hw/arm/mps3r: Add CPUs, GIC, and per-CPU RAM
Create the CPUs, the GIC, and the per-CPU RAM block for the mps3-an536 board. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 20240206132931.38376-10-peter.maydell@linaro.org
This commit is contained in:
parent
273a70ae82
commit
9220b09d3b
180
hw/arm/mps3r.c
180
hw/arm/mps3r.c
@ -27,10 +27,14 @@
|
||||
#include "qemu/osdep.h"
|
||||
#include "qemu/units.h"
|
||||
#include "qapi/error.h"
|
||||
#include "qapi/qmp/qlist.h"
|
||||
#include "exec/address-spaces.h"
|
||||
#include "cpu.h"
|
||||
#include "hw/boards.h"
|
||||
#include "hw/qdev-properties.h"
|
||||
#include "hw/arm/boot.h"
|
||||
#include "hw/arm/bsa.h"
|
||||
#include "hw/intc/arm_gicv3.h"
|
||||
|
||||
/* Define the layout of RAM and ROM in a board */
|
||||
typedef struct RAMInfo {
|
||||
@ -60,6 +64,10 @@ typedef struct RAMInfo {
|
||||
#define IS_ROM 2
|
||||
|
||||
#define MPS3R_RAM_MAX 9
|
||||
#define MPS3R_CPU_MAX 2
|
||||
|
||||
#define PERIPHBASE 0xf0000000
|
||||
#define NUM_SPIS 96
|
||||
|
||||
typedef enum MPS3RFPGAType {
|
||||
FPGA_AN536,
|
||||
@ -69,11 +77,18 @@ struct MPS3RMachineClass {
|
||||
MachineClass parent;
|
||||
MPS3RFPGAType fpga_type;
|
||||
const RAMInfo *raminfo;
|
||||
hwaddr loader_start;
|
||||
};
|
||||
|
||||
struct MPS3RMachineState {
|
||||
MachineState parent;
|
||||
struct arm_boot_info bootinfo;
|
||||
MemoryRegion ram[MPS3R_RAM_MAX];
|
||||
Object *cpu[MPS3R_CPU_MAX];
|
||||
MemoryRegion cpu_sysmem[MPS3R_CPU_MAX];
|
||||
MemoryRegion sysmem_alias[MPS3R_CPU_MAX];
|
||||
MemoryRegion cpu_ram[MPS3R_CPU_MAX];
|
||||
GICv3State gic;
|
||||
};
|
||||
|
||||
#define TYPE_MPS3R_MACHINE "mps3r"
|
||||
@ -163,6 +178,107 @@ static MemoryRegion *mr_for_raminfo(MPS3RMachineState *mms,
|
||||
return ram;
|
||||
}
|
||||
|
||||
/*
|
||||
* There is no defined secondary boot protocol for Linux for the AN536,
|
||||
* because real hardware has a restriction that atomic operations between
|
||||
* the two CPUs do not function correctly, and so true SMP is not
|
||||
* possible. Therefore for cases where the user is directly booting
|
||||
* a kernel, we treat the system as essentially uniprocessor, and
|
||||
* put the secondary CPU into power-off state (as if the user on the
|
||||
* real hardware had configured the secondary to be halted via the
|
||||
* SCC config registers).
|
||||
*
|
||||
* Note that the default secondary boot code would not work here anyway
|
||||
* as it assumes a GICv2, and we have a GICv3.
|
||||
*/
|
||||
static void mps3r_write_secondary_boot(ARMCPU *cpu,
|
||||
const struct arm_boot_info *info)
|
||||
{
|
||||
/*
|
||||
* Power the secondary CPU off. This means we don't need to write any
|
||||
* boot code into guest memory. Note that the 'cpu' argument to this
|
||||
* function is the primary CPU we passed to arm_load_kernel(), not
|
||||
* the secondary. Loop around all the other CPUs, as the boot.c
|
||||
* code does for the "disable secondaries if PSCI is enabled" case.
|
||||
*/
|
||||
for (CPUState *cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
|
||||
if (cs != first_cpu) {
|
||||
object_property_set_bool(OBJECT(cs), "start-powered-off", true,
|
||||
&error_abort);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void mps3r_secondary_cpu_reset(ARMCPU *cpu,
|
||||
const struct arm_boot_info *info)
|
||||
{
|
||||
/* We don't need to do anything here because the CPU will be off */
|
||||
}
|
||||
|
||||
static void create_gic(MPS3RMachineState *mms, MemoryRegion *sysmem)
|
||||
{
|
||||
MachineState *machine = MACHINE(mms);
|
||||
DeviceState *gicdev;
|
||||
QList *redist_region_count;
|
||||
|
||||
object_initialize_child(OBJECT(mms), "gic", &mms->gic, TYPE_ARM_GICV3);
|
||||
gicdev = DEVICE(&mms->gic);
|
||||
qdev_prop_set_uint32(gicdev, "num-cpu", machine->smp.cpus);
|
||||
qdev_prop_set_uint32(gicdev, "num-irq", NUM_SPIS + GIC_INTERNAL);
|
||||
redist_region_count = qlist_new();
|
||||
qlist_append_int(redist_region_count, machine->smp.cpus);
|
||||
qdev_prop_set_array(gicdev, "redist-region-count", redist_region_count);
|
||||
object_property_set_link(OBJECT(&mms->gic), "sysmem",
|
||||
OBJECT(sysmem), &error_fatal);
|
||||
sysbus_realize(SYS_BUS_DEVICE(&mms->gic), &error_fatal);
|
||||
sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 0, PERIPHBASE);
|
||||
sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 1, PERIPHBASE + 0x100000);
|
||||
/*
|
||||
* Wire the outputs from each CPU's generic timer and the GICv3
|
||||
* maintenance interrupt signal to the appropriate GIC PPI inputs,
|
||||
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
|
||||
*/
|
||||
for (int i = 0; i < machine->smp.cpus; i++) {
|
||||
DeviceState *cpudev = DEVICE(mms->cpu[i]);
|
||||
SysBusDevice *gicsbd = SYS_BUS_DEVICE(&mms->gic);
|
||||
int intidbase = NUM_SPIS + i * GIC_INTERNAL;
|
||||
int irq;
|
||||
/*
|
||||
* Mapping from the output timer irq lines from the CPU to the
|
||||
* GIC PPI inputs used for this board. This isn't a BSA board,
|
||||
* but it uses the standard convention for the PPI numbers.
|
||||
*/
|
||||
const int timer_irq[] = {
|
||||
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
|
||||
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
|
||||
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
|
||||
};
|
||||
|
||||
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
|
||||
qdev_connect_gpio_out(cpudev, irq,
|
||||
qdev_get_gpio_in(gicdev,
|
||||
intidbase + timer_irq[irq]));
|
||||
}
|
||||
|
||||
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
|
||||
qdev_get_gpio_in(gicdev,
|
||||
intidbase + ARCH_GIC_MAINT_IRQ));
|
||||
|
||||
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
|
||||
qdev_get_gpio_in(gicdev,
|
||||
intidbase + VIRTUAL_PMU_IRQ));
|
||||
|
||||
sysbus_connect_irq(gicsbd, i,
|
||||
qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
||||
sysbus_connect_irq(gicsbd, i + machine->smp.cpus,
|
||||
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
|
||||
sysbus_connect_irq(gicsbd, i + 2 * machine->smp.cpus,
|
||||
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
|
||||
sysbus_connect_irq(gicsbd, i + 3 * machine->smp.cpus,
|
||||
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
|
||||
}
|
||||
}
|
||||
|
||||
static void mps3r_common_init(MachineState *machine)
|
||||
{
|
||||
MPS3RMachineState *mms = MPS3R_MACHINE(machine);
|
||||
@ -173,6 +289,50 @@ static void mps3r_common_init(MachineState *machine)
|
||||
MemoryRegion *mr = mr_for_raminfo(mms, ri);
|
||||
memory_region_add_subregion(sysmem, ri->base, mr);
|
||||
}
|
||||
|
||||
assert(machine->smp.cpus <= MPS3R_CPU_MAX);
|
||||
for (int i = 0; i < machine->smp.cpus; i++) {
|
||||
g_autofree char *sysmem_name = g_strdup_printf("cpu-%d-memory", i);
|
||||
g_autofree char *ramname = g_strdup_printf("cpu-%d-memory", i);
|
||||
g_autofree char *alias_name = g_strdup_printf("sysmem-alias-%d", i);
|
||||
|
||||
/*
|
||||
* Each CPU has some private RAM/peripherals, so create the container
|
||||
* which will house those, with the whole-machine system memory being
|
||||
* used where there's no CPU-specific device. Note that we need the
|
||||
* sysmem_alias aliases because we can't put one MR (the original
|
||||
* 'sysmem') into more than one other MR.
|
||||
*/
|
||||
memory_region_init(&mms->cpu_sysmem[i], OBJECT(machine),
|
||||
sysmem_name, UINT64_MAX);
|
||||
memory_region_init_alias(&mms->sysmem_alias[i], OBJECT(machine),
|
||||
alias_name, sysmem, 0, UINT64_MAX);
|
||||
memory_region_add_subregion_overlap(&mms->cpu_sysmem[i], 0,
|
||||
&mms->sysmem_alias[i], -1);
|
||||
|
||||
mms->cpu[i] = object_new(machine->cpu_type);
|
||||
object_property_set_link(mms->cpu[i], "memory",
|
||||
OBJECT(&mms->cpu_sysmem[i]), &error_abort);
|
||||
object_property_set_int(mms->cpu[i], "reset-cbar",
|
||||
PERIPHBASE, &error_abort);
|
||||
qdev_realize(DEVICE(mms->cpu[i]), NULL, &error_fatal);
|
||||
object_unref(mms->cpu[i]);
|
||||
|
||||
/* Per-CPU RAM */
|
||||
memory_region_init_ram(&mms->cpu_ram[i], NULL, ramname,
|
||||
0x1000, &error_fatal);
|
||||
memory_region_add_subregion(&mms->cpu_sysmem[i], 0xe7c01000,
|
||||
&mms->cpu_ram[i]);
|
||||
}
|
||||
|
||||
create_gic(mms, sysmem);
|
||||
|
||||
mms->bootinfo.ram_size = machine->ram_size;
|
||||
mms->bootinfo.board_id = -1;
|
||||
mms->bootinfo.loader_start = mmc->loader_start;
|
||||
mms->bootinfo.write_secondary_boot = mps3r_write_secondary_boot;
|
||||
mms->bootinfo.secondary_cpu_reset_hook = mps3r_secondary_cpu_reset;
|
||||
arm_load_kernel(ARM_CPU(mms->cpu[0]), machine, &mms->bootinfo);
|
||||
}
|
||||
|
||||
static void mps3r_set_default_ram_info(MPS3RMachineClass *mmc)
|
||||
@ -189,6 +349,7 @@ static void mps3r_set_default_ram_info(MPS3RMachineClass *mmc)
|
||||
/* Found the entry for "system memory" */
|
||||
mc->default_ram_size = p->size;
|
||||
mc->default_ram_id = p->name;
|
||||
mmc->loader_start = p->base;
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -212,9 +373,22 @@ static void mps3r_an536_class_init(ObjectClass *oc, void *data)
|
||||
};
|
||||
|
||||
mc->desc = "ARM MPS3 with AN536 FPGA image for Cortex-R52";
|
||||
mc->default_cpus = 2;
|
||||
mc->min_cpus = mc->default_cpus;
|
||||
mc->max_cpus = mc->default_cpus;
|
||||
/*
|
||||
* In the real FPGA image there are always two cores, but the standard
|
||||
* initial setting for the SCC SYSCON 0x000 register is 0x21, meaning
|
||||
* that the second core is held in reset and halted. Many images built for
|
||||
* the board do not expect the second core to run at startup (especially
|
||||
* since on the real FPGA image it is not possible to use LDREX/STREX
|
||||
* in RAM between the two cores, so a true SMP setup isn't supported).
|
||||
*
|
||||
* As QEMU's equivalent of this, we support both -smp 1 and -smp 2,
|
||||
* with the default being -smp 1. This seems a more intuitive UI for
|
||||
* QEMU users than, for instance, having a machine property to allow
|
||||
* the user to set the initial value of the SYSCON 0x000 register.
|
||||
*/
|
||||
mc->default_cpus = 1;
|
||||
mc->min_cpus = 1;
|
||||
mc->max_cpus = 2;
|
||||
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-r52");
|
||||
mc->valid_cpu_types = valid_cpu_types;
|
||||
mmc->raminfo = an536_raminfo;
|
||||
|
Loading…
Reference in New Issue
Block a user