool ok = true;
|
||||
|
||||
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
||||
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
||||
uint64_t v = cpu->cpreg_values[i];
|
||||
uint64_t readback;
|
||||
const ARMCPRegInfo *ri;
|
||||
|
||||
ri = get_arm_cp_reginfo(cpu, regidx);
|
||||
if (!ri) {
|
||||
ok = false;
|
||||
continue;
|
||||
}
|
||||
if (ri->type & ARM_CP_NO_MIGRATE) {
|
||||
continue;
|
||||
}
|
||||
/* Write value and confirm it reads back as written
|
||||
* (to catch read-only registers and partially read-only
|
||||
* registers where the incoming migration value doesn't match)
|
||||
*/
|
||||
if (!write_raw_cp_reg(&cpu->env, ri, v) ||
|
||||
!read_raw_cp_reg(&cpu->env, ri, &readback) ||
|
||||
readback != v) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
static void add_cpreg_to_list(gpointer key, gpointer opaque)
|
||||
{
|
||||
ARMCPU *cpu = opaque;
|
||||
uint64_t regidx;
|
||||
const ARMCPRegInfo *ri;
|
||||
|
||||
regidx = *(uint32_t *)key;
|
||||
ri = get_arm_cp_reginfo(cpu, regidx);
|
||||
|
||||
if (!(ri->type & ARM_CP_NO_MIGRATE)) {
|
||||
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
|
||||
/* The value array need not be initialized at this point */
|
||||
cpu->cpreg_array_len++;
|
||||
}
|
||||
}
|
||||
|
||||
static void count_cpreg(gpointer key, gpointer opaque)
|
||||
{
|
||||
ARMCPU *cpu = opaque;
|
||||
uint64_t regidx;
|
||||
const ARMCPRegInfo *ri;
|
||||
|
||||
regidx = *(uint32_t *)key;
|
||||
ri = get_arm_cp_reginfo(cpu, regidx);
|
||||
|
||||
if (!(ri->type & ARM_CP_NO_MIGRATE)) {
|
||||
cpu->cpreg_array_len++;
|
||||
}
|
||||
}
|
||||
|
||||
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
|
||||
{
|
||||
uint32_t aidx = *(uint32_t *)a;
|
||||
uint32_t bidx = *(uint32_t *)b;
|
||||
|
||||
return aidx - bidx;
|
||||
}
|
||||
|
||||
void init_cpreg_list(ARMCPU *cpu)
|
||||
{
|
||||
/* Initialise the cpreg_tuples[] array based on the cp_regs hash.
|
||||
* Note that we require cpreg_tuples[] to be sorted by key ID.
|
||||
*/
|
||||
GList *keys;
|
||||
int arraylen;
|
||||
|
||||
keys = g_hash_table_get_keys(cpu->cp_regs);
|
||||
keys = g_list_sort(keys, cpreg_key_compare);
|
||||
|
||||
cpu->cpreg_array_len = 0;
|
||||
|
||||
g_list_foreach(keys, count_cpreg, cpu);
|
||||
|
||||
arraylen = cpu->cpreg_array_len;
|
||||
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
|
||||
cpu->cpreg_values = g_new(uint64_t, arraylen);
|
||||
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
|
||||
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
|
||||
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
|
||||
cpu->cpreg_array_len = 0;
|
||||
|
||||
g_list_foreach(keys, add_cpreg_to_list, cpu);
|
||||
|
||||
assert(cpu->cpreg_array_len == arraylen);
|
||||
|
||||
g_list_free(keys);
|
||||
}
|
||||
|
||||
static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
||||
{
|
||||
env->cp15.c3 = value;
|
||||
@ -139,13 +327,13 @@ static const ARMCPRegInfo cp_reginfo[] = {
|
||||
{ .name = "DACR", .cp = 15,
|
||||
.crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
|
||||
.resetvalue = 0, .writefn = dacr_write },
|
||||
.resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
|
||||
{ .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
|
||||
.resetvalue = 0, .writefn = fcse_write },
|
||||
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
||||
{ .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
|
||||
.resetvalue = 0, .writefn = contextidr_write },
|
||||
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
||||
/* ??? This covers not just the impdef TLB lockdown registers but also
|
||||
* some v7VMSA registers relating to TEX remap, so it is overly broad.
|
||||
*/
|
||||
@ -155,13 +343,17 @@ static const ARMCPRegInfo cp_reginfo[] = {
|
||||
* the unified TLB ops but also the dside/iside/inner-shareable variants.
|
||||
*/
|
||||
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
|
||||
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
|
||||
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
|
||||
.type = ARM_CP_NO_MIGRATE },
|
||||
{ .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
||||
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
|
||||
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
|
||||
.type = ARM_CP_NO_MIGRATE },
|
||||
{ .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
|
||||
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
|
||||
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
|
||||
.type = ARM_CP_NO_MIGRATE },
|
||||
{ .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
||||
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
|
||||
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
|
||||
.type = ARM_CP_NO_MIGRATE },
|
||||
/* Cache maintenance ops; some of this space may be overridden later. */
|
||||
{ .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
||||
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
||||
@ -196,7 +388,8 @@ static const ARMCPRegInfo not_v7_cp_reginfo[] = {
|
||||
.resetvalue = 0 },
|
||||
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
|
||||
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
|
||||
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
||||
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = 0 },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
@ -235,6 +428,7 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
|
||||
static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t *value)
|
||||
{
|
||||
@ -366,13 +560,16 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
|
||||
{ .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
|
||||
.access = PL0_RW, .resetvalue = 0,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
|
||||
.readfn = pmreg_read, .writefn = pmcntenset_write },
|
||||
.readfn = pmreg_read, .writefn = pmcntenset_write,
|
||||
.raw_readfn = raw_read, .raw_writefn = raw_write },
|
||||
{ .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
|
||||
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
|
||||
.readfn = pmreg_read, .writefn = pmcntenclr_write },
|
||||
.readfn = pmreg_read, .writefn = pmcntenclr_write,
|
||||
.type = ARM_CP_NO_MIGRATE },
|
||||
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
|
||||
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
|
||||
.readfn = pmreg_read, .writefn = pmovsr_write },
|
||||
.readfn = pmreg_read, .writefn = pmovsr_write,
|
||||
.raw_readfn = raw_read, .raw_writefn = raw_write },
|
||||
/* Unimplemented so WI. Strictly speaking write accesses in PL0 should
|
||||
* respect PMUSERENR.
|
||||
*/
|
||||
@ -389,7 +586,8 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
|
||||
{ .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
|
||||
.access = PL0_RW,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
|
||||
.readfn = pmreg_read, .writefn = pmxevtyper_write },
|
||||
.readfn = pmreg_read, .writefn = pmxevtyper_write,
|
||||
.raw_readfn = raw_read, .raw_writefn = raw_write },
|
||||
/* Unimplemented, RAZ/WI. XXX PMUSERENR */
|
||||
{ .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
|
||||
.access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
||||
@ -397,22 +595,21 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
|
||||
.access = PL0_R | PL1_RW,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
|
||||
.resetvalue = 0,
|
||||
.writefn = pmuserenr_write },
|
||||
.writefn = pmuserenr_write, .raw_writefn = raw_write },
|
||||
{ .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
|
||||
.access = PL1_RW,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
||||
.resetvalue = 0,
|
||||
.writefn = pmintenset_write },
|
||||
.writefn = pmintenset_write, .raw_writefn = raw_write },
|
||||
{ .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
|
||||
.access = PL1_RW,
|
||||
.access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
||||
.resetvalue = 0,
|
||||
.writefn = pmintenclr_write },
|
||||
.resetvalue = 0, .writefn = pmintenclr_write, },
|
||||
{ .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
|
||||
.resetvalue = 0, },
|
||||
{ .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
|
||||
.access = PL1_R, .readfn = ccsidr_read },
|
||||
.access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
|
||||
{ .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
|
||||
.writefn = csselr_write, .resetvalue = 0 },
|
||||
@ -461,7 +658,7 @@ static const ARMCPRegInfo t2ee_cp_reginfo[] = {
|
||||
.writefn = teecr_write },
|
||||
{ .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
|
||||
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
|
||||
.resetvalue = 0,
|
||||
.resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
|
||||
.readfn = teehbr_read, .writefn = teehbr_write },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
@ -486,7 +683,8 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
||||
/* Dummy implementation: RAZ/WI the whole crn=14 space */
|
||||
{ .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
|
||||
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
||||
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
||||
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = 0 },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
@ -579,7 +777,7 @@ static const ARMCPRegInfo vapa_cp_reginfo[] = {
|
||||
.writefn = par_write },
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
{ .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
|
||||
.access = PL1_W, .writefn = ats_write },
|
||||
.access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
|
||||
#endif
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
@ -664,11 +862,11 @@ static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
|
||||
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
|
||||
{ .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL1_RW,
|
||||
.access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
|
||||
.readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
|
||||
{ .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
||||
.access = PL1_RW,
|
||||
.access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
|
||||
.readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
|
||||
{ .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
|
||||
@ -690,15 +888,11 @@ static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
{
|
||||
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
||||
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
|
||||
/* With LPAE the TTBCR could result in a change of ASID
|
||||
* via the TTBCR.A1 bit, so do a TLB flush.
|
||||
*/
|
||||
tlb_flush(env, 1);
|
||||
} else {
|
||||
value &= 7;
|
||||
}
|
||||
@ -713,6 +907,18 @@ static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
{
|
||||
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
||||
/* With LPAE the TTBCR could result in a change of ASID
|
||||
* via the TTBCR.A1 bit, so do a TLB flush.
|
||||
*/
|
||||
tlb_flush(env, 1);
|
||||
}
|
||||
return vmsa_ttbcr_raw_write(env, ri, value);
|
||||
}
|
||||
|
||||
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
||||
{
|
||||
env->cp15.c2_base_mask = 0xffffc000u;
|
||||
@ -735,7 +941,7 @@ static const ARMCPRegInfo vmsa_cp_reginfo[] = {
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
|
||||
{ .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
||||
.access = PL1_RW, .writefn = vmsa_ttbcr_write,
|
||||
.resetfn = vmsa_ttbcr_reset,
|
||||
.resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
|
||||
{ .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
|
||||
@ -801,6 +1007,7 @@ static const ARMCPRegInfo omap_cp_reginfo[] = {
|
||||
.writefn = omap_threadid_write },
|
||||
{ .name = "TI925T_STATUS", .cp = 15, .crn = 15,
|
||||
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
||||
.type = ARM_CP_NO_MIGRATE,
|
||||
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
|
||||
/* TODO: Peripheral port remap register:
|
||||
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
|
||||
@ -808,7 +1015,8 @@ static const ARMCPRegInfo omap_cp_reginfo[] = {
|
||||
* when MMU is off.
|
||||
*/
|
||||
{ .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
||||
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
|
||||
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
||||
.type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
|
||||
.writefn = omap_cachemaint_write },
|
||||
{ .name = "C9", .cp = 15, .crn = 9,
|
||||
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
|
||||
@ -848,21 +1056,24 @@ static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
|
||||
*/
|
||||
{ .name = "C15_IMPDEF", .cp = 15, .crn = 15,
|
||||
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
||||
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
||||
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = 0 },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
|
||||
/* Cache status: RAZ because we have no cache so it's always clean */
|
||||
{ .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
|
||||
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
||||
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = 0 },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
|
||||
/* We never have a a block transfer operation in progress */
|
||||
{ .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
|
||||
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
||||
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = 0 },
|
||||
/* The cache ops themselves: these all NOP for QEMU */
|
||||
{ .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
|
||||
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
||||
@ -884,9 +1095,11 @@ static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
|
||||
* to indicate that there are no dirty cache lines.
|
||||
*/
|
||||
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
|
||||
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
|
||||
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = (1 << 30) },
|
||||
{ .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
|
||||
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
|
||||
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
|
||||
.resetvalue = (1 << 30) },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
@ -894,8 +1107,8 @@ static const ARMCPRegInfo strongarm_cp_reginfo[] = {
|
||||
/* Ignore ReadBuffer accesses */
|
||||
{ .name = "C9_READBUFFER", .cp = 15, .crn = 9,
|
||||
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
||||
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
|
||||
.resetvalue = 0 },
|
||||
.access = PL1_RW, .resetvalue = 0,
|
||||
.type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
@ -921,7 +1134,7 @@ static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
|
||||
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
|
||||
{ .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
|
||||
.access = PL1_R, .readfn = mpidr_read },
|
||||
.access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
|
||||
REGINFO_SENTINEL
|
||||
};
|
||||
|
||||
@ -951,14 +1164,20 @@ static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
{
|
||||
env->cp15.c2_base0_hi = value >> 32;
|
||||
env->cp15.c2_base0 = value;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value)
|
||||
{
|
||||
/* Writes to the 64 bit format TTBRs may change the ASID */
|
||||
tlb_flush(env, 1);
|
||||
return 0;
|
||||
return ttbr064_raw_write(env, ri, value);
|
||||
}
|
||||
|
||||
static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
||||
@ -1008,7 +1227,8 @@ static const ARMCPRegInfo lpae_cp_reginfo[] = {
|
||||
.readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
|
||||
{ .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
|
||||
.access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
|
||||
.writefn = ttbr064_write, .resetfn = ttbr064_reset },
|
||||
.writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
|
||||
.resetfn = ttbr064_reset },
|
||||
{ .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
|
||||
.access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
|
||||
.writefn = ttbr164_write, .resetfn = ttbr164_reset },
|
||||
@ -1104,7 +1324,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
|
||||
.name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
|
||||
.readfn = pmreg_read, .writefn = pmcr_write
|
||||
.readfn = pmreg_read, .writefn = pmcr_write,
|
||||
.raw_readfn = raw_read, .raw_writefn = raw_write,
|
||||
};
|
||||
ARMCPRegInfo clidr = {
|
||||
.name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
|
||||
@ -1176,7 +1397,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
|
||||
{ .name = "MIDR",
|
||||
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL1_R, .resetvalue = cpu->midr,
|
||||
.writefn = arm_cp_write_ignore,
|
||||
.writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
|
||||
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
|
||||
{ .name = "CTR",
|
||||
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
|
||||
@ -1245,7 +1466,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
|
||||
ARMCPRegInfo sctlr = {
|
||||
.name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
|
||||
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
|
||||
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
|
||||
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
|
||||
.raw_writefn = raw_write,
|
||||
};
|
||||
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
||||
/* Normally we would always end the TB on an SCTLR write, but Linux
|
||||
@ -1392,6 +1614,19 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
||||
r2->crm = crm;
|
||||
r2->opc1 = opc1;
|
||||
r2->opc2 = opc2;
|
||||
/* By convention, for wildcarded registers only the first
|
||||
* entry is used for migration; the others are marked as
|
||||
* NO_MIGRATE so we don't try to transfer the register
|
||||
* multiple times. Special registers (ie NOP/WFI) are
|
||||
* never migratable.
|
||||
*/
|
||||
if ((r->type & ARM_CP_SPECIAL) ||
|
||||
((r->crm == CP_ANY) && crm != 0) ||
|
||||
((r->opc1 == CP_ANY) && opc1 != 0) ||
|
||||
((r->opc2 == CP_ANY) && opc2 != 0)) {
|
||||
r2->type |= ARM_CP_NO_MIGRATE;
|
||||
}
|
||||
|
||||
/* Overriding of an existing definition must be explicitly
|
||||
* requested.
|
||||
*/
|
||||
|
23
target-arm/kvm-stub.c
Normal file
23
target-arm/kvm-stub.c
Normal file
@ -0,0 +1,23 @@
|
||||
/*
|
||||
* QEMU KVM ARM specific function stubs
|
||||
*
|
||||
* Copyright Linaro Limited 2013
|
||||
*
|
||||
* Author: Peter Maydell <peter.maydell@linaro.org>
|
||||
*
|
||||
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
||||
* See the COPYING file in the top-level directory.
|
||||
*
|
||||
*/
|
||||
#include "qemu-common.h"
|
||||
#include "kvm_arm.h"
|
||||
|
||||
bool write_kvmstate_to_list(ARMCPU *cpu)
|
||||
{
|
||||
abort();
|
||||
}
|
||||
|
||||
bool write_list_to_kvmstate(ARMCPU *cpu)
|
||||
{
|
||||
abort();
|
||||
}
|
292
target-arm/kvm.c
292
target-arm/kvm.c
@ -23,6 +23,15 @@
|
||||
#include "cpu.h"
|
||||
#include "hw/arm/arm.h"
|
||||
|
||||
/* Check that cpu.h's idea of coprocessor fields matches KVM's */
|
||||
#if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
|
||||
(CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \
|
||||
(CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
|
||||
(CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
|
||||
(CP_REG_ARM != KVM_REG_ARM)
|
||||
#error mismatch between cpu.h and KVM header definitions
|
||||
#endif
|
||||
|
||||
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
||||
KVM_CAP_LAST_INFO
|
||||
};
|
||||
@ -41,12 +50,35 @@ unsigned long kvm_arch_vcpu_id(CPUState *cpu)
|
||||
return cpu->cpu_index;
|
||||
}
|
||||
|
||||
static bool reg_syncs_via_tuple_list(uint64_t regidx)
|
||||
{
|
||||
/* Return true if the regidx is a register we should synchronize
|
||||
* via the cpreg_tuples array (ie is not a core reg we sync by
|
||||
* hand in kvm_arch_get/put_registers())
|
||||
*/
|
||||
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
||||
case KVM_REG_ARM_CORE:
|
||||
case KVM_REG_ARM_VFP:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
static int compare_u64(const void *a, const void *b)
|
||||
{
|
||||
return *(uint64_t *)a - *(uint64_t *)b;
|
||||
}
|
||||
|
||||
int kvm_arch_init_vcpu(CPUState *cs)
|
||||
{
|
||||
struct kvm_vcpu_init init;
|
||||
int ret;
|
||||
int i, ret, arraylen;
|
||||
uint64_t v;
|
||||
struct kvm_one_reg r;
|
||||
struct kvm_reg_list rl;
|
||||
struct kvm_reg_list *rlp;
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
|
||||
init.target = KVM_ARM_TARGET_CORTEX_A15;
|
||||
memset(init.features, 0, sizeof(init.features));
|
||||
@ -65,6 +97,80 @@ int kvm_arch_init_vcpu(CPUState *cs)
|
||||
if (ret == -ENOENT) {
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Populate the cpreg list based on the kernel's idea
|
||||
* of what registers exist (and throw away the TCG-created list).
|
||||
*/
|
||||
rl.n = 0;
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
|
||||
if (ret != -E2BIG) {
|
||||
return ret;
|
||||
}
|
||||
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
|
||||
rlp->n = rl.n;
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
|
||||
if (ret) {
|
||||
goto out;
|
||||
}
|
||||
/* Sort the list we get back from the kernel, since cpreg_tuples
|
||||
* must be in strictly ascending order.
|
||||
*/
|
||||
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
|
||||
|
||||
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
||||
if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
|
||||
continue;
|
||||
}
|
||||
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
|
||||
case KVM_REG_SIZE_U32:
|
||||
case KVM_REG_SIZE_U64:
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "Can't handle size of register in kernel list\n");
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
arraylen++;
|
||||
}
|
||||
|
||||
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
|
||||
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
|
||||
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
|
||||
arraylen);
|
||||
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
|
||||
arraylen);
|
||||
cpu->cpreg_array_len = arraylen;
|
||||
cpu->cpreg_vmstate_array_len = arraylen;
|
||||
|
||||
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
||||
uint64_t regidx = rlp->reg[i];
|
||||
if (!reg_syncs_via_tuple_list(regidx)) {
|
||||
continue;
|
||||
}
|
||||
cpu->cpreg_indexes[arraylen] = regidx;
|
||||
arraylen++;
|
||||
}
|
||||
assert(cpu->cpreg_array_len == arraylen);
|
||||
|
||||
if (!write_kvmstate_to_list(cpu)) {
|
||||
/* Shouldn't happen unless kernel is inconsistent about
|
||||
* what registers exist.
|
||||
*/
|
||||
fprintf(stderr, "Initial read of kernel register state failed\n");
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Save a copy of the initial register values so that we can
|
||||
* feed it back to the kernel on VCPU reset.
|
||||
*/
|
||||
cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
|
||||
cpu->cpreg_array_len *
|
||||
sizeof(cpu->cpreg_values[0]));
|
||||
|
||||
out:
|
||||
g_free(rlp);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -154,6 +260,78 @@ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
|
||||
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
|
||||
}
|
||||
|
||||
bool write_kvmstate_to_list(ARMCPU *cpu)
|
||||
{
|
||||
CPUState *cs = CPU(cpu);
|
||||
int i;
|
||||
bool ok = true;
|
||||
|
||||
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
||||
struct kvm_one_reg r;
|
||||
uint64_t regidx = cpu->cpreg_indexes[i];
|
||||
uint32_t v32;
|
||||
int ret;
|
||||
|
||||
r.id = regidx;
|
||||
|
||||
switch (regidx & KVM_REG_SIZE_MASK) {
|
||||
case KVM_REG_SIZE_U32:
|
||||
r.addr = (uintptr_t)&v32;
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
||||
if (!ret) {
|
||||
cpu->cpreg_values[i] = v32;
|
||||
}
|
||||
break;
|
||||
case KVM_REG_SIZE_U64:
|
||||
r.addr = (uintptr_t)(cpu->cpreg_values + i);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
if (ret) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
bool write_list_to_kvmstate(ARMCPU *cpu)
|
||||
{
|
||||
CPUState *cs = CPU(cpu);
|
||||
int i;
|
||||
bool ok = true;
|
||||
|
||||
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
||||
struct kvm_one_reg r;
|
||||
uint64_t regidx = cpu->cpreg_indexes[i];
|
||||
uint32_t v32;
|
||||
int ret;
|
||||
|
||||
r.id = regidx;
|
||||
switch (regidx & KVM_REG_SIZE_MASK) {
|
||||
case KVM_REG_SIZE_U32:
|
||||
v32 = cpu->cpreg_values[i];
|
||||
r.addr = (uintptr_t)&v32;
|
||||
break;
|
||||
case KVM_REG_SIZE_U64:
|
||||
r.addr = (uintptr_t)(cpu->cpreg_values + i);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
||||
if (ret) {
|
||||
/* We might fail for "unknown register" and also for
|
||||
* "you tried to set a register which is constant with
|
||||
* a different value from what it actually contains".
|
||||
*/
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
typedef struct Reg {
|
||||
uint64_t id;
|
||||
int offset;
|
||||
@ -166,17 +344,6 @@ typedef struct Reg {
|
||||
offsetof(CPUARMState, QEMUFIELD) \
|
||||
}
|
||||
|
||||
#define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
|
||||
{ \
|
||||
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
||||
(15 << KVM_REG_ARM_COPROC_SHIFT) | \
|
||||
((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
|
||||
((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
|
||||
((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
|
||||
((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
|
||||
offsetof(CPUARMState, QEMUFIELD) \
|
||||
}
|
||||
|
||||
#define VFPSYSREG(R) \
|
||||
{ \
|
||||
KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
|
||||
@ -225,12 +392,6 @@ static const Reg regs[] = {
|
||||
COREREG(fiq_regs[7], banked_spsr[5]),
|
||||
/* R15 */
|
||||
COREREG(usr_regs.uregs[15], regs[15]),
|
||||
/* A non-comprehensive set of cp15 registers.
|
||||
* TODO: drive this from the cp_regs hashtable instead.
|
||||
*/
|
||||
CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
|
||||
CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
|
||||
CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
|
||||
/* VFP system registers */
|
||||
VFPSYSREG(FPSID),
|
||||
VFPSYSREG(MVFR1),
|
||||
@ -248,7 +409,6 @@ int kvm_arch_put_registers(CPUState *cs, int level)
|
||||
int mode, bn;
|
||||
int ret, i;
|
||||
uint32_t cpsr, fpscr;
|
||||
uint64_t ttbr;
|
||||
|
||||
/* Make sure the banked regs are properly set */
|
||||
mode = env->uncached_cpsr & CPSR_M;
|
||||
@ -282,26 +442,6 @@ int kvm_arch_put_registers(CPUState *cs, int level)
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* TTBR0: cp15 crm=2 opc1=0 */
|
||||
ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
|
||||
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
||||
(2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
|
||||
r.addr = (uintptr_t)(&ttbr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* TTBR1: cp15 crm=2 opc1=1 */
|
||||
ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
|
||||
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
||||
(2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
|
||||
r.addr = (uintptr_t)(&ttbr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* VFP registers */
|
||||
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
||||
for (i = 0; i < 32; i++) {
|
||||
@ -318,6 +458,31 @@ int kvm_arch_put_registers(CPUState *cs, int level)
|
||||
fpscr = vfp_get_fpscr(env);
|
||||
r.addr = (uintptr_t)&fpscr;
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Note that we do not call write_cpustate_to_list()
|
||||
* here, so we are only writing the tuple list back to
|
||||
* KVM. This is safe because nothing can change the
|
||||
* CPUARMState cp15 fields (in particular gdb accesses cannot)
|
||||
* and so there are no changes to sync. In fact syncing would
|
||||
* be wrong at this point: for a constant register where TCG and
|
||||
* KVM disagree about its value, the preceding write_list_to_cpustate()
|
||||
* would not have had any effect on the CPUARMState value (since the
|
||||
* register is read-only), and a write_cpustate_to_list() here would
|
||||
* then try to write the TCG value back into KVM -- this would either
|
||||
* fail or incorrectly change the value the guest sees.
|
||||
*
|
||||
* If we ever want to allow the user to modify cp15 registers via
|
||||
* the gdb stub, we would need to be more clever here (for instance
|
||||
* tracking the set of registers kvm_arch_get_registers() successfully
|
||||
* managed to update the CPUARMState with, and only allowing those
|
||||
* to be written back up into the kernel).
|
||||
*/
|
||||
if (!write_list_to_kvmstate(cpu)) {
|
||||
return EINVAL;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -330,7 +495,6 @@ int kvm_arch_get_registers(CPUState *cs)
|
||||
int mode, bn;
|
||||
int ret, i;
|
||||
uint32_t cpsr, fpscr;
|
||||
uint64_t ttbr;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
||||
r.id = regs[i].id;
|
||||
@ -351,28 +515,6 @@ int kvm_arch_get_registers(CPUState *cs)
|
||||
}
|
||||
cpsr_write(env, cpsr, 0xffffffff);
|
||||
|
||||
/* TTBR0: cp15 crm=2 opc1=0 */
|
||||
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
||||
(2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
|
||||
r.addr = (uintptr_t)(&ttbr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
env->cp15.c2_base0_hi = ttbr >> 32;
|
||||
env->cp15.c2_base0 = ttbr;
|
||||
|
||||
/* TTBR1: cp15 crm=2 opc1=1 */
|
||||
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
||||
(2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
|
||||
r.addr = (uintptr_t)(&ttbr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
env->cp15.c2_base1_hi = ttbr >> 32;
|
||||
env->cp15.c2_base1 = ttbr;
|
||||
|
||||
/* Make sure the current mode regs are properly set */
|
||||
mode = env->uncached_cpsr & CPSR_M;
|
||||
bn = bank_number(mode);
|
||||
@ -385,15 +527,6 @@ int kvm_arch_get_registers(CPUState *cs)
|
||||
env->regs[14] = env->banked_r14[bn];
|
||||
env->spsr = env->banked_spsr[bn];
|
||||
|
||||
/* The main GET_ONE_REG loop above set c2_control, but we need to
|
||||
* update some extra cached precomputed values too.
|
||||
* When this is driven from the cp_regs hashtable then this ugliness
|
||||
* can disappear because we'll use the access function which sets
|
||||
* these values automatically.
|
||||
*/
|
||||
env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
|
||||
env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
|
||||
|
||||
/* VFP registers */
|
||||
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
||||
for (i = 0; i < 32; i++) {
|
||||
@ -414,6 +547,14 @@ int kvm_arch_get_registers(CPUState *cs)
|
||||
}
|
||||
vfp_set_fpscr(env, fpscr);
|
||||
|
||||
if (!write_kvmstate_to_list(cpu)) {
|
||||
return EINVAL;
|
||||
}
|
||||
/* Note that it's OK to have registers which aren't in CPUState,
|
||||
* so we can ignore a failure return here.
|
||||
*/
|
||||
write_list_to_cpustate(cpu);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -432,6 +573,15 @@ int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
||||
|
||||
void kvm_arch_reset_vcpu(CPUState *cs)
|
||||
{
|
||||
/* Feed the kernel back its initial register state */
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
|
||||
memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
|
||||
cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));
|
||||
|
||||
if (!write_list_to_kvmstate(cpu)) {
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
|
||||
|
@ -29,4 +29,37 @@
|
||||
*/
|
||||
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid);
|
||||
|
||||
/**
|
||||
* write_list_to_kvmstate:
|
||||
* @cpu: ARMCPU
|
||||
*
|
||||
* For each register listed in the ARMCPU cpreg_indexes list, write
|
||||
* its value from the cpreg_values list into the kernel (via ioctl).
|
||||
* This updates KVM's working data structures from TCG data or
|
||||
* from incoming migration state.
|
||||
*
|
||||
* Returns: true if all register values were updated correctly,
|
||||
* false if some register was unknown to the kernel or could not
|
||||
* be written (eg constant register with the wrong value).
|
||||
* Note that we do not stop early on failure -- we will attempt
|
||||
* writing all registers in the list.
|
||||
*/
|
||||
bool write_list_to_kvmstate(ARMCPU *cpu);
|
||||
|
||||
/**
|
||||
* write_kvmstate_to_list:
|
||||
* @cpu: ARMCPU
|
||||
*
|
||||
* For each register listed in the ARMCPU cpreg_indexes list, write
|
||||
* its value from the kernel into the cpreg_values list. This is used to
|
||||
* copy info from KVM's working data structures into TCG or
|
||||
* for outbound migration.
|
||||
*
|
||||
* Returns: true if all register values were read correctly,
|
||||
* false if some register was unknown or could not be read.
|
||||
* Note that we do not stop early on failure -- we will attempt
|
||||
* reading all registers in the list.
|
||||
*/
|
||||
bool write_kvmstate_to_list(ARMCPU *cpu);
|
||||
|
||||
#endif
|
||||
|
@ -1,5 +1,7 @@
|
||||
#include "hw/hw.h"
|
||||
#include "hw/boards.h"
|
||||
#include "sysemu/kvm.h"
|
||||
#include "kvm_arm.h"
|
||||
|
||||
static bool vfp_needed(void *opaque)
|
||||
{
|
||||
@ -148,11 +150,83 @@ static const VMStateInfo vmstate_cpsr = {
|
||||
.put = put_cpsr,
|
||||
};
|
||||
|
||||
static void cpu_pre_save(void *opaque)
|
||||
{
|
||||
ARMCPU *cpu = opaque;
|
||||
|
||||
if (kvm_enabled()) {
|
||||
if (!write_kvmstate_to_list(cpu)) {
|
||||
/* This should never fail */
|
||||
abort();
|
||||
}
|
||||
} else {
|
||||
if (!write_cpustate_to_list(cpu)) {
|
||||
/* This should never fail. */
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
|
||||
memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
|
||||
cpu->cpreg_array_len * sizeof(uint64_t));
|
||||
memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
|
||||
cpu->cpreg_array_len * sizeof(uint64_t));
|
||||
}
|
||||
|
||||
static int cpu_post_load(void *opaque, int version_id)
|
||||
{
|
||||
ARMCPU *cpu = opaque;
|
||||
int i, v;
|
||||
|
||||
/* Update the values list from the incoming migration data.
|
||||
* Anything in the incoming data which we don't know about is
|
||||
* a migration failure; anything we know about but the incoming
|
||||
* data doesn't specify retains its current (reset) value.
|
||||
* The indexes list remains untouched -- we only inspect the
|
||||
* incoming migration index list so we can match the values array
|
||||
* entries with the right slots in our own values array.
|
||||
*/
|
||||
|
||||
for (i = 0, v = 0; i < cpu->cpreg_array_len
|
||||
&& v < cpu->cpreg_vmstate_array_len; i++) {
|
||||
if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
|
||||
/* register in our list but not incoming : skip it */
|
||||
continue;
|
||||
}
|
||||
if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
|
||||
/* register in their list but not ours: fail migration */
|
||||
return -1;
|
||||
}
|
||||
/* matching register, copy the value over */
|
||||
cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
|
||||
v++;
|
||||
}
|
||||
|
||||
if (kvm_enabled()) {
|
||||
if (!write_list_to_kvmstate(cpu)) {
|
||||
return -1;
|
||||
}
|
||||
/* Note that it's OK for the TCG side not to know about
|
||||
* every register in the list; KVM is authoritative if
|
||||
* we're using it.
|
||||
*/
|
||||
write_list_to_cpustate(cpu);
|
||||
} else {
|
||||
if (!write_list_to_cpustate(cpu)) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
const VMStateDescription vmstate_arm_cpu = {
|
||||
.name = "cpu",
|
||||
.version_id = 11,
|
||||
.minimum_version_id = 11,
|
||||
.minimum_version_id_old = 11,
|
||||
.version_id = 12,
|
||||
.minimum_version_id = 12,
|
||||
.minimum_version_id_old = 12,
|
||||
.pre_save = cpu_pre_save,
|
||||
.post_load = cpu_post_load,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
|
||||
{
|
||||
@ -169,50 +243,16 @@ const VMStateDescription vmstate_arm_cpu = {
|
||||
VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 6),
|
||||
VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
|
||||
VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
|
||||
VMSTATE_UINT32(env.cp15.c0_cpuid, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c0_cssel, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c1_sys, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c1_coproc, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c1_xscaleauxcr, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c1_scr, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_base0, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_base0_hi, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_base1, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_base1_hi, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_control, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_mask, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_base_mask, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_data, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c2_insn, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c3, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c5_insn, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c5_data, ARMCPU),
|
||||
VMSTATE_UINT32_ARRAY(env.cp15.c6_region, ARMCPU, 8),
|
||||
VMSTATE_UINT32(env.cp15.c6_insn, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c6_data, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c7_par, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c7_par_hi, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_insn, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_data, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_pmcr, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_pmcnten, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_pmovsr, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_pmxevtyper, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_pmuserenr, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c9_pminten, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c13_fcse, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c13_context, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c13_tls1, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c13_tls2, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c13_tls3, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_cpar, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_ticonfig, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_i_max, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_i_min, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_threadid, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_power_control, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_diagnostic, ARMCPU),
|
||||
VMSTATE_UINT32(env.cp15.c15_power_diagnostic, ARMCPU),
|
||||
/* The length-check must come before the arrays to avoid
|
||||
* incoming data possibly overflowing the array.
|
||||
*/
|
||||
VMSTATE_INT32_LE(cpreg_vmstate_array_len, ARMCPU),
|
||||
VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
|
||||
cpreg_vmstate_array_len,
|
||||
0, vmstate_info_uint64, uint64_t),
|
||||
VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
|
||||
cpreg_vmstate_array_len,
|
||||
0, vmstate_info_uint64, uint64_t),
|
||||
VMSTATE_UINT32(env.exclusive_addr, ARMCPU),
|
||||
VMSTATE_UINT32(env.exclusive_val, ARMCPU),
|
||||
VMSTATE_UINT32(env.exclusive_high, ARMCPU),
|
||||
|
Loading…
x
Reference in New Issue
Block a user