target/arm: Implement MVE VQDMULL scalar

Implement the MVE VQDMULL scalar insn. This multiplies the top or
bottom half of each element by the scalar, doubles and saturates
to a double-width result.

Note that this encoding overlaps with VQADD and VQSUB; it uses
what in VQADD and VQSUB would be the 'size=0b11' encoding.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210617121628.20116-30-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2021-06-17 13:16:13 +01:00
parent 66c0576754
commit a88903537d
4 changed files with 119 additions and 4 deletions

View File

@ -201,6 +201,11 @@ DEF_HELPER_FLAGS_4(mve_vbrsrb, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vbrsrh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vbrsrw, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vqdmullb_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vqdmullb_scalarw, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vqdmullt_scalarh, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vqdmullt_scalarw, TCG_CALL_NO_WG, void, env, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(mve_vmlaldavsh, TCG_CALL_NO_WG, i64, env, ptr, ptr, i64)
DEF_HELPER_FLAGS_4(mve_vmlaldavsw, TCG_CALL_NO_WG, i64, env, ptr, ptr, i64)
DEF_HELPER_FLAGS_4(mve_vmlaldavxsh, TCG_CALL_NO_WG, i64, env, ptr, ptr, i64)

View File

@ -23,6 +23,9 @@
%qm 5:1 1:3
%qn 7:1 17:3
# VQDMULL has size in bit 28: 0 for 16 bit, 1 for 32 bit
%size_28 28:1 !function=plus_1
&vldr_vstr rn qd imm p a w size l u
&1op qd qm size
&2op qd qm qn size
@ -38,6 +41,7 @@
@2op_nosz .... .... .... .... .... .... .... .... &2op qd=%qd qm=%qm qn=%qn size=0
@2scalar .... .... .. size:2 .... .... .... .... rm:4 &2scalar qd=%qd qn=%qn
@2scalar_nosz .... .... .... .... .... .... .... rm:4 &2scalar qd=%qd qn=%qn
# Vector loads and stores
@ -168,15 +172,26 @@ VHADD_U_scalar 1111 1110 0 . .. ... 0 ... 0 1111 . 100 .... @2scalar
VHSUB_S_scalar 1110 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar
VHSUB_U_scalar 1111 1110 0 . .. ... 0 ... 1 1111 . 100 .... @2scalar
VQADD_S_scalar 1110 1110 0 . .. ... 0 ... 0 1111 . 110 .... @2scalar
VQADD_U_scalar 1111 1110 0 . .. ... 0 ... 0 1111 . 110 .... @2scalar
VQSUB_S_scalar 1110 1110 0 . .. ... 0 ... 1 1111 . 110 .... @2scalar
VQSUB_U_scalar 1111 1110 0 . .. ... 0 ... 1 1111 . 110 .... @2scalar
{
VQADD_S_scalar 1110 1110 0 . .. ... 0 ... 0 1111 . 110 .... @2scalar
VQADD_U_scalar 1111 1110 0 . .. ... 0 ... 0 1111 . 110 .... @2scalar
VQDMULLB_scalar 111 . 1110 0 . 11 ... 0 ... 0 1111 . 110 .... @2scalar_nosz \
size=%size_28
}
{
VQSUB_S_scalar 1110 1110 0 . .. ... 0 ... 1 1111 . 110 .... @2scalar
VQSUB_U_scalar 1111 1110 0 . .. ... 0 ... 1 1111 . 110 .... @2scalar
VQDMULLT_scalar 111 . 1110 0 . 11 ... 0 ... 1 1111 . 110 .... @2scalar_nosz \
size=%size_28
}
VBRSR 1111 1110 0 . .. ... 1 ... 1 1110 . 110 .... @2scalar
VQDMULH_scalar 1110 1110 0 . .. ... 1 ... 0 1110 . 110 .... @2scalar
VQRDMULH_scalar 1111 1110 0 . .. ... 1 ... 0 1110 . 110 .... @2scalar
# Predicate operations
%mask_22_13 22:1 13:3
VPST 1111 1110 0 . 11 000 1 ... 0 1111 0100 1101 mask=%mask_22_13

View File

@ -610,6 +610,71 @@ DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
/*
* Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
* input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
* SATMASK specifies which bits of the predicate mask matter for determining
* whether to propagate a saturation indication into FPSCR.QC -- for
* the 16x16->32 case we must check only the bit corresponding to the T or B
* half that we used, but for the 32x32->64 case we propagate if the mask
* bit is set for either half.
*/
#define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
uint32_t rm) \
{ \
LTYPE *d = vd; \
TYPE *n = vn; \
TYPE m = rm; \
uint16_t mask = mve_element_mask(env); \
unsigned le; \
bool qc = false; \
for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
bool sat = false; \
LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \
mergemask(&d[H##LESIZE(le)], r, mask); \
qc |= sat && (mask & SATMASK); \
} \
if (qc) { \
env->vfp.qc[0] = qc; \
} \
mve_advance_vpt(env); \
}
static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
{
int64_t r = ((int64_t)n * m) * 2;
return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
}
static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
{
/* The multiply can't overflow, but the doubling might */
int64_t r = (int64_t)n * m;
if (r > INT64_MAX / 2) {
*sat = true;
return INT64_MAX;
} else if (r < INT64_MIN / 2) {
*sat = true;
return INT64_MIN;
} else {
return r * 2;
}
}
#define SATMASK16B 1
#define SATMASK16T (1 << 2)
#define SATMASK32 ((1 << 4) | 1)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
do_qdmullh, SATMASK16B)
DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
do_qdmullw, SATMASK32)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
do_qdmullh, SATMASK16T)
DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
do_qdmullw, SATMASK32)
static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
{
m &= 0xff;

View File

@ -454,6 +454,36 @@ DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
DO_2OP_SCALAR(VBRSR, vbrsr)
static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
{
static MVEGenTwoOpScalarFn * const fns[] = {
NULL,
gen_helper_mve_vqdmullb_scalarh,
gen_helper_mve_vqdmullb_scalarw,
NULL,
};
if (a->qd == a->qn && a->size == MO_32) {
/* UNPREDICTABLE; we choose to undef */
return false;
}
return do_2op_scalar(s, a, fns[a->size]);
}
static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
{
static MVEGenTwoOpScalarFn * const fns[] = {
NULL,
gen_helper_mve_vqdmullt_scalarh,
gen_helper_mve_vqdmullt_scalarw,
NULL,
};
if (a->qd == a->qn && a->size == MO_32) {
/* UNPREDICTABLE; we choose to undef */
return false;
}
return do_2op_scalar(s, a, fns[a->size]);
}
static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
MVEGenDualAccOpFn *fn)
{