Implement sonic netcard (MIPS Jazz)

Attached patch adds emulation of a SONIC netcard. This card has been used
in MIPS Jazz machines and in some Apple Mac 68K.

Emulation has been done using dp83932 specification, but can be enhanced
(if needed) to also emulate dp83916, dp83934 or dp83936 chipsets.

This has been tested in Linux 2.1, NetBSD 1.6.2 and MS Windows NT/MIPS

Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@7112 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
aurel32 2009-04-15 14:57:54 +00:00
parent ffc500ea02
commit a65f56eeba
4 changed files with 911 additions and 2 deletions

View File

@ -608,7 +608,7 @@ endif
ifeq ($(TARGET_BASE_ARCH), mips)
OBJS+= mips_r4k.o mips_jazz.o mips_malta.o mips_mipssim.o
OBJS+= mips_timer.o mips_int.o dma.o vga.o serial.o i8254.o i8259.o rc4030.o
OBJS+= g364fb.o jazz_led.o
OBJS+= g364fb.o jazz_led.o dp8393x.o
OBJS+= ide.o gt64xxx.o pckbd.o fdc.o mc146818rtc.o usb-uhci.o acpi.o ds1225y.o
OBJS+= piix_pci.o parallel.o cirrus_vga.o pcspk.o $(SOUND_HW)
OBJS+= mipsnet.o

888
hw/dp8393x.c Normal file
View File

@ -0,0 +1,888 @@
/*
* QEMU NS SONIC DP8393x netcard
*
* Copyright (c) 2008-2009 Herve Poussineau
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "net.h"
#include "mips.h"
//#define DEBUG_SONIC
/* Calculate CRCs properly on Rx packets */
#define SONIC_CALCULATE_RXCRC
#if defined(SONIC_CALCULATE_RXCRC)
/* For crc32 */
#include <zlib.h>
#endif
#ifdef DEBUG_SONIC
#define DPRINTF(fmt, args...) \
do { printf("sonic: " fmt , ##args); } while (0)
static const char* reg_names[] = {
"CR", "DCR", "RCR", "TCR", "IMR", "ISR", "UTDA", "CTDA",
"TPS", "TFC", "TSA0", "TSA1", "TFS", "URDA", "CRDA", "CRBA0",
"CRBA1", "RBWC0", "RBWC1", "EOBC", "URRA", "RSA", "REA", "RRP",
"RWP", "TRBA0", "TRBA1", "0x1b", "0x1c", "0x1d", "0x1e", "LLFA",
"TTDA", "CEP", "CAP2", "CAP1", "CAP0", "CE", "CDP", "CDC",
"SR", "WT0", "WT1", "RSC", "CRCT", "FAET", "MPT", "MDT",
"0x30", "0x31", "0x32", "0x33", "0x34", "0x35", "0x36", "0x37",
"0x38", "0x39", "0x3a", "0x3b", "0x3c", "0x3d", "0x3e", "DCR2" };
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
#define SONIC_ERROR(fmt, args...) \
do { printf("sonic ERROR: %s: " fmt, __func__ , ##args); } while (0)
#define SONIC_CR 0x00
#define SONIC_DCR 0x01
#define SONIC_RCR 0x02
#define SONIC_TCR 0x03
#define SONIC_IMR 0x04
#define SONIC_ISR 0x05
#define SONIC_UTDA 0x06
#define SONIC_CTDA 0x07
#define SONIC_TPS 0x08
#define SONIC_TFC 0x09
#define SONIC_TSA0 0x0a
#define SONIC_TSA1 0x0b
#define SONIC_TFS 0x0c
#define SONIC_URDA 0x0d
#define SONIC_CRDA 0x0e
#define SONIC_CRBA0 0x0f
#define SONIC_CRBA1 0x10
#define SONIC_RBWC0 0x11
#define SONIC_RBWC1 0x12
#define SONIC_EOBC 0x13
#define SONIC_URRA 0x14
#define SONIC_RSA 0x15
#define SONIC_REA 0x16
#define SONIC_RRP 0x17
#define SONIC_RWP 0x18
#define SONIC_TRBA0 0x19
#define SONIC_TRBA1 0x1a
#define SONIC_LLFA 0x1f
#define SONIC_TTDA 0x20
#define SONIC_CEP 0x21
#define SONIC_CAP2 0x22
#define SONIC_CAP1 0x23
#define SONIC_CAP0 0x24
#define SONIC_CE 0x25
#define SONIC_CDP 0x26
#define SONIC_CDC 0x27
#define SONIC_SR 0x28
#define SONIC_WT0 0x29
#define SONIC_WT1 0x2a
#define SONIC_RSC 0x2b
#define SONIC_CRCT 0x2c
#define SONIC_FAET 0x2d
#define SONIC_MPT 0x2e
#define SONIC_MDT 0x2f
#define SONIC_DCR2 0x3f
#define SONIC_CR_HTX 0x0001
#define SONIC_CR_TXP 0x0002
#define SONIC_CR_RXDIS 0x0004
#define SONIC_CR_RXEN 0x0008
#define SONIC_CR_STP 0x0010
#define SONIC_CR_ST 0x0020
#define SONIC_CR_RST 0x0080
#define SONIC_CR_RRRA 0x0100
#define SONIC_CR_LCAM 0x0200
#define SONIC_CR_MASK 0x03bf
#define SONIC_DCR_DW 0x0020
#define SONIC_DCR_LBR 0x2000
#define SONIC_DCR_EXBUS 0x8000
#define SONIC_RCR_PRX 0x0001
#define SONIC_RCR_LBK 0x0002
#define SONIC_RCR_FAER 0x0004
#define SONIC_RCR_CRCR 0x0008
#define SONIC_RCR_CRS 0x0020
#define SONIC_RCR_LPKT 0x0040
#define SONIC_RCR_BC 0x0080
#define SONIC_RCR_MC 0x0100
#define SONIC_RCR_LB0 0x0200
#define SONIC_RCR_LB1 0x0400
#define SONIC_RCR_AMC 0x0800
#define SONIC_RCR_PRO 0x1000
#define SONIC_RCR_BRD 0x2000
#define SONIC_RCR_RNT 0x4000
#define SONIC_TCR_PTX 0x0001
#define SONIC_TCR_BCM 0x0002
#define SONIC_TCR_FU 0x0004
#define SONIC_TCR_EXC 0x0040
#define SONIC_TCR_CRSL 0x0080
#define SONIC_TCR_NCRS 0x0100
#define SONIC_TCR_EXD 0x0400
#define SONIC_TCR_CRCI 0x2000
#define SONIC_TCR_PINT 0x8000
#define SONIC_ISR_RBE 0x0020
#define SONIC_ISR_RDE 0x0040
#define SONIC_ISR_TC 0x0080
#define SONIC_ISR_TXDN 0x0200
#define SONIC_ISR_PKTRX 0x0400
#define SONIC_ISR_PINT 0x0800
#define SONIC_ISR_LCD 0x1000
typedef struct dp8393xState {
/* Hardware */
int it_shift;
qemu_irq irq;
#ifdef DEBUG_SONIC
int irq_level;
#endif
QEMUTimer *watchdog;
int64_t wt_last_update;
VLANClientState *vc;
/* Registers */
uint8_t cam[16][6];
uint16_t regs[0x40];
/* Temporaries */
uint8_t tx_buffer[0x10000];
int loopback_packet;
/* Memory access */
void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write);
void* mem_opaque;
} dp8393xState;
static void dp8393x_update_irq(dp8393xState *s)
{
int level = (s->regs[SONIC_IMR] & s->regs[SONIC_ISR]) ? 1 : 0;
#ifdef DEBUG_SONIC
if (level != s->irq_level) {
s->irq_level = level;
if (level) {
DPRINTF("raise irq, isr is 0x%04x\n", s->regs[SONIC_ISR]);
} else {
DPRINTF("lower irq\n");
}
}
#endif
qemu_set_irq(s->irq, level);
}
static void do_load_cam(dp8393xState *s)
{
uint16_t data[8];
int width, size;
uint16_t index = 0;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
size = sizeof(uint16_t) * 4 * width;
while (s->regs[SONIC_CDC] & 0x1f) {
/* Fill current entry */
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP],
(uint8_t *)data, size, 0);
s->cam[index][0] = data[1 * width] & 0xff;
s->cam[index][1] = data[1 * width] >> 8;
s->cam[index][2] = data[2 * width] & 0xff;
s->cam[index][3] = data[2 * width] >> 8;
s->cam[index][4] = data[3 * width] & 0xff;
s->cam[index][5] = data[3 * width] >> 8;
DPRINTF("load cam[%d] with %02x%02x%02x%02x%02x%02x\n", index,
s->cam[index][0], s->cam[index][1], s->cam[index][2],
s->cam[index][3], s->cam[index][4], s->cam[index][5]);
/* Move to next entry */
s->regs[SONIC_CDC]--;
s->regs[SONIC_CDP] += size;
index++;
}
/* Read CAM enable */
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP],
(uint8_t *)data, size, 0);
s->regs[SONIC_CE] = data[0 * width];
DPRINTF("load cam done. cam enable mask 0x%04x\n", s->regs[SONIC_CE]);
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_LCAM;
s->regs[SONIC_ISR] |= SONIC_ISR_LCD;
dp8393x_update_irq(s);
}
static void do_read_rra(dp8393xState *s)
{
uint16_t data[8];
int width, size;
/* Read memory */
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
size = sizeof(uint16_t) * 4 * width;
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_URRA] << 16) | s->regs[SONIC_RRP],
(uint8_t *)data, size, 0);
/* Update SONIC registers */
s->regs[SONIC_CRBA0] = data[0 * width];
s->regs[SONIC_CRBA1] = data[1 * width];
s->regs[SONIC_RBWC0] = data[2 * width];
s->regs[SONIC_RBWC1] = data[3 * width];
DPRINTF("CRBA0/1: 0x%04x/0x%04x, RBWC0/1: 0x%04x/0x%04x\n",
s->regs[SONIC_CRBA0], s->regs[SONIC_CRBA1],
s->regs[SONIC_RBWC0], s->regs[SONIC_RBWC1]);
/* Go to next entry */
s->regs[SONIC_RRP] += size;
/* Handle wrap */
if (s->regs[SONIC_RRP] == s->regs[SONIC_REA]) {
s->regs[SONIC_RRP] = s->regs[SONIC_RSA];
}
/* Check resource exhaustion */
if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP])
{
s->regs[SONIC_ISR] |= SONIC_ISR_RBE;
dp8393x_update_irq(s);
}
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_RRRA;
}
static void do_software_reset(dp8393xState *s)
{
qemu_del_timer(s->watchdog);
s->regs[SONIC_CR] &= ~(SONIC_CR_LCAM | SONIC_CR_RRRA | SONIC_CR_TXP | SONIC_CR_HTX);
s->regs[SONIC_CR] |= SONIC_CR_RST | SONIC_CR_RXDIS;
}
static void set_next_tick(dp8393xState *s)
{
uint32_t ticks;
int64_t delay;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
qemu_del_timer(s->watchdog);
return;
}
ticks = s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0];
s->wt_last_update = qemu_get_clock(vm_clock);
delay = ticks_per_sec * ticks / 5000000;
qemu_mod_timer(s->watchdog, s->wt_last_update + delay);
}
static void update_wt_regs(dp8393xState *s)
{
int64_t elapsed;
uint32_t val;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
qemu_del_timer(s->watchdog);
return;
}
elapsed = s->wt_last_update - qemu_get_clock(vm_clock);
val = s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0];
val -= elapsed / 5000000;
s->regs[SONIC_WT1] = (val >> 16) & 0xffff;
s->regs[SONIC_WT0] = (val >> 0) & 0xffff;
set_next_tick(s);
}
static void do_start_timer(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_STP;
set_next_tick(s);
}
static void do_stop_timer(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_ST;
update_wt_regs(s);
}
static void do_receiver_enable(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_RXDIS;
}
static void do_receiver_disable(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_RXEN;
}
static void do_transmit_packets(dp8393xState *s)
{
uint16_t data[12];
int width, size;
int tx_len, len;
uint16_t i;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
while (1) {
/* Read memory */
DPRINTF("Transmit packet at %08x\n",
(s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_CTDA]);
size = sizeof(uint16_t) * 6 * width;
s->regs[SONIC_TTDA] = s->regs[SONIC_CTDA];
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * width,
(uint8_t *)data, size, 0);
tx_len = 0;
/* Update registers */
s->regs[SONIC_TCR] = data[0 * width] & 0xf000;
s->regs[SONIC_TPS] = data[1 * width];
s->regs[SONIC_TFC] = data[2 * width];
s->regs[SONIC_TSA0] = data[3 * width];
s->regs[SONIC_TSA1] = data[4 * width];
s->regs[SONIC_TFS] = data[5 * width];
/* Handle programmable interrupt */
if (s->regs[SONIC_TCR] & SONIC_TCR_PINT) {
s->regs[SONIC_ISR] |= SONIC_ISR_PINT;
} else {
s->regs[SONIC_ISR] &= ~SONIC_ISR_PINT;
}
for (i = 0; i < s->regs[SONIC_TFC]; ) {
/* Append fragment */
len = s->regs[SONIC_TFS];
if (tx_len + len > sizeof(s->tx_buffer)) {
len = sizeof(s->tx_buffer) - tx_len;
}
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_TSA1] << 16) | s->regs[SONIC_TSA0],
&s->tx_buffer[tx_len], len, 0);
tx_len += len;
i++;
if (i != s->regs[SONIC_TFC]) {
/* Read next fragment details */
size = sizeof(uint16_t) * 3 * width;
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * (4 + 3 * i) * width,
(uint8_t *)data, size, 0);
s->regs[SONIC_TSA0] = data[0 * width];
s->regs[SONIC_TSA1] = data[1 * width];
s->regs[SONIC_TFS] = data[2 * width];
}
}
/* Handle Ethernet checksum */
if (!(s->regs[SONIC_TCR] & SONIC_TCR_CRCI)) {
/* Don't append FCS there, to look like slirp packets
* which don't have one */
} else {
/* Remove existing FCS */
tx_len -= 4;
}
if (s->regs[SONIC_RCR] & (SONIC_RCR_LB1 | SONIC_RCR_LB0)) {
/* Loopback */
s->regs[SONIC_TCR] |= SONIC_TCR_CRSL;
if (s->vc->fd_can_read(s)) {
s->loopback_packet = 1;
s->vc->fd_read(s, s->tx_buffer, tx_len);
}
} else {
/* Transmit packet */
qemu_send_packet(s->vc, s->tx_buffer, tx_len);
}
s->regs[SONIC_TCR] |= SONIC_TCR_PTX;
/* Write status */
data[0 * width] = s->regs[SONIC_TCR] & 0x0fff; /* status */
size = sizeof(uint16_t) * width;
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA],
(uint8_t *)data, size, 1);
if (!(s->regs[SONIC_CR] & SONIC_CR_HTX)) {
/* Read footer of packet */
size = sizeof(uint16_t) * width;
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * (4 + 3 * s->regs[SONIC_TFC]) * width,
(uint8_t *)data, size, 0);
s->regs[SONIC_CTDA] = data[0 * width] & ~0x1;
if (data[0 * width] & 0x1) {
/* EOL detected */
break;
}
}
}
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_TXP;
s->regs[SONIC_ISR] |= SONIC_ISR_TXDN;
dp8393x_update_irq(s);
}
static void do_halt_transmission(dp8393xState *s)
{
/* Nothing to do */
}
static void do_command(dp8393xState *s, uint16_t command)
{
if ((s->regs[SONIC_CR] & SONIC_CR_RST) && !(command & SONIC_CR_RST)) {
s->regs[SONIC_CR] &= ~SONIC_CR_RST;
return;
}
s->regs[SONIC_CR] |= (command & SONIC_CR_MASK);
if (command & SONIC_CR_HTX)
do_halt_transmission(s);
if (command & SONIC_CR_TXP)
do_transmit_packets(s);
if (command & SONIC_CR_RXDIS)
do_receiver_disable(s);
if (command & SONIC_CR_RXEN)
do_receiver_enable(s);
if (command & SONIC_CR_STP)
do_stop_timer(s);
if (command & SONIC_CR_ST)
do_start_timer(s);
if (command & SONIC_CR_RST)
do_software_reset(s);
if (command & SONIC_CR_RRRA)
do_read_rra(s);
if (command & SONIC_CR_LCAM)
do_load_cam(s);
}
static uint16_t read_register(dp8393xState *s, int reg)
{
uint16_t val = 0;
switch (reg) {
/* Update data before reading it */
case SONIC_WT0:
case SONIC_WT1:
update_wt_regs(s);
val = s->regs[reg];
break;
/* Accept read to some registers only when in reset mode */
case SONIC_CAP2:
case SONIC_CAP1:
case SONIC_CAP0:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
val = s->cam[s->regs[SONIC_CEP] & 0xf][2* (SONIC_CAP0 - reg) + 1] << 8;
val |= s->cam[s->regs[SONIC_CEP] & 0xf][2* (SONIC_CAP0 - reg)];
}
break;
/* All other registers have no special contrainst */
default:
val = s->regs[reg];
}
DPRINTF("read 0x%04x from reg %s\n", val, reg_names[reg]);
return val;
}
static void write_register(dp8393xState *s, int reg, uint16_t val)
{
DPRINTF("write 0x%04x to reg %s\n", val, reg_names[reg]);
switch (reg) {
/* Command register */
case SONIC_CR:
do_command(s, val);;
break;
/* Prevent write to read-only registers */
case SONIC_CAP2:
case SONIC_CAP1:
case SONIC_CAP0:
case SONIC_SR:
case SONIC_MDT:
DPRINTF("writing to reg %d invalid\n", reg);
break;
/* Accept write to some registers only when in reset mode */
case SONIC_DCR:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
s->regs[reg] = val & 0xbfff;
} else {
DPRINTF("writing to DCR invalid\n");
}
break;
case SONIC_DCR2:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
s->regs[reg] = val & 0xf017;
} else {
DPRINTF("writing to DCR2 invalid\n");
}
break;
/* 12 lower bytes are Read Only */
case SONIC_TCR:
s->regs[reg] = val & 0xf000;
break;
/* 9 lower bytes are Read Only */
case SONIC_RCR:
s->regs[reg] = val & 0xffe0;
break;
/* Ignore most significant bit */
case SONIC_IMR:
s->regs[reg] = val & 0x7fff;
dp8393x_update_irq(s);
break;
/* Clear bits by writing 1 to them */
case SONIC_ISR:
val &= s->regs[reg];
s->regs[reg] &= ~val;
if (val & SONIC_ISR_RBE) {
do_read_rra(s);
}
dp8393x_update_irq(s);
break;
/* Ignore least significant bit */
case SONIC_RSA:
case SONIC_REA:
case SONIC_RRP:
case SONIC_RWP:
s->regs[reg] = val & 0xfffe;
break;
/* Invert written value for some registers */
case SONIC_CRCT:
case SONIC_FAET:
case SONIC_MPT:
s->regs[reg] = val ^ 0xffff;
break;
/* All other registers have no special contrainst */
default:
s->regs[reg] = val;
}
if (reg == SONIC_WT0 || reg == SONIC_WT1) {
set_next_tick(s);
}
}
static void dp8393x_watchdog(void *opaque)
{
dp8393xState *s = opaque;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
return;
}
s->regs[SONIC_WT1] = 0xffff;
s->regs[SONIC_WT0] = 0xffff;
set_next_tick(s);
/* Signal underflow */
s->regs[SONIC_ISR] |= SONIC_ISR_TC;
dp8393x_update_irq(s);
}
static uint32_t dp8393x_readw(void *opaque, target_phys_addr_t addr)
{
dp8393xState *s = opaque;
int reg;
if ((addr & ((1 << s->it_shift) - 1)) != 0) {
return 0;
}
reg = addr >> s->it_shift;
return read_register(s, reg);
}
static uint32_t dp8393x_readb(void *opaque, target_phys_addr_t addr)
{
uint16_t v = dp8393x_readw(opaque, addr & ~0x1);
return (v >> (8 * (addr & 0x1))) & 0xff;
}
static uint32_t dp8393x_readl(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
v = dp8393x_readw(opaque, addr);
v |= dp8393x_readw(opaque, addr + 2) << 16;
return v;
}
static void dp8393x_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
dp8393xState *s = opaque;
int reg;
if ((addr & ((1 << s->it_shift) - 1)) != 0) {
return;
}
reg = addr >> s->it_shift;
write_register(s, reg, (uint16_t)val);
}
static void dp8393x_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
uint16_t old_val = dp8393x_readw(opaque, addr & ~0x1);
switch (addr & 3) {
case 0:
val = val | (old_val & 0xff00);
break;
case 1:
val = (val << 8) | (old_val & 0x00ff);
break;
}
dp8393x_writew(opaque, addr & ~0x1, val);
}
static void dp8393x_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
dp8393x_writew(opaque, addr, val & 0xffff);
dp8393x_writew(opaque, addr + 2, (val >> 16) & 0xffff);
}
static CPUReadMemoryFunc *dp8393x_read[3] = {
dp8393x_readb,
dp8393x_readw,
dp8393x_readl,
};
static CPUWriteMemoryFunc *dp8393x_write[3] = {
dp8393x_writeb,
dp8393x_writew,
dp8393x_writel,
};
static int nic_can_receive(void *opaque)
{
dp8393xState *s = opaque;
if (!(s->regs[SONIC_CR] & SONIC_CR_RXEN))
return 0;
if (s->regs[SONIC_ISR] & SONIC_ISR_RBE)
return 0;
return 1;
}
static int receive_filter(dp8393xState *s, const uint8_t * buf, int size)
{
static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
int i;
/* Check for runt packet (remember that checksum is not there) */
if (size < 64 - 4) {
return (s->regs[SONIC_RCR] & SONIC_RCR_RNT) ? 0 : -1;
}
/* Check promiscuous mode */
if ((s->regs[SONIC_RCR] & SONIC_RCR_PRO) && (buf[0] & 1) == 0) {
return 0;
}
/* Check multicast packets */
if ((s->regs[SONIC_RCR] & SONIC_RCR_AMC) && (buf[0] & 1) == 1) {
return SONIC_RCR_MC;
}
/* Check broadcast */
if ((s->regs[SONIC_RCR] & SONIC_RCR_BRD) && !memcmp(buf, bcast, sizeof(bcast))) {
return SONIC_RCR_BC;
}
/* Check CAM */
for (i = 0; i < 16; i++) {
if (s->regs[SONIC_CE] & (1 << i)) {
/* Entry enabled */
if (!memcmp(buf, s->cam[i], sizeof(s->cam[i]))) {
return 0;
}
}
}
return -1;
}
static void nic_receive(void *opaque, const uint8_t * buf, int size)
{
uint16_t data[10];
dp8393xState *s = opaque;
int packet_type;
uint32_t available, address;
int width, rx_len = size;
uint32_t checksum;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
s->regs[SONIC_RCR] &= ~(SONIC_RCR_PRX | SONIC_RCR_LBK | SONIC_RCR_FAER |
SONIC_RCR_CRCR | SONIC_RCR_LPKT | SONIC_RCR_BC | SONIC_RCR_MC);
packet_type = receive_filter(s, buf, size);
if (packet_type < 0) {
DPRINTF("packet not for netcard\n");
return;
}
/* XXX: Check byte ordering */
/* Check for EOL */
if (s->regs[SONIC_LLFA] & 0x1) {
/* Are we still in resource exhaustion? */
size = sizeof(uint16_t) * 1 * width;
address = ((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 5 * width;
s->memory_rw(s->mem_opaque, address, (uint8_t*)data, size, 0);
if (data[0 * width] & 0x1) {
/* Still EOL ; stop reception */
return;
} else {
s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA];
}
}
/* Save current position */
s->regs[SONIC_TRBA1] = s->regs[SONIC_CRBA1];
s->regs[SONIC_TRBA0] = s->regs[SONIC_CRBA0];
/* Calculate the ethernet checksum */
#ifdef SONIC_CALCULATE_RXCRC
checksum = cpu_to_le32(crc32(0, buf, rx_len));
#else
checksum = 0;
#endif
/* Put packet into RBA */
DPRINTF("Receive packet at %08x\n", (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0]);
address = (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0];
s->memory_rw(s->mem_opaque, address, (uint8_t*)buf, rx_len, 1);
address += rx_len;
s->memory_rw(s->mem_opaque, address, (uint8_t*)&checksum, 4, 1);
rx_len += 4;
s->regs[SONIC_CRBA1] = address >> 16;
s->regs[SONIC_CRBA0] = address & 0xffff;
available = (s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0];
available -= rx_len / 2;
s->regs[SONIC_RBWC1] = available >> 16;
s->regs[SONIC_RBWC0] = available & 0xffff;
/* Update status */
if (((s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0]) < s->regs[SONIC_EOBC]) {
s->regs[SONIC_RCR] |= SONIC_RCR_LPKT;
}
s->regs[SONIC_RCR] |= packet_type;
s->regs[SONIC_RCR] |= SONIC_RCR_PRX;
if (s->loopback_packet) {
s->regs[SONIC_RCR] |= SONIC_RCR_LBK;
s->loopback_packet = 0;
}
/* Write status to memory */
DPRINTF("Write status at %08x\n", (s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]);
data[0 * width] = s->regs[SONIC_RCR]; /* status */
data[1 * width] = rx_len; /* byte count */
data[2 * width] = s->regs[SONIC_TRBA0]; /* pkt_ptr0 */
data[3 * width] = s->regs[SONIC_TRBA1]; /* pkt_ptr1 */
data[4 * width] = s->regs[SONIC_RSC]; /* seq_no */
size = sizeof(uint16_t) * 5 * width;
s->memory_rw(s->mem_opaque, (s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA], (uint8_t *)data, size, 1);
/* Move to next descriptor */
size = sizeof(uint16_t) * width;
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 5 * width,
(uint8_t *)data, size, 0);
s->regs[SONIC_LLFA] = data[0 * width];
if (s->regs[SONIC_LLFA] & 0x1) {
/* EOL detected */
s->regs[SONIC_ISR] |= SONIC_ISR_RDE;
} else {
data[0 * width] = 0; /* in_use */
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 6 * width,
(uint8_t *)data, size, 1);
s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA];
s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX;
s->regs[SONIC_RSC] = (s->regs[SONIC_RSC] & 0xff00) | (((s->regs[SONIC_RSC] & 0x00ff) + 1) & 0x00ff);
if (s->regs[SONIC_RCR] & SONIC_RCR_LPKT) {
/* Read next RRA */
do_read_rra(s);
}
}
/* Done */
dp8393x_update_irq(s);
}
static void nic_reset(void *opaque)
{
dp8393xState *s = opaque;
qemu_del_timer(s->watchdog);
s->regs[SONIC_CR] = SONIC_CR_RST | SONIC_CR_STP | SONIC_CR_RXDIS;
s->regs[SONIC_DCR] &= ~(SONIC_DCR_EXBUS | SONIC_DCR_LBR);
s->regs[SONIC_RCR] &= ~(SONIC_RCR_LB0 | SONIC_RCR_LB1 | SONIC_RCR_BRD | SONIC_RCR_RNT);
s->regs[SONIC_TCR] |= SONIC_TCR_NCRS | SONIC_TCR_PTX;
s->regs[SONIC_TCR] &= ~SONIC_TCR_BCM;
s->regs[SONIC_IMR] = 0;
s->regs[SONIC_ISR] = 0;
s->regs[SONIC_DCR2] = 0;
s->regs[SONIC_EOBC] = 0x02F8;
s->regs[SONIC_RSC] = 0;
s->regs[SONIC_CE] = 0;
s->regs[SONIC_RSC] = 0;
/* Network cable is connected */
s->regs[SONIC_RCR] |= SONIC_RCR_CRS;
dp8393x_update_irq(s);
}
void dp83932_init(NICInfo *nd, target_phys_addr_t base, int it_shift,
qemu_irq irq, void* mem_opaque,
void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write))
{
dp8393xState *s;
int io;
qemu_check_nic_model(nd, "dp83932");
s = qemu_mallocz(sizeof(dp8393xState));
s->mem_opaque = mem_opaque;
s->memory_rw = memory_rw;
s->it_shift = it_shift;
s->irq = irq;
s->watchdog = qemu_new_timer(vm_clock, dp8393x_watchdog, s);
s->regs[SONIC_SR] = 0x0004; /* only revision recognized by Linux */
s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
nic_receive, nic_can_receive, s);
qemu_format_nic_info_str(s->vc, nd->macaddr);
qemu_register_reset(nic_reset, s);
nic_reset(s);
io = cpu_register_io_memory(0, dp8393x_read, dp8393x_write, s);
cpu_register_physical_memory(base, 0x40 << it_shift, io);
}

View File

@ -35,4 +35,9 @@ void rc4030_dma_write(void *dma, uint8_t *buf, int len);
void *rc4030_init(qemu_irq timer, qemu_irq jazz_bus,
qemu_irq **irqs, rc4030_dma **dmas);
/* dp8393x.c */
void dp83932_init(NICInfo *nd, target_phys_addr_t base, int it_shift,
qemu_irq irq, void* mem_opaque,
void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write));
#endif

View File

@ -137,6 +137,7 @@ void mips_jazz_init (ram_addr_t ram_size, int vga_ram_size,
void *scsi_hba;
int hd;
int s_rtc, s_dma_dummy;
NICInfo *nd;
PITState *pit;
BlockDriverState *fds[MAX_FD];
qemu_irq esp_reset;
@ -212,7 +213,22 @@ void mips_jazz_init (ram_addr_t ram_size, int vga_ram_size,
}
/* Network controller */
/* FIXME: missing NS SONIC DP83932 */
for (n = 0; n < nb_nics; n++) {
nd = &nd_table[n];
if (!nd->model)
nd->model = "dp83932";
if (strcmp(nd->model, "dp83932") == 0) {
dp83932_init(nd, 0x80001000, 2, rc4030[4],
rc4030_opaque, rc4030_dma_memory_rw);
break;
} else if (strcmp(nd->model, "?") == 0) {
fprintf(stderr, "qemu: Supported NICs: dp83932\n");
exit(1);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model);
exit(1);
}
}
/* SCSI adapter */
scsi_hba = esp_init(0x80002000, 0,