target/arm: Fix mte_checkN

We were incorrectly assuming that only the first byte of an MTE access
is checked against the tags.  But per the ARM, unaligned accesses are
pre-decomposed into single-byte accesses.  So by the time we reach the
actual MTE check in the ARM pseudocode, all accesses are aligned.

Therefore, the first failure is always either the first byte of the
access, or the first byte of the granule.

In addition, some of the arithmetic is off for last-first -> count.
This does not become directly visible until a later patch that passes
single bytes into this function, so ptr == ptr_last.

Buglink: https://bugs.launchpad.net/bugs/1921948
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210416183106.1516563-2-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
[PMM: tweaked a comment]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Richard Henderson 2021-04-16 11:30:58 -07:00 committed by Peter Maydell
parent 8196fe9d83
commit 98f96050aa

View File

@ -757,10 +757,10 @@ uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
uint64_t ptr, uintptr_t ra) uint64_t ptr, uintptr_t ra)
{ {
int mmu_idx, ptr_tag, bit55; int mmu_idx, ptr_tag, bit55;
uint64_t ptr_last, ptr_end, prev_page, next_page; uint64_t ptr_last, prev_page, next_page;
uint64_t tag_first, tag_end; uint64_t tag_first, tag_last;
uint64_t tag_byte_first, tag_byte_end; uint64_t tag_byte_first, tag_byte_last;
uint32_t esize, total, tag_count, tag_size, n, c; uint32_t total, tag_count, tag_size, n, c;
uint8_t *mem1, *mem2; uint8_t *mem1, *mem2;
MMUAccessType type; MMUAccessType type;
@ -779,29 +779,27 @@ uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
esize = FIELD_EX32(desc, MTEDESC, ESIZE);
total = FIELD_EX32(desc, MTEDESC, TSIZE); total = FIELD_EX32(desc, MTEDESC, TSIZE);
/* Find the addr of the end of the access, and of the last element. */ /* Find the addr of the end of the access */
ptr_end = ptr + total; ptr_last = ptr + total - 1;
ptr_last = ptr_end - esize;
/* Round the bounds to the tag granule, and compute the number of tags. */ /* Round the bounds to the tag granule, and compute the number of tags. */
tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
tag_end = QEMU_ALIGN_UP(ptr_last, TAG_GRANULE); tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
tag_count = (tag_end - tag_first) / TAG_GRANULE; tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
/* Round the bounds to twice the tag granule, and compute the bytes. */ /* Round the bounds to twice the tag granule, and compute the bytes. */
tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE); tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
tag_byte_end = QEMU_ALIGN_UP(ptr_last, 2 * TAG_GRANULE); tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
/* Locate the page boundaries. */ /* Locate the page boundaries. */
prev_page = ptr & TARGET_PAGE_MASK; prev_page = ptr & TARGET_PAGE_MASK;
next_page = prev_page + TARGET_PAGE_SIZE; next_page = prev_page + TARGET_PAGE_SIZE;
if (likely(tag_end - prev_page <= TARGET_PAGE_SIZE)) { if (likely(tag_last - prev_page <= TARGET_PAGE_SIZE)) {
/* Memory access stays on one page. */ /* Memory access stays on one page. */
tag_size = (tag_byte_end - tag_byte_first) / (2 * TAG_GRANULE); tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, total, mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, total,
MMU_DATA_LOAD, tag_size, ra); MMU_DATA_LOAD, tag_size, ra);
if (!mem1) { if (!mem1) {
@ -815,9 +813,9 @@ uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
MMU_DATA_LOAD, tag_size, ra); MMU_DATA_LOAD, tag_size, ra);
tag_size = (tag_byte_end - next_page) / (2 * TAG_GRANULE); tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
ptr_end - next_page, ptr_last - next_page + 1,
MMU_DATA_LOAD, tag_size, ra); MMU_DATA_LOAD, tag_size, ra);
/* /*
@ -838,15 +836,13 @@ uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
} }
/* /*
* If we failed, we know which granule. Compute the element that * If we failed, we know which granule. For the first granule, the
* is first in that granule, and signal failure on that element. * failure address is @ptr, the first byte accessed. Otherwise the
* failure address is the first byte of the nth granule.
*/ */
if (unlikely(n < tag_count)) { if (unlikely(n < tag_count)) {
uint64_t fail_ofs; uint64_t fault = (n == 0 ? ptr : tag_first + n * TAG_GRANULE);
mte_check_fail(env, desc, fault, ra);
fail_ofs = tag_first + n * TAG_GRANULE - ptr;
fail_ofs = ROUND_UP(fail_ofs, esize);
mte_check_fail(env, desc, ptr + fail_ofs, ra);
} }
done: done: