Hexagon (target/hexagon) update

-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEENjXHiM5iuR/UxZq0ewJE+xLeRCIFAmQGzGYACgkQewJE+xLe
 RCJfxggAgAY9fqUxKk5FxziMX6sVxx2SiYGU1biABtHyduQvJ43U7In4cnbC65FL
 Pn+ZSixPRh51Ij2s9FTzDQ8IUNt/k1W7gCoEC3I0wDbQHdICEIlx30ry68QlUgOa
 T6ZDquJkanwFjb7kMnyM4LRBBxLG+OuYvKe1e+nzun0LDlfTS/sHitRlf4AJEBOK
 9h/Bdy81RcWlLzlc5tmD0f9rhtmkkFCTu/TGLt4G6sfn1xZbRdh5N1cFfUShPlQM
 qAgj+JgBOQoPKaBhQZnA3Ps9ZEM4+/8KPsr5oGweAcjqD8+kMGCmi2jv+60ES5Uq
 EDpn25COw7BVAo6vP/JfBEiZTg+YpA==
 =FDSG
 -----END PGP SIGNATURE-----

Merge tag 'pull-hex-20230306' of https://github.com/quic/qemu into staging

Hexagon (target/hexagon) update

# -----BEGIN PGP SIGNATURE-----
#
# iQEzBAABCgAdFiEENjXHiM5iuR/UxZq0ewJE+xLeRCIFAmQGzGYACgkQewJE+xLe
# RCJfxggAgAY9fqUxKk5FxziMX6sVxx2SiYGU1biABtHyduQvJ43U7In4cnbC65FL
# Pn+ZSixPRh51Ij2s9FTzDQ8IUNt/k1W7gCoEC3I0wDbQHdICEIlx30ry68QlUgOa
# T6ZDquJkanwFjb7kMnyM4LRBBxLG+OuYvKe1e+nzun0LDlfTS/sHitRlf4AJEBOK
# 9h/Bdy81RcWlLzlc5tmD0f9rhtmkkFCTu/TGLt4G6sfn1xZbRdh5N1cFfUShPlQM
# qAgj+JgBOQoPKaBhQZnA3Ps9ZEM4+/8KPsr5oGweAcjqD8+kMGCmi2jv+60ES5Uq
# EDpn25COw7BVAo6vP/JfBEiZTg+YpA==
# =FDSG
# -----END PGP SIGNATURE-----
# gpg: Signature made Tue 07 Mar 2023 05:32:22 GMT
# gpg:                using RSA key 3635C788CE62B91FD4C59AB47B0244FB12DE4422
# gpg: Good signature from "Taylor Simpson (Rock on) <tsimpson@quicinc.com>" [undefined]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg:          There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 3635 C788 CE62 B91F D4C5  9AB4 7B02 44FB 12DE 4422

* tag 'pull-hex-20230306' of https://github.com/quic/qemu:
  Hexagon (target/hexagon) Improve code gen for predicated HVX instructions
  Hexagon (target/hexagon) Reduce manipulation of slot_cancelled
  Hexagon (target/hexagon) Remove gen_log_predicated_reg_write[_pair]
  Hexagon (target/hexagon) Change subtract from zero to change sign
  Hexagon (tests/tcg/hexagon) Enable HVX tests
  Hexagon (tests/tcg/hexagon) Remove __builtin from scatter_gather
  Hexagon (tests/tcg/hexagon) Update preg_alias.c
  Hexagon (target/hexagon) Analyze packet for HVX
  Hexagon (target/hexagon) Don't set pkt_has_store_s1 when not needed
  Hexagon (target/hexagon) Analyze packet before generating TCG
  Hexagon (target/hexagon) Add overrides for dealloc-return instructions
  Hexagon (target/hexagon) Add overrides for endloop1/endloop01
  Hexagon (target/hexagon) Add overrides for callr
  Hexagon (target/hexagon) Add overrides for jumpr31 instructions
  target/hexagon/idef-parser: Remove unused code paths
  target/hexagon/idef-parser: Elide mov in gen_pred_assign
  Hexagon (target/hexagon) Restore --disable-hexagon-idef-parser build

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2023-03-10 11:31:22 +00:00
commit aa4af82129
26 changed files with 1198 additions and 818 deletions

View File

@ -52,6 +52,7 @@ header files in <BUILD_DIR>/target/hexagon
gen_tcg_func_table.py -> tcg_func_table_generated.c.inc
gen_helper_funcs.py -> helper_funcs_generated.c.inc
gen_idef_parser_funcs.py -> idef_parser_input.h
gen_analyze_funcs.py -> analyze_funcs_generated.c.inc
Qemu helper functions have 3 parts
DEF_HELPER declaration indicates the signature of the helper
@ -87,7 +88,6 @@ tcg_funcs_generated.c.inc
TCGv RtV = hex_gpr[insn->regno[2]];
gen_helper_A2_add(RdV, cpu_env, RsV, RtV);
gen_log_reg_write(RdN, RdV);
ctx_log_reg_write(ctx, RdN);
}
helper_funcs_generated.c.inc
@ -136,12 +136,9 @@ For HVX vectors, the generator behaves slightly differently. The wide vectors
won't fit in a TCGv or TCGv_i64, so we pass TCGv_ptr variables to pass the
address to helper functions. Here's an example for an HVX vector-add-word
istruction.
static void generate_V6_vaddw(
CPUHexagonState *env,
DisasContext *ctx,
Insn *insn,
Packet *pkt)
static void generate_V6_vaddw(DisasContext *ctx)
{
Insn *insn __attribute__((unused)) = ctx->insn;
const int VdN = insn->regno[0];
const intptr_t VdV_off =
ctx_future_vreg_off(ctx, VdN, 1, true);
@ -157,10 +154,7 @@ istruction.
TCGv_ptr VvV = tcg_temp_new_ptr();
tcg_gen_addi_ptr(VuV, cpu_env, VuV_off);
tcg_gen_addi_ptr(VvV, cpu_env, VvV_off);
TCGv slot = tcg_constant_tl(insn->slot);
gen_helper_V6_vaddw(cpu_env, VdV, VuV, VvV, slot);
gen_log_vreg_write(ctx, VdV_off, VdN, EXT_DFL, insn->slot, false);
ctx_log_vreg_write(ctx, VdN, EXT_DFL, false);
gen_helper_V6_vaddw(cpu_env, VdV, VuV, VvV);
}
Notice that we also generate a variable named <operand>_off for each operand of
@ -173,12 +167,9 @@ functions from tcg-op-gvec.h. Here's the override for this instruction.
Finally, we notice that the override doesn't use the TCGv_ptr variables, so
we don't generate them when an override is present. Here is what we generate
when the override is present.
static void generate_V6_vaddw(
CPUHexagonState *env,
DisasContext *ctx,
Insn *insn,
Packet *pkt)
static void generate_V6_vaddw(DisasContext *ctx)
{
Insn *insn __attribute__((unused)) = ctx->insn;
const int VdN = insn->regno[0];
const intptr_t VdV_off =
ctx_future_vreg_off(ctx, VdN, 1, true);
@ -189,10 +180,14 @@ when the override is present.
const intptr_t VvV_off =
vreg_src_off(ctx, VvN);
fGEN_TCG_V6_vaddw({ fHIDE(int i;) fVFOREACH(32, i) { VdV.w[i] = VuV.w[i] + VvV.w[i] ; } });
gen_log_vreg_write(ctx, VdV_off, VdN, EXT_DFL, insn->slot, false);
ctx_log_vreg_write(ctx, VdN, EXT_DFL, false);
}
We also generate an analyze_<tag> function for each instruction. Currently,
these functions record the writes to registers by calling ctx_log_*. During
gen_start_packet, we invoke the analyze_<tag> function for each instruction in
the packet, and we mark the implicit writes. After the analysis is performed,
we initialize hex_new_value for each of the predicated assignments.
In addition to instruction semantics, we use a generator to create the decode
tree. This generation is also a two step process. The first step is to run
target/hexagon/gen_dectree_import.c to produce
@ -277,10 +272,8 @@ For Hexagon Vector eXtensions (HVX), the following fields are used
VRegs Vector registers
future_VRegs Registers to be stored during packet commit
tmp_VRegs Temporary registers *not* stored during commit
VRegs_updated Mask of predicated vector writes
QRegs Q (vector predicate) registers
future_QRegs Registers to be stored during packet commit
QRegs_updated Mask of predicated vector writes
*** Debugging ***

View File

@ -44,6 +44,7 @@ DEF_ATTRIB(MEMSIZE_1B, "Memory width is 1 byte", "", "")
DEF_ATTRIB(MEMSIZE_2B, "Memory width is 2 bytes", "", "")
DEF_ATTRIB(MEMSIZE_4B, "Memory width is 4 bytes", "", "")
DEF_ATTRIB(MEMSIZE_8B, "Memory width is 8 bytes", "", "")
DEF_ATTRIB(SCALAR_LOAD, "Load is scalar", "", "")
DEF_ATTRIB(SCALAR_STORE, "Store is scalar", "", "")
DEF_ATTRIB(REGWRSIZE_1B, "Memory width is 1 byte", "", "")
DEF_ATTRIB(REGWRSIZE_2B, "Memory width is 2 bytes", "", "")

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -111,11 +111,8 @@ typedef struct CPUArchState {
MMVector future_VRegs[VECTOR_TEMPS_MAX] QEMU_ALIGNED(16);
MMVector tmp_VRegs[VECTOR_TEMPS_MAX] QEMU_ALIGNED(16);
VRegMask VRegs_updated;
MMQReg QRegs[NUM_QREGS] QEMU_ALIGNED(16);
MMQReg future_QRegs[NUM_QREGS] QEMU_ALIGNED(16);
QRegMask QRegs_updated;
/* Temporaries used within instructions */
MMVectorPair VuuV QEMU_ALIGNED(16);

View File

@ -0,0 +1,252 @@
#!/usr/bin/env python3
##
## Copyright(c) 2022-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
##
## Helpers for gen_analyze_func
##
def is_predicated(tag):
return 'A_CONDEXEC' in hex_common.attribdict[tag]
def analyze_opn_old(f, tag, regtype, regid, regno):
regN = "%s%sN" % (regtype, regid)
predicated = "true" if is_predicated(tag) else "false"
if (regtype == "R"):
if (regid in {"ss", "tt"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"dd", "ee", "xx", "yy"}):
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
f.write(" ctx_log_reg_write_pair(ctx, %s, %s);\n" % \
(regN, predicated))
elif (regid in {"s", "t", "u", "v"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"d", "e", "x", "y"}):
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
f.write(" ctx_log_reg_write(ctx, %s, %s);\n" % \
(regN, predicated))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid in {"s", "t", "u", "v"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"d", "e", "x"}):
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
f.write(" ctx_log_pred_write(ctx, %s);\n" % (regN))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "C"):
if (regid == "ss"):
f.write("// const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
elif (regid == "dd"):
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
f.write(" ctx_log_reg_write_pair(ctx, %s, %s);\n" % \
(regN, predicated))
elif (regid == "s"):
f.write("// const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
elif (regid == "d"):
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
f.write(" ctx_log_reg_write(ctx, %s, %s);\n" % \
(regN, predicated))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "M"):
if (regid == "u"):
f.write("// const int %s = insn->regno[%d];\n"% \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "V"):
newv = "EXT_DFL"
if (hex_common.is_new_result(tag)):
newv = "EXT_NEW"
elif (hex_common.is_tmp_result(tag)):
newv = "EXT_TMP"
if (regid in {"dd", "xx"}):
f.write(" const int %s = insn->regno[%d];\n" %\
(regN, regno))
f.write(" ctx_log_vreg_write_pair(ctx, %s, %s, %s);\n" % \
(regN, newv, predicated))
elif (regid in {"uu", "vv"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"s", "u", "v", "w"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"d", "x", "y"}):
f.write(" const int %s = insn->regno[%d];\n" % \
(regN, regno))
f.write(" ctx_log_vreg_write(ctx, %s, %s, %s);\n" % \
(regN, newv, predicated))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "Q"):
if (regid in {"d", "e", "x"}):
f.write(" const int %s = insn->regno[%d];\n" % \
(regN, regno))
f.write(" ctx_log_qreg_write(ctx, %s);\n" % (regN))
elif (regid in {"s", "t", "u", "v"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "G"):
if (regid in {"dd"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"d"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"ss"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"s"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "S"):
if (regid in {"dd"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"d"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"ss"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"s"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def analyze_opn_new(f, tag, regtype, regid, regno):
regN = "%s%sN" % (regtype, regid)
if (regtype == "N"):
if (regid in {"s", "t"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid in {"t", "u", "v"}):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "O"):
if (regid == "s"):
f.write("// const int %s = insn->regno[%d];\n" % \
(regN, regno))
else:
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def analyze_opn(f, tag, regtype, regid, toss, numregs, i):
if (hex_common.is_pair(regid)):
analyze_opn_old(f, tag, regtype, regid, i)
elif (hex_common.is_single(regid)):
if hex_common.is_old_val(regtype, regid, tag):
analyze_opn_old(f,tag, regtype, regid, i)
elif hex_common.is_new_val(regtype, regid, tag):
analyze_opn_new(f, tag, regtype, regid, i)
else:
print("Bad register parse: ", regtype, regid, toss, numregs)
else:
print("Bad register parse: ", regtype, regid, toss, numregs)
##
## Generate the code to analyze the instruction
## For A2_add: Rd32=add(Rs32,Rt32), { RdV=RsV+RtV;}
## We produce:
## static void analyze_A2_add(DisasContext *ctx)
## {
## Insn *insn G_GNUC_UNUSED = ctx->insn;
## const int RdN = insn->regno[0];
## ctx_log_reg_write(ctx, RdN, false);
## // const int RsN = insn->regno[1];
## // const int RtN = insn->regno[2];
## }
##
def gen_analyze_func(f, tag, regs, imms):
f.write("static void analyze_%s(DisasContext *ctx)\n" %tag)
f.write('{\n')
f.write(" Insn *insn G_GNUC_UNUSED = ctx->insn;\n")
i=0
## Analyze all the registers
for regtype, regid, toss, numregs in regs:
analyze_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
has_generated_helper = (not hex_common.skip_qemu_helper(tag) and
not hex_common.is_idef_parser_enabled(tag))
if (has_generated_helper and
'A_SCALAR_LOAD' in hex_common.attribdict[tag]):
f.write(" ctx->need_pkt_has_store_s1 = true;\n")
f.write("}\n\n")
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.read_overrides_file(sys.argv[3])
hex_common.read_overrides_file(sys.argv[4])
## Whether or not idef-parser is enabled is
## determined by the number of arguments to
## this script:
##
## 5 args. -> not enabled,
## 6 args. -> idef-parser enabled.
##
## The 6:th arg. then holds a list of the successfully
## parsed instructions.
is_idef_parser_enabled = len(sys.argv) > 6
if is_idef_parser_enabled:
hex_common.read_idef_parser_enabled_file(sys.argv[5])
hex_common.calculate_attribs()
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[-1], 'w') as f:
f.write("#ifndef HEXAGON_TCG_FUNCS_H\n")
f.write("#define HEXAGON_TCG_FUNCS_H\n\n")
for tag in hex_common.tags:
gen_analyze_func(f, tag, tagregs[tag], tagimms[tag])
f.write("#endif /* HEXAGON_TCG_FUNCS_H */\n")
if __name__ == "__main__":
main()

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
@ -226,6 +226,14 @@ def gen_helper_function(f, tag, tagregs, tagimms):
print("Bad register parse: ",regtype,regid,toss,numregs)
i += 1
## For conditional instructions, we pass in the destination register
if 'A_CONDEXEC' in hex_common.attribdict[tag]:
for regtype, regid, toss, numregs in regs:
if (hex_common.is_writeonly(regid) and
not hex_common.is_hvx_reg(regtype)):
gen_helper_arg_opn(f, regtype, regid, i, tag)
i += 1
## Arguments to the helper function are the source regs and immediates
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):
@ -262,10 +270,11 @@ def gen_helper_function(f, tag, tagregs, tagimms):
if hex_common.need_ea(tag): gen_decl_ea(f)
## Declare the return variable
i=0
for regtype,regid,toss,numregs in regs:
if (hex_common.is_writeonly(regid)):
gen_helper_dest_decl_opn(f,regtype,regid,i)
i += 1
if 'A_CONDEXEC' not in hex_common.attribdict[tag]:
for regtype,regid,toss,numregs in regs:
if (hex_common.is_writeonly(regid)):
gen_helper_dest_decl_opn(f,regtype,regid,i)
i += 1
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
@ -87,6 +87,7 @@ def gen_helper_prototype(f, tag, tagregs, tagimms):
if hex_common.need_slot(tag): def_helper_size += 1
if hex_common.need_PC(tag): def_helper_size += 1
if hex_common.helper_needs_next_PC(tag): def_helper_size += 1
if hex_common.need_condexec_reg(tag, regs): def_helper_size += 1
f.write('DEF_HELPER_%s(%s' % (def_helper_size, tag))
## The return type is void
f.write(', void' )
@ -96,6 +97,7 @@ def gen_helper_prototype(f, tag, tagregs, tagimms):
if hex_common.need_part1(tag): def_helper_size += 1
if hex_common.need_slot(tag): def_helper_size += 1
if hex_common.need_PC(tag): def_helper_size += 1
if hex_common.need_condexec_reg(tag, regs): def_helper_size += 1
if hex_common.helper_needs_next_PC(tag): def_helper_size += 1
f.write('DEF_HELPER_%s(%s' % (def_helper_size, tag))
@ -121,6 +123,14 @@ def gen_helper_prototype(f, tag, tagregs, tagimms):
gen_def_helper_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
## For conditional instructions, we pass in the destination register
if 'A_CONDEXEC' in hex_common.attribdict[tag]:
for regtype, regid, toss, numregs in regs:
if (hex_common.is_writeonly(regid) and
not hex_common.is_hvx_reg(regtype)):
gen_def_helper_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
## Generate the qemu type for each input operand (regs and immediates)
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -332,8 +332,6 @@
tcg_gen_movi_tl(EA, 0); \
PRED; \
CHECK_NOSHUF_PRED(GET_EA, SIZE, LSB); \
PRED_LOAD_CANCEL(LSB, EA); \
tcg_gen_movi_tl(RdV, 0); \
tcg_gen_brcondi_tl(TCG_COND_EQ, LSB, 0, label); \
fLOAD(1, SIZE, SIGN, EA, RdV); \
gen_set_label(label); \
@ -391,8 +389,6 @@
tcg_gen_movi_tl(EA, 0); \
PRED; \
CHECK_NOSHUF_PRED(GET_EA, 8, LSB); \
PRED_LOAD_CANCEL(LSB, EA); \
tcg_gen_movi_i64(RddV, 0); \
tcg_gen_brcondi_tl(TCG_COND_EQ, LSB, 0, label); \
fLOAD(1, 8, u, EA, RddV); \
gen_set_label(label); \
@ -419,16 +415,16 @@
#define fGEN_TCG_STORE(SHORTCODE) \
do { \
TCGv HALF = tcg_temp_new(); \
TCGv BYTE = tcg_temp_new(); \
TCGv HALF G_GNUC_UNUSED = tcg_temp_new(); \
TCGv BYTE G_GNUC_UNUSED = tcg_temp_new(); \
SHORTCODE; \
} while (0)
#define fGEN_TCG_STORE_pcr(SHIFT, STORE) \
do { \
TCGv ireg = tcg_temp_new(); \
TCGv HALF = tcg_temp_new(); \
TCGv BYTE = tcg_temp_new(); \
TCGv HALF G_GNUC_UNUSED = tcg_temp_new(); \
TCGv BYTE G_GNUC_UNUSED = tcg_temp_new(); \
tcg_gen_mov_tl(EA, RxV); \
gen_read_ireg(ireg, MuV, SHIFT); \
gen_helper_fcircadd(RxV, RxV, ireg, MuV, hex_gpr[HEX_REG_CS0 + MuN]); \
@ -491,6 +487,59 @@
#define fGEN_TCG_S2_storerinew_pcr(SHORTCODE) \
fGEN_TCG_STORE_pcr(2, fSTORE(1, 4, EA, NtN))
/*
* dealloc_return
* Assembler mapped to
* r31:30 = dealloc_return(r30):raw
*/
#define fGEN_TCG_L4_return(SHORTCODE) \
gen_return(ctx, RddV, RsV)
/*
* sub-instruction version (no RddV, so handle it manually)
*/
#define fGEN_TCG_SL2_return(SHORTCODE) \
do { \
TCGv_i64 RddV = get_result_gpr_pair(ctx, HEX_REG_FP); \
gen_return(ctx, RddV, hex_gpr[HEX_REG_FP]); \
gen_log_reg_write_pair(HEX_REG_FP, RddV); \
} while (0)
/*
* Conditional returns follow this naming convention
* _t predicate true
* _f predicate false
* _tnew_pt predicate.new true predict taken
* _fnew_pt predicate.new false predict taken
* _tnew_pnt predicate.new true predict not taken
* _fnew_pnt predicate.new false predict not taken
* Predictions are not modelled in QEMU
*
* Example:
* if (p1) r31:30 = dealloc_return(r30):raw
*/
#define fGEN_TCG_L4_return_t(SHORTCODE) \
gen_cond_return(ctx, RddV, RsV, PvV, TCG_COND_EQ);
#define fGEN_TCG_L4_return_f(SHORTCODE) \
gen_cond_return(ctx, RddV, RsV, PvV, TCG_COND_NE)
#define fGEN_TCG_L4_return_tnew_pt(SHORTCODE) \
gen_cond_return(ctx, RddV, RsV, PvN, TCG_COND_EQ)
#define fGEN_TCG_L4_return_fnew_pt(SHORTCODE) \
gen_cond_return(ctx, RddV, RsV, PvN, TCG_COND_NE)
#define fGEN_TCG_L4_return_tnew_pnt(SHORTCODE) \
gen_cond_return(ctx, RddV, RsV, PvN, TCG_COND_EQ)
#define fGEN_TCG_L4_return_fnew_pnt(SHORTCODE) \
gen_cond_return(ctx, RddV, RsV, PvN, TCG_COND_NE)
#define fGEN_TCG_SL2_return_t(SHORTCODE) \
gen_cond_return_subinsn(ctx, TCG_COND_EQ, hex_pred[0])
#define fGEN_TCG_SL2_return_f(SHORTCODE) \
gen_cond_return_subinsn(ctx, TCG_COND_NE, hex_pred[0])
#define fGEN_TCG_SL2_return_tnew(SHORTCODE) \
gen_cond_return_subinsn(ctx, TCG_COND_EQ, hex_new_pred_value[0])
#define fGEN_TCG_SL2_return_fnew(SHORTCODE) \
gen_cond_return_subinsn(ctx, TCG_COND_NE, hex_new_pred_value[0])
/*
* Mathematical operations with more than one definition require
* special handling
@ -589,14 +638,24 @@
#define fGEN_TCG_J2_call(SHORTCODE) \
gen_call(ctx, riV)
#define fGEN_TCG_J2_callr(SHORTCODE) \
gen_callr(ctx, RsV)
#define fGEN_TCG_J2_callt(SHORTCODE) \
gen_cond_call(ctx, PuV, TCG_COND_EQ, riV)
#define fGEN_TCG_J2_callf(SHORTCODE) \
gen_cond_call(ctx, PuV, TCG_COND_NE, riV)
#define fGEN_TCG_J2_callrt(SHORTCODE) \
gen_cond_callr(ctx, TCG_COND_EQ, PuV, RsV)
#define fGEN_TCG_J2_callrf(SHORTCODE) \
gen_cond_callr(ctx, TCG_COND_NE, PuV, RsV)
#define fGEN_TCG_J2_endloop0(SHORTCODE) \
gen_endloop0(ctx)
#define fGEN_TCG_J2_endloop1(SHORTCODE) \
gen_endloop1(ctx)
#define fGEN_TCG_J2_endloop01(SHORTCODE) \
gen_endloop01(ctx)
/*
* Compound compare and jump instructions
@ -986,6 +1045,19 @@
#define fGEN_TCG_S2_asl_r_r_sat(SHORTCODE) \
gen_asl_r_r_sat(RdV, RsV, RtV)
#define fGEN_TCG_SL2_jumpr31(SHORTCODE) \
gen_jumpr(ctx, hex_gpr[HEX_REG_LR])
#define fGEN_TCG_SL2_jumpr31_t(SHORTCODE) \
gen_cond_jumpr31(ctx, TCG_COND_EQ, hex_pred[0])
#define fGEN_TCG_SL2_jumpr31_f(SHORTCODE) \
gen_cond_jumpr31(ctx, TCG_COND_NE, hex_pred[0])
#define fGEN_TCG_SL2_jumpr31_tnew(SHORTCODE) \
gen_cond_jumpr31(ctx, TCG_COND_EQ, hex_new_pred_value[0])
#define fGEN_TCG_SL2_jumpr31_fnew(SHORTCODE) \
gen_cond_jumpr31(ctx, TCG_COND_NE, hex_new_pred_value[0])
/* Floating point */
#define fGEN_TCG_F2_conv_sf2df(SHORTCODE) \
gen_helper_conv_sf2df(RddV, cpu_env, RsV)

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
@ -30,37 +30,33 @@ def gen_decl_ea_tcg(f, tag):
def genptr_decl_pair_writable(f, tag, regtype, regid, regno):
regN="%s%sN" % (regtype,regid)
f.write(" TCGv_i64 %s%sV = tcg_temp_new_i64();\n" % \
(regtype, regid))
if (regtype == "C"):
if (regtype == "R"):
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
elif (regtype == "C"):
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
else:
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" if (!is_preloaded(ctx, %s)) {\n" % regN)
f.write(" tcg_gen_mov_tl(hex_new_value[%s], hex_gpr[%s]);\n" % \
(regN, regN))
f.write(" }\n")
f.write(" if (!is_preloaded(ctx, %s + 1)) {\n" % regN)
f.write(" tcg_gen_mov_tl(hex_new_value[%s + 1], hex_gpr[%s + 1]);\n" % \
(regN, regN))
f.write(" }\n")
print("Bad register parse: ", regtype, regid)
f.write(" TCGv_i64 %s%sV = get_result_gpr_pair(ctx, %s);\n" % \
(regtype, regid, regN))
def genptr_decl_writable(f, tag, regtype, regid, regno):
regN="%s%sN" % (regtype,regid)
f.write(" TCGv %s%sV = tcg_temp_new();\n" % \
(regtype, regid))
if (regtype == "C"):
if (regtype == "R"):
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
f.write(" TCGv %s%sV = get_result_gpr(ctx, %s);\n" % \
(regtype, regid, regN))
elif (regtype == "C"):
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
else:
f.write(" TCGv %s%sV = get_result_gpr(ctx, %s);\n" % \
(regtype, regid, regN))
elif (regtype == "P"):
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" if (!is_preloaded(ctx, %s)) {\n" % regN)
f.write(" tcg_gen_mov_tl(hex_new_value[%s], hex_gpr[%s]);\n" % \
(regN, regN))
f.write(" }\n")
f.write(" TCGv %s%sV = tcg_temp_new();\n" % \
(regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
def genptr_decl(f, tag, regtype, regid, regno):
regN="%s%sN" % (regtype,regid)
@ -166,17 +162,6 @@ def genptr_decl(f, tag, regtype, regid, regno):
f.write(" ctx_future_vreg_off(ctx, %s%sN," % \
(regtype, regid))
f.write(" 1, true);\n");
if 'A_CONDEXEC' in hex_common.attribdict[tag]:
f.write(" if (!is_vreg_preloaded(ctx, %s)) {\n" % (regN))
f.write(" intptr_t src_off =")
f.write(" offsetof(CPUHexagonState, VRegs[%s%sN]);\n"% \
(regtype, regid))
f.write(" tcg_gen_gvec_mov(MO_64, %s%sV_off,\n" % \
(regtype, regid))
f.write(" src_off,\n")
f.write(" sizeof(MMVector),\n")
f.write(" sizeof(MMVector));\n")
f.write(" }\n")
if (not hex_common.skip_qemu_helper(tag)):
f.write(" TCGv_ptr %s%sV = tcg_temp_new_ptr();\n" % \
@ -191,8 +176,7 @@ def genptr_decl(f, tag, regtype, regid, regno):
(regtype, regid, regno))
f.write(" const intptr_t %s%sV_off =\n" % \
(regtype, regid))
f.write(" offsetof(CPUHexagonState,\n")
f.write(" future_QRegs[%s%sN]);\n" % \
f.write(" get_result_qreg(ctx, %s%sN);\n" % \
(regtype, regid))
if (not hex_common.skip_qemu_helper(tag)):
f.write(" TCGv_ptr %s%sV = tcg_temp_new_ptr();\n" % \
@ -274,8 +258,12 @@ def genptr_src_read(f, tag, regtype, regid):
f.write(" hex_gpr[%s%sN + 1]);\n" % \
(regtype, regid))
elif (regid in {"x", "y"}):
f.write(" tcg_gen_mov_tl(%s%sV, hex_gpr[%s%sN]);\n" % \
(regtype,regid,regtype,regid))
## For read/write registers, we need to get the original value into
## the result TCGv. For conditional instructions, this is done in
## gen_start_packet. For unconditional instructions, we do it here.
if ('A_CONDEXEC' not in hex_common.attribdict[tag]):
f.write(" tcg_gen_mov_tl(%s%sV, hex_gpr[%s%sN]);\n" % \
(regtype, regid, regtype, regid))
elif (regid not in {"s", "t", "u", "v"}):
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
@ -385,37 +373,22 @@ def gen_helper_call_imm(f,immlett):
f.write(", tcgv_%s" % hex_common.imm_name(immlett))
def genptr_dst_write_pair(f, tag, regtype, regid):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" gen_log_predicated_reg_write_pair(%s%sN, %s%sV, insn->slot);\n" % \
(regtype, regid, regtype, regid))
else:
f.write(" gen_log_reg_write_pair(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
f.write(" ctx_log_reg_write_pair(ctx, %s%sN);\n" % \
(regtype, regid))
f.write(" gen_log_reg_write_pair(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
def genptr_dst_write(f, tag, regtype, regid):
if (regtype == "R"):
if (regid in {"dd", "xx", "yy"}):
genptr_dst_write_pair(f, tag, regtype, regid)
elif (regid in {"d", "e", "x", "y"}):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" gen_log_predicated_reg_write(%s%sN, %s%sV,\n" % \
(regtype, regid, regtype, regid))
f.write(" insn->slot);\n")
else:
f.write(" gen_log_reg_write(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
f.write(" ctx_log_reg_write(ctx, %s%sN);\n" % \
(regtype, regid))
f.write(" gen_log_reg_write(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid in {"d", "e", "x"}):
f.write(" gen_log_pred_write(ctx, %s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
f.write(" ctx_log_pred_write(ctx, %s%sN);\n" % \
(regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "C"):
@ -432,43 +405,18 @@ def genptr_dst_write(f, tag, regtype, regid):
def genptr_dst_write_ext(f, tag, regtype, regid, newv="EXT_DFL"):
if (regtype == "V"):
if (regid in {"dd", "xx", "yy"}):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
is_predicated = "true"
else:
is_predicated = "false"
if (regid in {"xx"}):
f.write(" gen_log_vreg_write_pair(ctx, %s%sV_off, %s%sN, " % \
(regtype, regid, regtype, regid))
f.write("%s, insn->slot, %s);\n" % \
(newv, is_predicated))
f.write(" ctx_log_vreg_write_pair(ctx, %s%sN, %s,\n" % \
(regtype, regid, newv))
f.write(" %s);\n" % (is_predicated))
elif (regid in {"d", "x", "y"}):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
is_predicated = "true"
else:
is_predicated = "false"
f.write(" gen_log_vreg_write(ctx, %s%sV_off, %s%sN, %s, " % \
f.write("%s);\n" % \
(newv))
elif (regid in {"y"}):
f.write(" gen_log_vreg_write(ctx, %s%sV_off, %s%sN, %s);\n" % \
(regtype, regid, regtype, regid, newv))
f.write("insn->slot, %s);\n" % \
(is_predicated))
f.write(" ctx_log_vreg_write(ctx, %s%sN, %s, %s);\n" % \
(regtype, regid, newv, is_predicated))
else:
elif (regid not in {"dd", "d", "x"}):
print("Bad register parse: ", regtype, regid)
elif (regtype == "Q"):
if (regid in {"d", "e", "x"}):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
is_predicated = "true"
else:
is_predicated = "false"
f.write(" gen_log_qreg_write(%s%sV_off, %s%sN, %s, " % \
(regtype, regid, regtype, regid, newv))
f.write("insn->slot, %s);\n" % (is_predicated))
f.write(" ctx_log_qreg_write(ctx, %s%sN, %s);\n" % \
(regtype, regid, is_predicated))
else:
if (regid not in {"d", "e", "x"}):
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
@ -500,15 +448,15 @@ def genptr_dst_write_opn(f,regtype, regid, tag):
## For A2_add: Rd32=add(Rs32,Rt32), { RdV=RsV+RtV;}
## We produce:
## static void generate_A2_add(DisasContext *ctx)
## {
## TCGv RdV = tcg_temp_new();
## const int RdN = insn->regno[0];
## TCGv RsV = hex_gpr[insn->regno[1]];
## TCGv RtV = hex_gpr[insn->regno[2]];
## <GEN>
## gen_log_reg_write(RdN, RdV);
## ctx_log_reg_write(ctx, RdN);
## }
## {
## Insn *insn __attribute__((unused)) = ctx->insn;
## const int RdN = insn->regno[0];
## TCGv RdV = get_result_gpr(ctx, RdN);
## TCGv RsV = hex_gpr[insn->regno[1]];
## TCGv RtV = hex_gpr[insn->regno[2]];
## <GEN>
## gen_log_reg_write(RdN, RdV);
## }
##
## where <GEN> depends on hex_common.skip_qemu_helper(tag)
## if hex_common.skip_qemu_helper(tag) is True
@ -592,6 +540,14 @@ def gen_tcg_func(f, tag, regs, imms):
if (i > 0): f.write(", ")
f.write("cpu_env")
i=1
## For conditional instructions, we pass in the destination register
if 'A_CONDEXEC' in hex_common.attribdict[tag]:
for regtype, regid, toss, numregs in regs:
if (hex_common.is_writeonly(regid) and
not hex_common.is_hvx_reg(regtype)):
gen_helper_call_opn(f, tag, regtype, regid, toss, \
numregs, i)
i += 1
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
if (not hex_common.is_hvx_reg(regtype)):

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -133,16 +133,11 @@ static inline void assert_vhist_tmp(DisasContext *ctx)
do { \
TCGv lsb = tcg_temp_new(); \
TCGLabel *false_label = gen_new_label(); \
TCGLabel *end_label = gen_new_label(); \
tcg_gen_andi_tl(lsb, PsV, 1); \
tcg_gen_brcondi_tl(TCG_COND_NE, lsb, PRED, false_label); \
tcg_gen_gvec_mov(MO_64, VdV_off, VuV_off, \
sizeof(MMVector), sizeof(MMVector)); \
tcg_gen_br(end_label); \
gen_set_label(false_label); \
tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, \
1 << insn->slot); \
gen_set_label(end_label); \
} while (0)
@ -547,17 +542,12 @@ static inline void assert_vhist_tmp(DisasContext *ctx)
do { \
TCGv LSB = tcg_temp_new(); \
TCGLabel *false_label = gen_new_label(); \
TCGLabel *end_label = gen_new_label(); \
GET_EA; \
PRED; \
tcg_gen_brcondi_tl(TCG_COND_EQ, LSB, 0, false_label); \
gen_vreg_load(ctx, DSTOFF, EA, true); \
INC; \
tcg_gen_br(end_label); \
gen_set_label(false_label); \
tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, \
1 << insn->slot); \
gen_set_label(end_label); \
} while (0)
#define fGEN_TCG_PRED_VEC_LOAD_pred_pi \
@ -717,17 +707,12 @@ static inline void assert_vhist_tmp(DisasContext *ctx)
do { \
TCGv LSB = tcg_temp_new(); \
TCGLabel *false_label = gen_new_label(); \
TCGLabel *end_label = gen_new_label(); \
GET_EA; \
PRED; \
tcg_gen_brcondi_tl(TCG_COND_EQ, LSB, 0, false_label); \
gen_vreg_store(ctx, EA, SRCOFF, insn->slot, ALIGN); \
INC; \
tcg_gen_br(end_label); \
gen_set_label(false_label); \
tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, \
1 << insn->slot); \
gen_set_label(end_label); \
} while (0)
#define fGEN_TCG_PRED_VEC_STORE_pred_pi(ALIGN) \

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -68,26 +68,17 @@ static inline void gen_masked_reg_write(TCGv new_val, TCGv cur_val,
}
}
static inline void gen_log_predicated_reg_write(int rnum, TCGv val,
uint32_t slot)
static TCGv get_result_gpr(DisasContext *ctx, int rnum)
{
TCGv zero = tcg_constant_tl(0);
TCGv slot_mask = tcg_temp_new();
return hex_new_value[rnum];
}
tcg_gen_andi_tl(slot_mask, hex_slot_cancelled, 1 << slot);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_new_value[rnum], slot_mask, zero,
val, hex_new_value[rnum]);
if (HEX_DEBUG) {
/*
* Do this so HELPER(debug_commit_end) will know
*
* Note that slot_mask indicates the value is not written
* (i.e., slot was cancelled), so we create a true/false value before
* or'ing with hex_reg_written[rnum].
*/
tcg_gen_setcond_tl(TCG_COND_EQ, slot_mask, slot_mask, zero);
tcg_gen_or_tl(hex_reg_written[rnum], hex_reg_written[rnum], slot_mask);
}
static TCGv_i64 get_result_gpr_pair(DisasContext *ctx, int rnum)
{
TCGv_i64 result = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(result, hex_new_value[rnum],
hex_new_value[rnum + 1]);
return result;
}
void gen_log_reg_write(int rnum, TCGv val)
@ -102,39 +93,6 @@ void gen_log_reg_write(int rnum, TCGv val)
}
}
static void gen_log_predicated_reg_write_pair(int rnum, TCGv_i64 val,
uint32_t slot)
{
TCGv val32 = tcg_temp_new();
TCGv zero = tcg_constant_tl(0);
TCGv slot_mask = tcg_temp_new();
tcg_gen_andi_tl(slot_mask, hex_slot_cancelled, 1 << slot);
/* Low word */
tcg_gen_extrl_i64_i32(val32, val);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_new_value[rnum],
slot_mask, zero,
val32, hex_new_value[rnum]);
/* High word */
tcg_gen_extrh_i64_i32(val32, val);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_new_value[rnum + 1],
slot_mask, zero,
val32, hex_new_value[rnum + 1]);
if (HEX_DEBUG) {
/*
* Do this so HELPER(debug_commit_end) will know
*
* Note that slot_mask indicates the value is not written
* (i.e., slot was cancelled), so we create a true/false value before
* or'ing with hex_reg_written[rnum].
*/
tcg_gen_setcond_tl(TCG_COND_EQ, slot_mask, slot_mask, zero);
tcg_gen_or_tl(hex_reg_written[rnum], hex_reg_written[rnum], slot_mask);
tcg_gen_or_tl(hex_reg_written[rnum + 1], hex_reg_written[rnum + 1],
slot_mask);
}
}
static void gen_log_reg_write_pair(int rnum, TCGv_i64 val)
{
const target_ulong reg_mask_low = reg_immut_masks[rnum];
@ -180,6 +138,7 @@ void gen_log_pred_write(DisasContext *ctx, int pnum, TCGv val)
hex_new_pred_value[pnum], base_val);
}
tcg_gen_ori_tl(hex_pred_written, hex_pred_written, 1 << pnum);
set_bit(pnum, ctx->pregs_written);
}
static inline void gen_read_p3_0(TCGv control_reg)
@ -256,7 +215,6 @@ static void gen_write_p3_0(DisasContext *ctx, TCGv control_reg)
for (int i = 0; i < NUM_PREGS; i++) {
tcg_gen_extract_tl(hex_p8, control_reg, i * 8, 8);
gen_log_pred_write(ctx, i, hex_p8);
ctx_log_pred_write(ctx, i);
}
}
@ -274,7 +232,6 @@ static inline void gen_write_ctrl_reg(DisasContext *ctx, int reg_num,
gen_write_p3_0(ctx, val);
} else {
gen_log_reg_write(reg_num, val);
ctx_log_reg_write(ctx, reg_num);
if (reg_num == HEX_REG_QEMU_PKT_CNT) {
ctx->num_packets = 0;
}
@ -291,15 +248,14 @@ static inline void gen_write_ctrl_reg_pair(DisasContext *ctx, int reg_num,
TCGv_i64 val)
{
if (reg_num == HEX_REG_P3_0_ALIASED) {
TCGv result = get_result_gpr(ctx, reg_num + 1);
TCGv val32 = tcg_temp_new();
tcg_gen_extrl_i64_i32(val32, val);
gen_write_p3_0(ctx, val32);
tcg_gen_extrh_i64_i32(val32, val);
gen_log_reg_write(reg_num + 1, val32);
ctx_log_reg_write(ctx, reg_num + 1);
tcg_gen_mov_tl(result, val32);
} else {
gen_log_reg_write_pair(reg_num, val);
ctx_log_reg_write_pair(ctx, reg_num);
if (reg_num == HEX_REG_QEMU_PKT_CNT) {
ctx->num_packets = 0;
ctx->num_insns = 0;
@ -571,6 +527,13 @@ static void gen_cond_jumpr(DisasContext *ctx, TCGv dst_pc,
gen_write_new_pc_addr(ctx, dst_pc, cond, pred);
}
static void gen_cond_jumpr31(DisasContext *ctx, TCGCond cond, TCGv pred)
{
TCGv LSB = tcg_temp_new();
tcg_gen_andi_tl(LSB, pred, 1);
gen_cond_jumpr(ctx, hex_gpr[HEX_REG_LR], cond, LSB);
}
static void gen_cond_jump(DisasContext *ctx, TCGCond cond, TCGv pred,
int pc_off)
{
@ -669,27 +632,99 @@ static void gen_jumpr(DisasContext *ctx, TCGv new_pc)
static void gen_call(DisasContext *ctx, int pc_off)
{
TCGv next_PC =
tcg_constant_tl(ctx->pkt->pc + ctx->pkt->encod_pkt_size_in_bytes);
gen_log_reg_write(HEX_REG_LR, next_PC);
TCGv lr = get_result_gpr(ctx, HEX_REG_LR);
tcg_gen_movi_tl(lr, ctx->next_PC);
gen_write_new_pc_pcrel(ctx, pc_off, TCG_COND_ALWAYS, NULL);
}
static void gen_callr(DisasContext *ctx, TCGv new_pc)
{
TCGv lr = get_result_gpr(ctx, HEX_REG_LR);
tcg_gen_movi_tl(lr, ctx->next_PC);
gen_write_new_pc_addr(ctx, new_pc, TCG_COND_ALWAYS, NULL);
}
static void gen_cond_call(DisasContext *ctx, TCGv pred,
TCGCond cond, int pc_off)
{
TCGv next_PC;
TCGv lr = get_result_gpr(ctx, HEX_REG_LR);
TCGv lsb = tcg_temp_new();
TCGLabel *skip = gen_new_label();
tcg_gen_andi_tl(lsb, pred, 1);
gen_write_new_pc_pcrel(ctx, pc_off, cond, lsb);
tcg_gen_brcondi_tl(cond, lsb, 0, skip);
next_PC =
tcg_constant_tl(ctx->pkt->pc + ctx->pkt->encod_pkt_size_in_bytes);
gen_log_reg_write(HEX_REG_LR, next_PC);
tcg_gen_movi_tl(lr, ctx->next_PC);
gen_set_label(skip);
}
static void gen_cond_callr(DisasContext *ctx,
TCGCond cond, TCGv pred, TCGv new_pc)
{
TCGv lsb = tcg_temp_new();
TCGLabel *skip = gen_new_label();
tcg_gen_andi_tl(lsb, pred, 1);
tcg_gen_brcondi_tl(cond, lsb, 0, skip);
gen_callr(ctx, new_pc);
gen_set_label(skip);
}
/* frame ^= (int64_t)FRAMEKEY << 32 */
static void gen_frame_unscramble(TCGv_i64 frame)
{
TCGv_i64 framekey = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(framekey, hex_gpr[HEX_REG_FRAMEKEY]);
tcg_gen_shli_i64(framekey, framekey, 32);
tcg_gen_xor_i64(frame, frame, framekey);
}
static void gen_load_frame(DisasContext *ctx, TCGv_i64 frame, TCGv EA)
{
Insn *insn = ctx->insn; /* Needed for CHECK_NOSHUF */
CHECK_NOSHUF(EA, 8);
tcg_gen_qemu_ld64(frame, EA, ctx->mem_idx);
}
static void gen_return(DisasContext *ctx, TCGv_i64 dst, TCGv src)
{
/*
* frame = *src
* dst = frame_unscramble(frame)
* SP = src + 8
* PC = dst.w[1]
*/
TCGv_i64 frame = tcg_temp_new_i64();
TCGv r31 = tcg_temp_new();
TCGv r29 = get_result_gpr(ctx, HEX_REG_SP);
gen_load_frame(ctx, frame, src);
gen_frame_unscramble(frame);
tcg_gen_mov_i64(dst, frame);
tcg_gen_addi_tl(r29, src, 8);
tcg_gen_extrh_i64_i32(r31, dst);
gen_jumpr(ctx, r31);
}
/* if (pred) dst = dealloc_return(src):raw */
static void gen_cond_return(DisasContext *ctx, TCGv_i64 dst, TCGv src,
TCGv pred, TCGCond cond)
{
TCGv LSB = tcg_temp_new();
TCGLabel *skip = gen_new_label();
tcg_gen_andi_tl(LSB, pred, 1);
tcg_gen_brcondi_tl(cond, LSB, 0, skip);
gen_return(ctx, dst, src);
gen_set_label(skip);
}
/* sub-instruction version (no RddV, so handle it manually) */
static void gen_cond_return_subinsn(DisasContext *ctx, TCGCond cond, TCGv pred)
{
TCGv_i64 RddV = get_result_gpr_pair(ctx, HEX_REG_FP);
gen_cond_return(ctx, RddV, hex_gpr[HEX_REG_FP], pred, cond);
gen_log_reg_write_pair(HEX_REG_FP, RddV);
}
static void gen_endloop0(DisasContext *ctx)
{
TCGv lpcfg = tcg_temp_new();
@ -737,14 +772,95 @@ static void gen_endloop0(DisasContext *ctx)
TCGLabel *label3 = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, label3);
{
TCGv lc0 = get_result_gpr(ctx, HEX_REG_LC0);
gen_jumpr(ctx, hex_gpr[HEX_REG_SA0]);
tcg_gen_subi_tl(hex_new_value[HEX_REG_LC0],
hex_gpr[HEX_REG_LC0], 1);
tcg_gen_subi_tl(lc0, hex_gpr[HEX_REG_LC0], 1);
}
gen_set_label(label3);
}
}
static void gen_endloop1(DisasContext *ctx)
{
/*
* if (hex_gpr[HEX_REG_LC1] > 1) {
* PC = hex_gpr[HEX_REG_SA1];
* hex_new_value[HEX_REG_LC1] = hex_gpr[HEX_REG_LC1] - 1;
* }
*/
TCGLabel *label = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC1], 1, label);
{
TCGv lc1 = get_result_gpr(ctx, HEX_REG_LC1);
gen_jumpr(ctx, hex_gpr[HEX_REG_SA1]);
tcg_gen_subi_tl(lc1, hex_gpr[HEX_REG_LC1], 1);
}
gen_set_label(label);
}
static void gen_endloop01(DisasContext *ctx)
{
TCGv lpcfg = tcg_temp_new();
TCGLabel *label1 = gen_new_label();
TCGLabel *label2 = gen_new_label();
TCGLabel *label3 = gen_new_label();
TCGLabel *done = gen_new_label();
GET_USR_FIELD(USR_LPCFG, lpcfg);
/*
* if (lpcfg == 1) {
* hex_new_pred_value[3] = 0xff;
* hex_pred_written |= 1 << 3;
* }
*/
tcg_gen_brcondi_tl(TCG_COND_NE, lpcfg, 1, label1);
{
tcg_gen_movi_tl(hex_new_pred_value[3], 0xff);
tcg_gen_ori_tl(hex_pred_written, hex_pred_written, 1 << 3);
}
gen_set_label(label1);
/*
* if (lpcfg) {
* SET_USR_FIELD(USR_LPCFG, lpcfg - 1);
* }
*/
tcg_gen_brcondi_tl(TCG_COND_EQ, lpcfg, 0, label2);
{
tcg_gen_subi_tl(lpcfg, lpcfg, 1);
SET_USR_FIELD(USR_LPCFG, lpcfg);
}
gen_set_label(label2);
/*
* if (hex_gpr[HEX_REG_LC0] > 1) {
* PC = hex_gpr[HEX_REG_SA0];
* hex_new_value[HEX_REG_LC0] = hex_gpr[HEX_REG_LC0] - 1;
* } else {
* if (hex_gpr[HEX_REG_LC1] > 1) {
* hex_next_pc = hex_gpr[HEX_REG_SA1];
* hex_new_value[HEX_REG_LC1] = hex_gpr[HEX_REG_LC1] - 1;
* }
* }
*/
tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, label3);
{
TCGv lc0 = get_result_gpr(ctx, HEX_REG_LC0);
gen_jumpr(ctx, hex_gpr[HEX_REG_SA0]);
tcg_gen_subi_tl(lc0, hex_gpr[HEX_REG_LC0], 1);
tcg_gen_br(done);
}
gen_set_label(label3);
tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC1], 1, done);
{
TCGv lc1 = get_result_gpr(ctx, HEX_REG_LC1);
gen_jumpr(ctx, hex_gpr[HEX_REG_SA1]);
tcg_gen_subi_tl(lc1, hex_gpr[HEX_REG_LC1], 1);
}
gen_set_label(done);
}
static void gen_cmp_jumpnv(DisasContext *ctx,
TCGCond cond, TCGv val, TCGv src, int pc_off)
{
@ -869,68 +985,32 @@ static intptr_t vreg_src_off(DisasContext *ctx, int num)
}
static void gen_log_vreg_write(DisasContext *ctx, intptr_t srcoff, int num,
VRegWriteType type, int slot_num,
bool is_predicated)
VRegWriteType type)
{
TCGLabel *label_end = NULL;
intptr_t dstoff;
if (is_predicated) {
TCGv cancelled = tcg_temp_new();
label_end = gen_new_label();
/* Don't do anything if the slot was cancelled */
tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
}
if (type != EXT_TMP) {
dstoff = ctx_future_vreg_off(ctx, num, 1, true);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff,
sizeof(MMVector), sizeof(MMVector));
tcg_gen_ori_tl(hex_VRegs_updated, hex_VRegs_updated, 1 << num);
} else {
dstoff = ctx_tmp_vreg_off(ctx, num, 1, false);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff,
sizeof(MMVector), sizeof(MMVector));
}
if (is_predicated) {
gen_set_label(label_end);
}
}
static void gen_log_vreg_write_pair(DisasContext *ctx, intptr_t srcoff, int num,
VRegWriteType type, int slot_num,
bool is_predicated)
VRegWriteType type)
{
gen_log_vreg_write(ctx, srcoff, num ^ 0, type, slot_num, is_predicated);
gen_log_vreg_write(ctx, srcoff, num ^ 0, type);
srcoff += sizeof(MMVector);
gen_log_vreg_write(ctx, srcoff, num ^ 1, type, slot_num, is_predicated);
gen_log_vreg_write(ctx, srcoff, num ^ 1, type);
}
static void gen_log_qreg_write(intptr_t srcoff, int num, int vnew,
int slot_num, bool is_predicated)
static intptr_t get_result_qreg(DisasContext *ctx, int qnum)
{
TCGLabel *label_end = NULL;
intptr_t dstoff;
if (is_predicated) {
TCGv cancelled = tcg_temp_new();
label_end = gen_new_label();
/* Don't do anything if the slot was cancelled */
tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
}
dstoff = offsetof(CPUHexagonState, future_QRegs[num]);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, sizeof(MMQReg), sizeof(MMQReg));
if (is_predicated) {
tcg_gen_ori_tl(hex_QRegs_updated, hex_QRegs_updated, 1 << num);
gen_set_label(label_end);
}
return offsetof(CPUHexagonState, future_QRegs[qnum]);
}
static void gen_vreg_load(DisasContext *ctx, intptr_t dstoff, TCGv src,

View File

@ -1,7 +1,7 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
@ -89,6 +89,7 @@ def calculate_attribs():
add_qemu_macro_attrib('fWRITE_P3', 'A_WRITES_PRED_REG')
add_qemu_macro_attrib('fSET_OVERFLOW', 'A_IMPLICIT_WRITES_USR')
add_qemu_macro_attrib('fSET_LPCFG', 'A_IMPLICIT_WRITES_USR')
add_qemu_macro_attrib('fLOAD', 'A_SCALAR_LOAD')
add_qemu_macro_attrib('fSTORE', 'A_SCALAR_STORE')
# Recurse down macros, find attributes from sub-macros
@ -236,6 +237,13 @@ def helper_needs_next_PC(tag):
def need_pkt_has_multi_cof(tag):
return 'A_COF' in attribdict[tag]
def need_condexec_reg(tag, regs):
if 'A_CONDEXEC' in attribdict[tag]:
for regtype, regid, toss, numregs in regs:
if is_writeonly(regid) and not is_hvx_reg(regtype):
return True
return False
def skip_qemu_helper(tag):
return tag in overrides.keys()

View File

@ -82,7 +82,6 @@ enum ImmUnionTag {
VALUE,
QEMU_TMP,
IMM_PC,
IMM_NPC,
IMM_CONSTEXT,
};

View File

@ -5,7 +5,7 @@
%{
/*
* Copyright(c) 2019-2022 rev.ng Labs Srl. All Rights Reserved.
* Copyright(c) 2019-2023 rev.ng Labs Srl. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -140,8 +140,6 @@ STRING_LIT \"(\\.|[^"\\])*\"
yylval->rvalue.is_dotnew = true;
yylval->rvalue.signedness = SIGNED;
return PRED; }
"IV1DEAD()" |
"fPAUSE(uiV);" { return ';'; }
"+=" { return INC; }
"-=" { return DEC; }
"++" { return PLUSPLUS; }
@ -159,9 +157,8 @@ STRING_LIT \"(\\.|[^"\\])*\"
"else" { return ELSE; }
"for" { return FOR; }
"fREAD_IREG" { return ICIRC; }
"fPART1" { return PART1; }
"if" { return IF; }
"fFRAME_SCRAMBLE" { return FSCR; }
"fFRAME_SCRAMBLE" |
"fFRAME_UNSCRAMBLE" { return FSCR; }
"fFRAMECHECK" { return FCHK; }
"Constant_extended" { return CONSTEXT; }
@ -312,14 +309,10 @@ STRING_LIT \"(\\.|[^"\\])*\"
"(unsigned int)" { yylval->cast.bit_width = 32;
yylval->cast.signedness = UNSIGNED;
return CAST; }
"fREAD_PC()" |
"PC" { return PC; }
"fREAD_NPC()" |
"NPC" { return NPC; }
"fGET_LPCFG" |
"fREAD_PC()" { return PC; }
"USR.LPCFG" { return LPCFG; }
"LOAD_CANCEL(EA)" { return LOAD_CANCEL; }
"STORE_CANCEL(EA)" |
"STORE_CANCEL(EA)" { return STORE_CANCEL; }
"CANCEL" { return CANCEL; }
"N"{LOWER_ID}"N" { yylval->rvalue.type = REGISTER_ARG;
yylval->rvalue.reg.type = DOTNEW;
@ -360,14 +353,6 @@ STRING_LIT \"(\\.|[^"\\])*\"
yylval->rvalue.bit_width = 32;
yylval->rvalue.signedness = UNSIGNED;
return REG; }
"fREAD_LC"[01] { yylval->rvalue.type = REGISTER;
yylval->rvalue.reg.type = CONTROL;
yylval->rvalue.reg.id = HEX_REG_LC0
+ (yytext[8] - '0') * 2;
yylval->rvalue.reg.bit_width = 32;
yylval->rvalue.bit_width = 32;
yylval->rvalue.signedness = UNSIGNED;
return REG; }
"LC"[01] { yylval->rvalue.type = REGISTER;
yylval->rvalue.reg.type = CONTROL;
yylval->rvalue.reg.id = HEX_REG_LC0
@ -376,14 +361,6 @@ STRING_LIT \"(\\.|[^"\\])*\"
yylval->rvalue.bit_width = 32;
yylval->rvalue.signedness = UNSIGNED;
return REG; }
"fREAD_SA"[01] { yylval->rvalue.type = REGISTER;
yylval->rvalue.reg.type = CONTROL;
yylval->rvalue.reg.id = HEX_REG_SA0
+ (yytext[8] - '0') * 2;
yylval->rvalue.reg.bit_width = 32;
yylval->rvalue.bit_width = 32;
yylval->rvalue.signedness = UNSIGNED;
return REG; }
"SA"[01] { yylval->rvalue.type = REGISTER;
yylval->rvalue.reg.type = CONTROL;
yylval->rvalue.reg.id = HEX_REG_SA0

View File

@ -1,6 +1,6 @@
%{
/*
* Copyright(c) 2019-2022 rev.ng Labs Srl. All Rights Reserved.
* Copyright(c) 2019-2023 rev.ng Labs Srl. All Rights Reserved.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
@ -52,8 +52,8 @@
%token IN INAME VAR
%token ABS CROUND ROUND CIRCADD COUNTONES INC DEC ANDA ORA XORA PLUSPLUS ASL
%token ASR LSR EQ NEQ LTE GTE MIN MAX ANDL FOR ICIRC IF MUN FSCR FCHK SXT
%token ZXT CONSTEXT LOCNT BREV SIGN LOAD STORE PC NPC LPCFG
%token LOAD_CANCEL CANCEL IDENTITY PART1 ROTL INSBITS SETBITS EXTRANGE
%token ZXT CONSTEXT LOCNT BREV SIGN LOAD STORE PC LPCFG
%token LOAD_CANCEL STORE_CANCEL CANCEL IDENTITY ROTL INSBITS SETBITS EXTRANGE
%token CAST4_8U FAIL CARRY_FROM_ADD ADDSAT64 LSBNEW
%token TYPE_SIZE_T TYPE_INT TYPE_SIGNED TYPE_UNSIGNED TYPE_LONG
@ -336,15 +336,6 @@ assign_statement : lvalue '=' rvalue
OUT(c, &@1, &$1, " = ", &$3, ";\n");
$$ = $1;
}
| PC '=' rvalue
{
@1.last_column = @3.last_column;
yyassert(c, &@1, !is_inside_ternary(c),
"Assignment side-effect not modeled!");
$3 = gen_rvalue_truncate(c, &@1, &$3);
$3 = rvalue_materialize(c, &@1, &$3);
OUT(c, &@1, "gen_write_new_pc(", &$3, ");\n");
}
| LOAD '(' IMM ',' IMM ',' SIGN ',' var ',' lvalue ')'
{
@1.last_column = @12.last_column;
@ -412,7 +403,6 @@ control_statement : frame_check
| cancel_statement
| if_statement
| for_statement
| fpart1_statement
;
frame_check : FCHK '(' rvalue ',' rvalue ')' ';'
@ -422,10 +412,11 @@ cancel_statement : LOAD_CANCEL
{
gen_load_cancel(c, &@1);
}
| CANCEL
| STORE_CANCEL
{
gen_cancel(c, &@1);
}
| CANCEL
;
if_statement : if_stmt
@ -462,17 +453,6 @@ for_statement : FOR '(' IMM '=' IMM ';' IMM '<' IMM ';' IMM PLUSPLUS ')'
}
;
fpart1_statement : PART1
{
OUT(c, &@1, "if (insn->part1) {\n");
}
'(' statements ')'
{
@1.last_column = @3.last_column;
OUT(c, &@1, "return; }\n");
}
;
if_stmt : IF '(' rvalue ')'
{
@1.last_column = @3.last_column;
@ -512,20 +492,6 @@ rvalue : FAIL
rvalue.signedness = UNSIGNED;
$$ = rvalue;
}
| NPC
{
/*
* NPC is only read from CALLs, so we can hardcode it
* at translation time
*/
HexValue rvalue;
memset(&rvalue, 0, sizeof(HexValue));
rvalue.type = IMMEDIATE;
rvalue.imm.type = IMM_NPC;
rvalue.bit_width = 32;
rvalue.signedness = UNSIGNED;
$$ = rvalue;
}
| CONSTEXT
{
HexValue rvalue;
@ -781,11 +747,6 @@ rvalue : FAIL
/* Ones count */
$$ = gen_ctpop_op(c, &@1, &$3);
}
| LPCFG
{
$$ = gen_tmp(c, &@1, 32, UNSIGNED);
OUT(c, &@1, "GET_USR_FIELD(USR_LPCFG, ", &$$, ");\n");
}
| EXTRACT '(' rvalue ',' rvalue ')'
{
@1.last_column = @6.last_column;

View File

@ -97,16 +97,8 @@
#define fWRITE_LR(A) (LR = A)
#define fWRITE_FP(A) (FP = A)
#define fWRITE_SP(A) (SP = A)
/*
* Note: There is a rule in the parser that matches `PC = ...` and emits
* a call to `gen_write_new_pc`. We need to call `gen_write_new_pc` to
* get the correct semantics when there are multiple stores in a packet.
*/
#define fBRANCH(LOC, TYPE) (PC = LOC)
#define fJUMPR(REGNO, TARGET, TYPE) (PC = TARGET)
#define fWRITE_LOOP_REGS0(START, COUNT) SA0 = START; (LC0 = COUNT)
#define fWRITE_LOOP_REGS1(START, COUNT) SA1 = START; (LC1 = COUNT)
#define fWRITE_LC0(VAL) (LC0 = VAL)
#define fWRITE_LC1(VAL) (LC1 = VAL)
#define fSET_LPCFG(VAL) (USR.LPCFG = VAL)
#define fWRITE_P0(VAL) P0 = VAL;
@ -121,7 +113,6 @@
#define fEA_GPI(IMM) (EA = fREAD_GP() + IMM)
#define fPM_I(REG, IMM) (REG = REG + IMM)
#define fPM_M(REG, MVAL) (REG = REG + MVAL)
#define fWRITE_NPC(VAL) (PC = VAL)
/* Unary operators */
#define fROUND(A) (A + 0x8000)

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 rev.ng Labs Srl. All Rights Reserved.
* Copyright(c) 2019-2023 rev.ng Labs Srl. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -185,9 +185,6 @@ void imm_print(Context *c, YYLTYPE *locp, HexImm *imm)
case IMM_PC:
EMIT(c, "ctx->base.pc_next");
break;
case IMM_NPC:
EMIT(c, "ctx->npc");
break;
case IMM_CONSTEXT:
EMIT(c, "insn->extension_valid");
break;
@ -1323,10 +1320,6 @@ void gen_write_reg(Context *c, YYLTYPE *locp, HexValue *reg, HexValue *value)
locp,
"gen_log_reg_write(", &reg->reg.id, ", ",
&value_m, ");\n");
OUT(c,
locp,
"ctx_log_reg_write(ctx, ", &reg->reg.id,
");\n");
}
void gen_assign(Context *c,
@ -1675,9 +1668,7 @@ void gen_inst_init_args(Context *c, YYLTYPE *locp)
for (unsigned i = 0; i < c->inst.init_list->len; i++) {
HexValue *val = &g_array_index(c->inst.init_list, HexValue, i);
if (val->type == REGISTER_ARG) {
char reg_id[5];
reg_compose(c, locp, &val->reg, reg_id);
EMIT_HEAD(c, "tcg_gen_movi_i%u(%s, 0);\n", val->bit_width, reg_id);
/* Nothing to do here */
} else if (val->type == PREDICATE) {
char suffix = val->is_dotnew ? 'N' : 'V';
EMIT_HEAD(c, "tcg_gen_movi_i%u(P%c%c, 0);\n", val->bit_width,
@ -1722,13 +1713,10 @@ void gen_pred_assign(Context *c, YYLTYPE *locp, HexValue *left_pred,
*left_pred = gen_tmp(c, locp, 32, UNSIGNED);
}
/* Extract first 8 bits, and store new predicate value */
OUT(c, locp, "tcg_gen_mov_i32(", left_pred, ", ", &r, ");\n");
OUT(c, locp, "tcg_gen_andi_i32(", left_pred, ", ", left_pred,
", 0xff);\n");
OUT(c, locp, "tcg_gen_andi_i32(", left_pred, ", ", &r, ", 0xff);\n");
if (is_direct) {
OUT(c, locp, "gen_log_pred_write(ctx, ", pred_id, ", ", left_pred,
");\n");
OUT(c, locp, "ctx_log_pred_write(ctx, ", pred_id, ");\n");
}
}
@ -1739,7 +1727,6 @@ void gen_cancel(Context *c, YYLTYPE *locp)
void gen_load_cancel(Context *c, YYLTYPE *locp)
{
gen_cancel(c, locp);
OUT(c, locp, "if (insn->slot == 0 && pkt->pkt_has_store_s1) {\n");
OUT(c, locp, "ctx->s1_store_processed = false;\n");
OUT(c, locp, "process_store(ctx, 1);\n");

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -205,26 +205,11 @@ static inline void gen_cancel(uint32_t slot)
#define CANCEL gen_cancel(slot);
#else
#define CANCEL cancel_slot(env, slot)
#define CANCEL do { } while (0)
#endif
#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
#ifdef QEMU_GENERATE
static inline void gen_pred_cancel(TCGv pred, uint32_t slot_num)
{
TCGv slot_mask = tcg_temp_new();
TCGv tmp = tcg_temp_new();
TCGv zero = tcg_constant_tl(0);
tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
tcg_gen_andi_tl(tmp, pred, 1);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
slot_mask, hex_slot_cancelled);
}
#define PRED_LOAD_CANCEL(PRED, EA) \
gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
#endif
#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
@ -415,16 +400,6 @@ static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
#define fHINTJR(TARGET) { /* Not modelled in qemu */}
#define fCALL(A) \
do { \
fWRITE_LR(fREAD_NPC()); \
fBRANCH(A, COF_TYPE_CALL); \
} while (0)
#define fCALLR(A) \
do { \
fWRITE_LR(fREAD_NPC()); \
fBRANCH(A, COF_TYPE_CALLR); \
} while (0)
#define fWRITE_LOOP_REGS0(START, COUNT) \
do { \
WRITE_RREG(HEX_REG_LC0, COUNT); \

View File

@ -1,5 +1,5 @@
##
## Copyright(c) 2020-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
## Copyright(c) 2020-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
@ -276,4 +276,13 @@ tcg_funcs_generated = custom_target(
)
hexagon_ss.add(tcg_funcs_generated)
analyze_funcs_generated = custom_target(
'analyze_funcs_generated.c.inc',
output: 'analyze_funcs_generated.c.inc',
depends: helper_dep,
depend_files: [hex_common_py, attribs_def, gen_tcg_h, gen_tcg_hvx_h],
command: [python, files('gen_analyze_funcs.py'), helper_in, '@OUTPUT@'],
)
hexagon_ss.add(analyze_funcs_generated)
target_arch += {'hexagon': hexagon_ss}

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -30,6 +30,7 @@
#include "mmvec/mmvec.h"
#include "mmvec/macros.h"
#include "op_helper.h"
#include "translate.h"
#define SF_BIAS 127
#define SF_MANTBITS 23
@ -105,30 +106,6 @@ void log_store64(CPUHexagonState *env, target_ulong addr,
env->mem_log_stores[slot].data64 = val;
}
void write_new_pc(CPUHexagonState *env, bool pkt_has_multi_cof,
target_ulong addr)
{
HEX_DEBUG_LOG("write_new_pc(0x" TARGET_FMT_lx ")\n", addr);
if (pkt_has_multi_cof) {
/*
* If more than one branch is taken in a packet, only the first one
* is actually done.
*/
if (env->branch_taken) {
HEX_DEBUG_LOG("INFO: multiple branches taken in same packet, "
"ignoring the second one\n");
} else {
fCHECK_PCALIGN(addr);
env->gpr[HEX_REG_PC] = addr;
env->branch_taken = 1;
}
} else {
fCHECK_PCALIGN(addr);
env->gpr[HEX_REG_PC] = addr;
}
}
/* Handy place to set a breakpoint */
void HELPER(debug_start_packet)(CPUHexagonState *env)
{
@ -439,9 +416,10 @@ int32_t HELPER(vacsh_pred)(CPUHexagonState *env,
return PeV;
}
static void probe_store(CPUHexagonState *env, int slot, int mmu_idx)
static void probe_store(CPUHexagonState *env, int slot, int mmu_idx,
bool is_predicated)
{
if (!(env->slot_cancelled & (1 << slot))) {
if (!is_predicated || !(env->slot_cancelled & (1 << slot))) {
size1u_t width = env->mem_log_stores[slot].width;
target_ulong va = env->mem_log_stores[slot].va;
uintptr_t ra = GETPC();
@ -461,9 +439,12 @@ void HELPER(probe_noshuf_load)(CPUHexagonState *env, target_ulong va,
}
/* Called during packet commit when there are two scalar stores */
void HELPER(probe_pkt_scalar_store_s0)(CPUHexagonState *env, int mmu_idx)
void HELPER(probe_pkt_scalar_store_s0)(CPUHexagonState *env, int args)
{
probe_store(env, 0, mmu_idx);
int mmu_idx = FIELD_EX32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX);
bool is_predicated =
FIELD_EX32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED);
probe_store(env, 0, mmu_idx, is_predicated);
}
void HELPER(probe_hvx_stores)(CPUHexagonState *env, int mmu_idx)
@ -510,15 +491,18 @@ void HELPER(probe_hvx_stores)(CPUHexagonState *env, int mmu_idx)
void HELPER(probe_pkt_scalar_hvx_stores)(CPUHexagonState *env, int mask,
int mmu_idx)
{
bool has_st0 = (mask >> 0) & 1;
bool has_st1 = (mask >> 1) & 1;
bool has_hvx_stores = (mask >> 2) & 1;
bool has_st0 = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0);
bool has_st1 = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1);
bool has_hvx_stores =
FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_HVX_STORES);
bool s0_is_pred = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, S0_IS_PRED);
bool s1_is_pred = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, S1_IS_PRED);
if (has_st0) {
probe_store(env, 0, mmu_idx);
probe_store(env, 0, mmu_idx, s0_is_pred);
}
if (has_st1) {
probe_store(env, 1, mmu_idx);
probe_store(env, 1, mmu_idx, s1_is_pred);
}
if (has_hvx_stores) {
HELPER(probe_hvx_stores)(env, mmu_idx);
@ -1193,7 +1177,7 @@ float32 HELPER(sffms)(CPUHexagonState *env, float32 RxV,
{
float32 neg_RsV;
arch_fpop_start(env);
neg_RsV = float32_sub(float32_zero, RsV, &env->fp_status);
neg_RsV = float32_set_sign(RsV, float32_is_neg(RsV) ? 0 : 1);
RxV = internal_fmafx(neg_RsV, RtV, RxV, 0, &env->fp_status);
arch_fpop_end(env);
return RxV;
@ -1468,12 +1452,6 @@ void HELPER(vwhist128qm)(CPUHexagonState *env, int32_t uiV)
}
}
void cancel_slot(CPUHexagonState *env, uint32_t slot)
{
HEX_DEBUG_LOG("Slot %d cancelled\n", slot);
env->slot_cancelled |= (1 << slot);
}
/* These macros can be referenced in the generated helper functions */
#define warn(...) /* Nothing */
#define fatal(...) g_assert_not_reached();

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -19,7 +19,6 @@
#define HEXAGON_OP_HELPER_H
/* Misc functions */
void cancel_slot(CPUHexagonState *env, uint32_t slot);
void write_new_pc(CPUHexagonState *env, bool pkt_has_multi_cof, target_ulong addr);
uint8_t mem_load1(CPUHexagonState *env, uint32_t slot, target_ulong vaddr);

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -29,6 +29,15 @@
#include "translate.h"
#include "printinsn.h"
#include "analyze_funcs_generated.c.inc"
typedef void (*AnalyzeInsn)(DisasContext *ctx);
static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
#define OPCODE(X) [X] = analyze_##X
#include "opcodes_def_generated.h.inc"
#undef OPCODE
};
TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
TCGv hex_pred[NUM_PREGS];
TCGv hex_this_PC;
@ -47,8 +56,6 @@ TCGv hex_dczero_addr;
TCGv hex_llsc_addr;
TCGv hex_llsc_val;
TCGv_i64 hex_llsc_val_i64;
TCGv hex_VRegs_updated;
TCGv hex_QRegs_updated;
TCGv hex_vstore_addr[VSTORES_MAX];
TCGv hex_vstore_size[VSTORES_MAX];
TCGv hex_vstore_pending[VSTORES_MAX];
@ -239,7 +246,15 @@ static bool check_for_attrib(Packet *pkt, int attrib)
static bool need_slot_cancelled(Packet *pkt)
{
return check_for_attrib(pkt, A_CONDEXEC);
/* We only need slot_cancelled for conditional store instructions */
for (int i = 0; i < pkt->num_insns; i++) {
uint16_t opcode = pkt->insn[i].opcode;
if (GET_ATTRIB(opcode, A_CONDEXEC) &&
GET_ATTRIB(opcode, A_SCALAR_STORE)) {
return true;
}
}
return false;
}
static bool need_pred_written(Packet *pkt)
@ -265,6 +280,77 @@ static bool need_next_PC(DisasContext *ctx)
return false;
}
/*
* The opcode_analyze functions mark most of the writes in a packet
* However, there are some implicit writes marked as attributes
* of the applicable instructions.
*/
static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
{
uint16_t opcode = ctx->insn->opcode;
if (GET_ATTRIB(opcode, attrib)) {
/*
* USR is used to set overflow and FP exceptions,
* so treat it as conditional
*/
bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
rnum == HEX_REG_USR;
/* LC0/LC1 is conditionally written by endloop instructions */
if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
(opcode == J2_endloop0 ||
opcode == J2_endloop1 ||
opcode == J2_endloop01)) {
is_predicated = true;
}
ctx_log_reg_write(ctx, rnum, is_predicated);
}
}
static void mark_implicit_reg_writes(DisasContext *ctx)
{
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
}
static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
{
if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
ctx_log_pred_write(ctx, pnum);
}
}
static void mark_implicit_pred_writes(DisasContext *ctx)
{
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
}
static void analyze_packet(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
ctx->need_pkt_has_store_s1 = false;
for (int i = 0; i < pkt->num_insns; i++) {
Insn *insn = &pkt->insn[i];
ctx->insn = insn;
if (opcode_analyze[insn->opcode]) {
opcode_analyze[insn->opcode](ctx);
}
mark_implicit_reg_writes(ctx);
mark_implicit_pred_writes(ctx);
}
}
static void gen_start_packet(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
@ -275,6 +361,7 @@ static void gen_start_packet(DisasContext *ctx)
ctx->next_PC = next_PC;
ctx->reg_log_idx = 0;
bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
ctx->preg_log_idx = 0;
bitmap_zero(ctx->pregs_written, NUM_PREGS);
ctx->future_vregs_idx = 0;
@ -283,14 +370,27 @@ static void gen_start_packet(DisasContext *ctx)
bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
bitmap_zero(ctx->vregs_updated, NUM_VREGS);
bitmap_zero(ctx->vregs_select, NUM_VREGS);
bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS);
bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS);
ctx->qreg_log_idx = 0;
for (i = 0; i < STORES_MAX; i++) {
ctx->store_width[i] = 0;
}
tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1);
ctx->s1_store_processed = false;
ctx->pre_commit = true;
analyze_packet(ctx);
if (ctx->need_pkt_has_store_s1) {
tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1);
}
/*
* pregs_written is used both in the analyze phase as well as the code
* gen phase, so clear it again.
*/
bitmap_zero(ctx->pregs_written, NUM_PREGS);
if (HEX_DEBUG) {
/* Handy place to set a breakpoint before the packet executes */
gen_helper_debug_start_packet(cpu_env);
@ -313,9 +413,42 @@ static void gen_start_packet(DisasContext *ctx)
tcg_gen_movi_tl(hex_pred_written, 0);
}
if (pkt->pkt_has_hvx) {
tcg_gen_movi_tl(hex_VRegs_updated, 0);
tcg_gen_movi_tl(hex_QRegs_updated, 0);
/* Preload the predicated registers into hex_new_value[i] */
if (!bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
while (i < TOTAL_PER_THREAD_REGS) {
tcg_gen_mov_tl(hex_new_value[i], hex_gpr[i]);
i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
i + 1);
}
}
/* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */
if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) {
int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS);
while (i < NUM_VREGS) {
const intptr_t VdV_off =
ctx_future_vreg_off(ctx, i, 1, true);
intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
tcg_gen_gvec_mov(MO_64, VdV_off,
src_off,
sizeof(MMVector),
sizeof(MMVector));
i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1);
}
}
if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) {
int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS);
while (i < NUM_VREGS) {
const intptr_t VdV_off =
ctx_tmp_vreg_off(ctx, i, 1, true);
intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
tcg_gen_gvec_mov(MO_64, VdV_off,
src_off,
sizeof(MMVector),
sizeof(MMVector));
i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1);
}
}
}
@ -336,66 +469,6 @@ bool is_gather_store_insn(DisasContext *ctx)
return false;
}
/*
* The LOG_*_WRITE macros mark most of the writes in a packet
* However, there are some implicit writes marked as attributes
* of the applicable instructions.
*/
static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
{
uint16_t opcode = ctx->insn->opcode;
if (GET_ATTRIB(opcode, attrib)) {
/*
* USR is used to set overflow and FP exceptions,
* so treat it as conditional
*/
bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
rnum == HEX_REG_USR;
/* LC0/LC1 is conditionally written by endloop instructions */
if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
(opcode == J2_endloop0 ||
opcode == J2_endloop1 ||
opcode == J2_endloop01)) {
is_predicated = true;
}
if (is_predicated && !is_preloaded(ctx, rnum)) {
tcg_gen_mov_tl(hex_new_value[rnum], hex_gpr[rnum]);
}
ctx_log_reg_write(ctx, rnum);
}
}
static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
{
if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
ctx_log_pred_write(ctx, pnum);
}
}
static void mark_implicit_reg_writes(DisasContext *ctx)
{
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
}
static void mark_implicit_pred_writes(DisasContext *ctx)
{
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
}
static void mark_store_width(DisasContext *ctx)
{
uint16_t opcode = ctx->insn->opcode;
@ -423,9 +496,7 @@ static void mark_store_width(DisasContext *ctx)
static void gen_insn(DisasContext *ctx)
{
if (ctx->insn->generate) {
mark_implicit_reg_writes(ctx);
ctx->insn->generate(ctx);
mark_implicit_pred_writes(ctx);
mark_store_width(ctx);
} else {
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
@ -646,65 +717,31 @@ static void gen_commit_hvx(DisasContext *ctx)
/*
* for (i = 0; i < ctx->vreg_log_idx; i++) {
* int rnum = ctx->vreg_log[i];
* if (ctx->vreg_is_predicated[i]) {
* if (env->VRegs_updated & (1 << rnum)) {
* env->VRegs[rnum] = env->future_VRegs[rnum];
* }
* } else {
* env->VRegs[rnum] = env->future_VRegs[rnum];
* }
* env->VRegs[rnum] = env->future_VRegs[rnum];
* }
*/
for (i = 0; i < ctx->vreg_log_idx; i++) {
int rnum = ctx->vreg_log[i];
bool is_predicated = ctx->vreg_is_predicated[i];
intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
size_t size = sizeof(MMVector);
if (is_predicated) {
TCGv cmp = tcg_temp_new();
TCGLabel *label_skip = gen_new_label();
tcg_gen_andi_tl(cmp, hex_VRegs_updated, 1 << rnum);
tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
gen_set_label(label_skip);
} else {
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
}
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
}
/*
* for (i = 0; i < ctx->qreg_log_idx; i++) {
* int rnum = ctx->qreg_log[i];
* if (ctx->qreg_is_predicated[i]) {
* if (env->QRegs_updated) & (1 << rnum)) {
* env->QRegs[rnum] = env->future_QRegs[rnum];
* }
* } else {
* env->QRegs[rnum] = env->future_QRegs[rnum];
* }
* env->QRegs[rnum] = env->future_QRegs[rnum];
* }
*/
for (i = 0; i < ctx->qreg_log_idx; i++) {
int rnum = ctx->qreg_log[i];
bool is_predicated = ctx->qreg_is_predicated[i];
intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
size_t size = sizeof(MMQReg);
if (is_predicated) {
TCGv cmp = tcg_temp_new();
TCGLabel *label_skip = gen_new_label();
tcg_gen_andi_tl(cmp, hex_QRegs_updated, 1 << rnum);
tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
gen_set_label(label_skip);
} else {
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
}
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
}
if (pkt_has_hvx_store(ctx->pkt)) {
@ -775,13 +812,27 @@ static void gen_commit_packet(DisasContext *ctx)
TCGv mask_tcgv;
if (has_store_s0) {
mask |= (1 << 0);
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1);
}
if (has_store_s1) {
mask |= (1 << 1);
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1);
}
if (has_hvx_store) {
mask |= (1 << 2);
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
HAS_HVX_STORES, 1);
}
if (has_store_s0 && slot_is_predicated(pkt, 0)) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
S0_IS_PRED, 1);
}
if (has_store_s1 && slot_is_predicated(pkt, 1)) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
S1_IS_PRED, 1);
}
mask_tcgv = tcg_constant_tl(mask);
gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, mask_tcgv, mem_idx);
@ -791,8 +842,15 @@ static void gen_commit_packet(DisasContext *ctx)
* process_store_log will execute the slot 1 store first,
* so we only have to probe the store in slot 0
*/
TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
gen_helper_probe_pkt_scalar_store_s0(cpu_env, mem_idx);
int args = 0;
args =
FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx);
if (slot_is_predicated(pkt, 0)) {
args =
FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1);
}
TCGv args_tcgv = tcg_constant_tl(args);
gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv);
}
process_store_log(ctx);
@ -1029,10 +1087,6 @@ void hexagon_translate_init(void)
offsetof(CPUHexagonState, llsc_val), "llsc_val");
hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
hex_VRegs_updated = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, VRegs_updated), "VRegs_updated");
hex_QRegs_updated = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, QRegs_updated), "QRegs_updated");
for (i = 0; i < STORES_MAX; i++) {
snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
hex_store_addr[i] = tcg_global_mem_new(cpu_env,

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -38,6 +38,7 @@ typedef struct DisasContext {
int reg_log[REG_WRITES_MAX];
int reg_log_idx;
DECLARE_BITMAP(regs_written, TOTAL_PER_THREAD_REGS);
DECLARE_BITMAP(predicated_regs, TOTAL_PER_THREAD_REGS);
int preg_log[PRED_WRITES_MAX];
int preg_log_idx;
DECLARE_BITMAP(pregs_written, NUM_PREGS);
@ -48,52 +49,54 @@ typedef struct DisasContext {
int tmp_vregs_idx;
int tmp_vregs_num[VECTOR_TEMPS_MAX];
int vreg_log[NUM_VREGS];
bool vreg_is_predicated[NUM_VREGS];
int vreg_log_idx;
DECLARE_BITMAP(vregs_updated_tmp, NUM_VREGS);
DECLARE_BITMAP(vregs_updated, NUM_VREGS);
DECLARE_BITMAP(vregs_select, NUM_VREGS);
DECLARE_BITMAP(predicated_future_vregs, NUM_VREGS);
DECLARE_BITMAP(predicated_tmp_vregs, NUM_VREGS);
int qreg_log[NUM_QREGS];
bool qreg_is_predicated[NUM_QREGS];
int qreg_log_idx;
bool pre_commit;
TCGCond branch_cond;
target_ulong branch_dest;
bool is_tight_loop;
bool need_pkt_has_store_s1;
} DisasContext;
static inline void ctx_log_reg_write(DisasContext *ctx, int rnum)
{
if (test_bit(rnum, ctx->regs_written)) {
HEX_DEBUG_LOG("WARNING: Multiple writes to r%d\n", rnum);
}
ctx->reg_log[ctx->reg_log_idx] = rnum;
ctx->reg_log_idx++;
set_bit(rnum, ctx->regs_written);
}
static inline void ctx_log_reg_write_pair(DisasContext *ctx, int rnum)
{
ctx_log_reg_write(ctx, rnum);
ctx_log_reg_write(ctx, rnum + 1);
}
static inline void ctx_log_pred_write(DisasContext *ctx, int pnum)
{
ctx->preg_log[ctx->preg_log_idx] = pnum;
ctx->preg_log_idx++;
set_bit(pnum, ctx->pregs_written);
if (!test_bit(pnum, ctx->pregs_written)) {
ctx->preg_log[ctx->preg_log_idx] = pnum;
ctx->preg_log_idx++;
set_bit(pnum, ctx->pregs_written);
}
}
static inline bool is_preloaded(DisasContext *ctx, int num)
static inline void ctx_log_reg_write(DisasContext *ctx, int rnum,
bool is_predicated)
{
return test_bit(num, ctx->regs_written);
if (rnum == HEX_REG_P3_0_ALIASED) {
for (int i = 0; i < NUM_PREGS; i++) {
ctx_log_pred_write(ctx, i);
}
} else {
if (!test_bit(rnum, ctx->regs_written)) {
ctx->reg_log[ctx->reg_log_idx] = rnum;
ctx->reg_log_idx++;
set_bit(rnum, ctx->regs_written);
}
if (is_predicated) {
set_bit(rnum, ctx->predicated_regs);
}
}
}
static inline bool is_vreg_preloaded(DisasContext *ctx, int num)
static inline void ctx_log_reg_write_pair(DisasContext *ctx, int rnum,
bool is_predicated)
{
return test_bit(num, ctx->vregs_updated) ||
test_bit(num, ctx->vregs_updated_tmp);
ctx_log_reg_write(ctx, rnum, is_predicated);
ctx_log_reg_write(ctx, rnum + 1, is_predicated);
}
intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
@ -106,17 +109,25 @@ static inline void ctx_log_vreg_write(DisasContext *ctx,
bool is_predicated)
{
if (type != EXT_TMP) {
ctx->vreg_log[ctx->vreg_log_idx] = rnum;
ctx->vreg_is_predicated[ctx->vreg_log_idx] = is_predicated;
ctx->vreg_log_idx++;
if (!test_bit(rnum, ctx->vregs_updated)) {
ctx->vreg_log[ctx->vreg_log_idx] = rnum;
ctx->vreg_log_idx++;
set_bit(rnum, ctx->vregs_updated);
}
set_bit(rnum, ctx->vregs_updated);
if (is_predicated) {
set_bit(rnum, ctx->predicated_future_vregs);
}
}
if (type == EXT_NEW) {
set_bit(rnum, ctx->vregs_select);
}
if (type == EXT_TMP) {
set_bit(rnum, ctx->vregs_updated_tmp);
if (is_predicated) {
set_bit(rnum, ctx->predicated_tmp_vregs);
}
}
}
@ -129,10 +140,9 @@ static inline void ctx_log_vreg_write_pair(DisasContext *ctx,
}
static inline void ctx_log_qreg_write(DisasContext *ctx,
int rnum, bool is_predicated)
int rnum)
{
ctx->qreg_log[ctx->qreg_log_idx] = rnum;
ctx->qreg_is_predicated[ctx->qreg_log_idx] = is_predicated;
ctx->qreg_log_idx++;
}
@ -153,12 +163,20 @@ extern TCGv hex_dczero_addr;
extern TCGv hex_llsc_addr;
extern TCGv hex_llsc_val;
extern TCGv_i64 hex_llsc_val_i64;
extern TCGv hex_VRegs_updated;
extern TCGv hex_QRegs_updated;
extern TCGv hex_vstore_addr[VSTORES_MAX];
extern TCGv hex_vstore_size[VSTORES_MAX];
extern TCGv hex_vstore_pending[VSTORES_MAX];
bool is_gather_store_insn(DisasContext *ctx);
void process_store(DisasContext *ctx, int slot_num);
FIELD(PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, 0, 2)
FIELD(PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 2, 1)
FIELD(PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 0, 1)
FIELD(PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1, 1)
FIELD(PROBE_PKT_SCALAR_HVX_STORES, HAS_HVX_STORES, 2, 1)
FIELD(PROBE_PKT_SCALAR_HVX_STORES, S0_IS_PRED, 3, 1)
FIELD(PROBE_PKT_SCALAR_HVX_STORES, S1_IS_PRED, 4, 1)
#endif

View File

@ -1,5 +1,5 @@
##
## Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
## Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
@ -45,6 +45,10 @@ HEX_TESTS += fpstuff
HEX_TESTS += overflow
HEX_TESTS += signal_context
HEX_TESTS += reg_mut
HEX_TESTS += vector_add_int
HEX_TESTS += scatter_gather
HEX_TESTS += hvx_misc
HEX_TESTS += hvx_histogram
HEX_TESTS += test_abs
HEX_TESTS += test_bitcnt
@ -78,3 +82,10 @@ TESTS += $(HEX_TESTS)
usr: usr.c
$(CC) $(CFLAGS) -mv67t -O2 -Wno-inline-asm -Wno-expansion-to-defined $< -o $@ $(LDFLAGS)
scatter_gather: CFLAGS += -mhvx
vector_add_int: CFLAGS += -mhvx -fvectorize
hvx_misc: CFLAGS += -mhvx
hvx_histogram: CFLAGS += -mhvx -Wno-gnu-folding-constant
hvx_histogram: hvx_histogram.c hvx_histogram_row.S
$(CC) $(CFLAGS) $(CROSS_CC_GUEST_CFLAGS) $^ -o $@ $(LDFLAGS)

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2020-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2020-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -40,6 +40,7 @@ const int SF_HEX_NAN = 0xffffffff;
const int SF_small_neg = 0xab98fba8;
const int SF_denorm = 0x00000001;
const int SF_random = 0x346001d6;
const int SF_neg_zero = 0x80000000;
const long long DF_QNaN = 0x7ff8000000000000ULL;
const long long DF_SNaN = 0x7ff7000000000000ULL;
@ -536,6 +537,33 @@ static void check_sffixupd(void)
check32(result, 0x146001d6);
}
static void check_sffms(void)
{
int result;
/* Check that sffms properly deals with -0 */
result = SF_neg_zero;
asm ("%0 -= sfmpy(%1 , %2)\n\t"
: "+r"(result)
: "r"(SF_ZERO), "r"(SF_ZERO)
: "r12", "r8");
check32(result, SF_neg_zero);
result = SF_ZERO;
asm ("%0 -= sfmpy(%1 , %2)\n\t"
: "+r"(result)
: "r"(SF_neg_zero), "r"(SF_ZERO)
: "r12", "r8");
check32(result, SF_ZERO);
result = SF_ZERO;
asm ("%0 -= sfmpy(%1 , %2)\n\t"
: "+r"(result)
: "r"(SF_ZERO), "r"(SF_neg_zero)
: "r12", "r8");
check32(result, SF_ZERO);
}
static void check_float2int_convs()
{
int res32;
@ -688,6 +716,7 @@ int main()
check_invsqrta();
check_sffixupn();
check_sffixupd();
check_sffms();
check_float2int_convs();
puts(err ? "FAIL" : "PASS");

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -65,7 +65,7 @@ static inline void creg_alias(int cval, PRegs *pregs)
: "=r"(pregs->pregs.p0), "=r"(pregs->pregs.p1),
"=r"(pregs->pregs.p2), "=r"(pregs->pregs.p3)
: "r"(cval)
: "p0", "p1", "p2", "p3");
: "c4", "p0", "p1", "p2", "p3");
}
int err;
@ -92,7 +92,7 @@ static inline void creg_alias_pair(unsigned int cval, PRegs *pregs)
: "=r"(pregs->pregs.p0), "=r"(pregs->pregs.p1),
"=r"(pregs->pregs.p2), "=r"(pregs->pregs.p3), "=r"(c5)
: "r"(cval_pair)
: "p0", "p1", "p2", "p3");
: "c4", "c5", "p0", "p1", "p2", "p3");
check(c5, 0xdeadbeef);
}
@ -117,7 +117,7 @@ static void test_packet(void)
"}\n\t"
: "+r"(result)
: "r"(0xffffffff), "r"(0xff00ffff), "r"(0x837ed653)
: "p0", "p1", "p2", "p3");
: "c4", "p0", "p1", "p2", "p3");
check(result, old_val);
/* Test a predicated store */
@ -129,7 +129,7 @@ static void test_packet(void)
"}\n\t"
:
: "r"(0), "r"(0xffffffff), "r"(&result)
: "p0", "p1", "p2", "p3", "memory");
: "c4", "p0", "p1", "p2", "p3", "memory");
check(result, 0x0);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -40,47 +40,6 @@ typedef long HVX_VectorPair __attribute__((__vector_size__(256)))
typedef long HVX_VectorPred __attribute__((__vector_size__(128)))
__attribute__((aligned(128)));
#define VSCATTER_16(BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermh_128B((int)BASE, RGN, OFF, VALS)
#define VSCATTER_16_MASKED(MASK, BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermhq_128B(MASK, (int)BASE, RGN, OFF, VALS)
#define VSCATTER_32(BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermw_128B((int)BASE, RGN, OFF, VALS)
#define VSCATTER_32_MASKED(MASK, BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermwq_128B(MASK, (int)BASE, RGN, OFF, VALS)
#define VSCATTER_16_32(BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermhw_128B((int)BASE, RGN, OFF, VALS)
#define VSCATTER_16_32_MASKED(MASK, BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermhwq_128B(MASK, (int)BASE, RGN, OFF, VALS)
#define VSCATTER_16_ACC(BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermh_add_128B((int)BASE, RGN, OFF, VALS)
#define VSCATTER_32_ACC(BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermw_add_128B((int)BASE, RGN, OFF, VALS)
#define VSCATTER_16_32_ACC(BASE, RGN, OFF, VALS) \
__builtin_HEXAGON_V6_vscattermhw_add_128B((int)BASE, RGN, OFF, VALS)
#define VGATHER_16(DSTADDR, BASE, RGN, OFF) \
__builtin_HEXAGON_V6_vgathermh_128B(DSTADDR, (int)BASE, RGN, OFF)
#define VGATHER_16_MASKED(DSTADDR, MASK, BASE, RGN, OFF) \
__builtin_HEXAGON_V6_vgathermhq_128B(DSTADDR, MASK, (int)BASE, RGN, OFF)
#define VGATHER_32(DSTADDR, BASE, RGN, OFF) \
__builtin_HEXAGON_V6_vgathermw_128B(DSTADDR, (int)BASE, RGN, OFF)
#define VGATHER_32_MASKED(DSTADDR, MASK, BASE, RGN, OFF) \
__builtin_HEXAGON_V6_vgathermwq_128B(DSTADDR, MASK, (int)BASE, RGN, OFF)
#define VGATHER_16_32(DSTADDR, BASE, RGN, OFF) \
__builtin_HEXAGON_V6_vgathermhw_128B(DSTADDR, (int)BASE, RGN, OFF)
#define VGATHER_16_32_MASKED(DSTADDR, MASK, BASE, RGN, OFF) \
__builtin_HEXAGON_V6_vgathermhwq_128B(DSTADDR, MASK, (int)BASE, RGN, OFF)
#define VSHUFF_H(V) \
__builtin_HEXAGON_V6_vshuffh_128B(V)
#define VSPLAT_H(X) \
__builtin_HEXAGON_V6_lvsplath_128B(X)
#define VAND_VAL(PRED, VAL) \
__builtin_HEXAGON_V6_vandvrt_128B(PRED, VAL)
#define VDEAL_H(V) \
__builtin_HEXAGON_V6_vdealh_128B(V)
int err;
/* define the number of rows/cols in a square matrix */
@ -108,22 +67,22 @@ unsigned short vscatter16_32_ref[SCATTER_BUFFER_SIZE];
unsigned short vgather16_32_ref[MATRIX_SIZE];
/* declare the arrays of offsets */
unsigned short half_offsets[MATRIX_SIZE];
unsigned int word_offsets[MATRIX_SIZE];
unsigned short half_offsets[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned int word_offsets[MATRIX_SIZE] __attribute__((aligned(128)));
/* declare the arrays of values */
unsigned short half_values[MATRIX_SIZE];
unsigned short half_values_acc[MATRIX_SIZE];
unsigned short half_values_masked[MATRIX_SIZE];
unsigned int word_values[MATRIX_SIZE];
unsigned int word_values_acc[MATRIX_SIZE];
unsigned int word_values_masked[MATRIX_SIZE];
unsigned short half_values[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned short half_values_acc[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned short half_values_masked[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned int word_values[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned int word_values_acc[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned int word_values_masked[MATRIX_SIZE] __attribute__((aligned(128)));
/* declare the arrays of predicates */
unsigned short half_predicates[MATRIX_SIZE];
unsigned int word_predicates[MATRIX_SIZE];
unsigned short half_predicates[MATRIX_SIZE] __attribute__((aligned(128)));
unsigned int word_predicates[MATRIX_SIZE] __attribute__((aligned(128)));
/* make this big enough for all the intrinsics */
/* make this big enough for all the operations */
const size_t region_len = sizeof(vtcm);
/* optionally add sync instructions */
@ -261,164 +220,201 @@ void create_offsets_values_preds_16_32(void)
}
}
/* scatter the 16 bit elements using intrinsics */
/* scatter the 16 bit elements using HVX */
void vector_scatter_16(void)
{
/* copy the offsets and values to vectors */
HVX_Vector offsets = *(HVX_Vector *)half_offsets;
HVX_Vector values = *(HVX_Vector *)half_values;
VSCATTER_16(&vtcm.vscatter16, region_len, offsets, values);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%3 + #0)\n\t"
"vscatter(%0, m0, v0.h).h = v1\n\t"
: : "r"(vtcm.vscatter16), "r"(region_len),
"r"(half_offsets), "r"(half_values)
: "m0", "v0", "v1", "memory");
sync_scatter(vtcm.vscatter16);
}
/* scatter-accumulate the 16 bit elements using intrinsics */
/* scatter-accumulate the 16 bit elements using HVX */
void vector_scatter_16_acc(void)
{
/* copy the offsets and values to vectors */
HVX_Vector offsets = *(HVX_Vector *)half_offsets;
HVX_Vector values = *(HVX_Vector *)half_values_acc;
VSCATTER_16_ACC(&vtcm.vscatter16, region_len, offsets, values);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%3 + #0)\n\t"
"vscatter(%0, m0, v0.h).h += v1\n\t"
: : "r"(vtcm.vscatter16), "r"(region_len),
"r"(half_offsets), "r"(half_values_acc)
: "m0", "v0", "v1", "memory");
sync_scatter(vtcm.vscatter16);
}
/* scatter the 16 bit elements using intrinsics */
/* masked scatter the 16 bit elements using HVX */
void vector_scatter_16_masked(void)
{
/* copy the offsets and values to vectors */
HVX_Vector offsets = *(HVX_Vector *)half_offsets;
HVX_Vector values = *(HVX_Vector *)half_values_masked;
HVX_Vector pred_reg = *(HVX_Vector *)half_predicates;
HVX_VectorPred preds = VAND_VAL(pred_reg, ~0);
VSCATTER_16_MASKED(preds, &vtcm.vscatter16, region_len, offsets, values);
asm ("r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"v1 = vmem(%4 + #0)\n\t"
"if (q0) vscatter(%1, m0, v0.h).h = v1\n\t"
: : "r"(half_predicates), "r"(vtcm.vscatter16), "r"(region_len),
"r"(half_offsets), "r"(half_values_masked)
: "r1", "q0", "m0", "q0", "v0", "v1", "memory");
sync_scatter(vtcm.vscatter16);
}
/* scatter the 32 bit elements using intrinsics */
/* scatter the 32 bit elements using HVX */
void vector_scatter_32(void)
{
/* copy the offsets and values to vectors */
HVX_Vector offsetslo = *(HVX_Vector *)word_offsets;
HVX_Vector offsetshi = *(HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector valueslo = *(HVX_Vector *)word_values;
HVX_Vector valueshi = *(HVX_Vector *)&word_values[MATRIX_SIZE / 2];
HVX_Vector *offsetslo = (HVX_Vector *)word_offsets;
HVX_Vector *offsetshi = (HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector *valueslo = (HVX_Vector *)word_values;
HVX_Vector *valueshi = (HVX_Vector *)&word_values[MATRIX_SIZE / 2];
VSCATTER_32(&vtcm.vscatter32, region_len, offsetslo, valueslo);
VSCATTER_32(&vtcm.vscatter32, region_len, offsetshi, valueshi);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%3 + #0)\n\t"
"vscatter(%0, m0, v0.w).w = v1\n\t"
: : "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetslo), "r"(valueslo)
: "m0", "v0", "v1", "memory");
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%3 + #0)\n\t"
"vscatter(%0, m0, v0.w).w = v1\n\t"
: : "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetshi), "r"(valueshi)
: "m0", "v0", "v1", "memory");
sync_scatter(vtcm.vscatter32);
}
/* scatter-acc the 32 bit elements using intrinsics */
/* scatter-accumulate the 32 bit elements using HVX */
void vector_scatter_32_acc(void)
{
/* copy the offsets and values to vectors */
HVX_Vector offsetslo = *(HVX_Vector *)word_offsets;
HVX_Vector offsetshi = *(HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector valueslo = *(HVX_Vector *)word_values_acc;
HVX_Vector valueshi = *(HVX_Vector *)&word_values_acc[MATRIX_SIZE / 2];
HVX_Vector *offsetslo = (HVX_Vector *)word_offsets;
HVX_Vector *offsetshi = (HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector *valueslo = (HVX_Vector *)word_values_acc;
HVX_Vector *valueshi = (HVX_Vector *)&word_values_acc[MATRIX_SIZE / 2];
VSCATTER_32_ACC(&vtcm.vscatter32, region_len, offsetslo, valueslo);
VSCATTER_32_ACC(&vtcm.vscatter32, region_len, offsetshi, valueshi);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%3 + #0)\n\t"
"vscatter(%0, m0, v0.w).w += v1\n\t"
: : "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetslo), "r"(valueslo)
: "m0", "v0", "v1", "memory");
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%3 + #0)\n\t"
"vscatter(%0, m0, v0.w).w += v1\n\t"
: : "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetshi), "r"(valueshi)
: "m0", "v0", "v1", "memory");
sync_scatter(vtcm.vscatter32);
}
/* scatter the 32 bit elements using intrinsics */
/* masked scatter the 32 bit elements using HVX */
void vector_scatter_32_masked(void)
{
/* copy the offsets and values to vectors */
HVX_Vector offsetslo = *(HVX_Vector *)word_offsets;
HVX_Vector offsetshi = *(HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector valueslo = *(HVX_Vector *)word_values_masked;
HVX_Vector valueshi = *(HVX_Vector *)&word_values_masked[MATRIX_SIZE / 2];
HVX_Vector pred_reglo = *(HVX_Vector *)word_predicates;
HVX_Vector pred_reghi = *(HVX_Vector *)&word_predicates[MATRIX_SIZE / 2];
HVX_VectorPred predslo = VAND_VAL(pred_reglo, ~0);
HVX_VectorPred predshi = VAND_VAL(pred_reghi, ~0);
HVX_Vector *offsetslo = (HVX_Vector *)word_offsets;
HVX_Vector *offsetshi = (HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector *valueslo = (HVX_Vector *)word_values_masked;
HVX_Vector *valueshi = (HVX_Vector *)&word_values_masked[MATRIX_SIZE / 2];
HVX_Vector *predslo = (HVX_Vector *)word_predicates;
HVX_Vector *predshi = (HVX_Vector *)&word_predicates[MATRIX_SIZE / 2];
VSCATTER_32_MASKED(predslo, &vtcm.vscatter32, region_len, offsetslo,
valueslo);
VSCATTER_32_MASKED(predshi, &vtcm.vscatter32, region_len, offsetshi,
valueshi);
asm ("r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"v1 = vmem(%4 + #0)\n\t"
"if (q0) vscatter(%1, m0, v0.w).w = v1\n\t"
: : "r"(predslo), "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetslo), "r"(valueslo)
: "r1", "q0", "m0", "q0", "v0", "v1", "memory");
asm ("r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"v1 = vmem(%4 + #0)\n\t"
"if (q0) vscatter(%1, m0, v0.w).w = v1\n\t"
: : "r"(predshi), "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetshi), "r"(valueshi)
: "r1", "q0", "m0", "q0", "v0", "v1", "memory");
sync_scatter(vtcm.vscatter16);
sync_scatter(vtcm.vscatter32);
}
/* scatter the 16 bit elements with 32 bit offsets using intrinsics */
/* scatter the 16 bit elements with 32 bit offsets using HVX */
void vector_scatter_16_32(void)
{
HVX_VectorPair offsets;
HVX_Vector values;
/* get the word offsets in a vector pair */
offsets = *(HVX_VectorPair *)word_offsets;
/* these values need to be shuffled for the scatter */
values = *(HVX_Vector *)half_values;
values = VSHUFF_H(values);
VSCATTER_16_32(&vtcm.vscatter16_32, region_len, offsets, values);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%2 + #1)\n\t"
"v2 = vmem(%3 + #0)\n\t"
"v2.h = vshuff(v2.h)\n\t" /* shuffle the values for the scatter */
"vscatter(%0, m0, v1:0.w).h = v2\n\t"
: : "r"(vtcm.vscatter16_32), "r"(region_len),
"r"(word_offsets), "r"(half_values)
: "m0", "v0", "v1", "v2", "memory");
sync_scatter(vtcm.vscatter16_32);
}
/* scatter-acc the 16 bit elements with 32 bit offsets using intrinsics */
/* scatter-accumulate the 16 bit elements with 32 bit offsets using HVX */
void vector_scatter_16_32_acc(void)
{
HVX_VectorPair offsets;
HVX_Vector values;
/* get the word offsets in a vector pair */
offsets = *(HVX_VectorPair *)word_offsets;
/* these values need to be shuffled for the scatter */
values = *(HVX_Vector *)half_values_acc;
values = VSHUFF_H(values);
VSCATTER_16_32_ACC(&vtcm.vscatter16_32, region_len, offsets, values);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%2 + #1)\n\t"
"v2 = vmem(%3 + #0)\n\t" \
"v2.h = vshuff(v2.h)\n\t" /* shuffle the values for the scatter */
"vscatter(%0, m0, v1:0.w).h += v2\n\t"
: : "r"(vtcm.vscatter16_32), "r"(region_len),
"r"(word_offsets), "r"(half_values_acc)
: "m0", "v0", "v1", "v2", "memory");
sync_scatter(vtcm.vscatter16_32);
}
/* masked scatter the 16 bit elements with 32 bit offsets using intrinsics */
/* masked scatter the 16 bit elements with 32 bit offsets using HVX */
void vector_scatter_16_32_masked(void)
{
HVX_VectorPair offsets;
HVX_Vector values;
HVX_Vector pred_reg;
/* get the word offsets in a vector pair */
offsets = *(HVX_VectorPair *)word_offsets;
/* these values need to be shuffled for the scatter */
values = *(HVX_Vector *)half_values_masked;
values = VSHUFF_H(values);
pred_reg = *(HVX_Vector *)half_predicates;
pred_reg = VSHUFF_H(pred_reg);
HVX_VectorPred preds = VAND_VAL(pred_reg, ~0);
VSCATTER_16_32_MASKED(preds, &vtcm.vscatter16_32, region_len, offsets,
values);
asm ("r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"v0.h = vshuff(v0.h)\n\t" /* shuffle the predicates */
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"v1 = vmem(%3 + #1)\n\t"
"v2 = vmem(%4 + #0)\n\t" \
"v2.h = vshuff(v2.h)\n\t" /* shuffle the values for the scatter */
"if (q0) vscatter(%1, m0, v1:0.w).h = v2\n\t"
: : "r"(half_predicates), "r"(vtcm.vscatter16_32), "r"(region_len),
"r"(word_offsets), "r"(half_values_masked)
: "r1", "q0", "m0", "v0", "v1", "v2", "memory");
sync_scatter(vtcm.vscatter16_32);
}
/* gather the elements from the scatter16 buffer */
/* gather the elements from the scatter16 buffer using HVX */
void vector_gather_16(void)
{
HVX_Vector *vgather = (HVX_Vector *)&vtcm.vgather16;
HVX_Vector offsets = *(HVX_Vector *)half_offsets;
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"{ vtmp.h = vgather(%0, m0, v0.h).h\n\t"
" vmem(%3 + #0) = vtmp.new }\n\t"
: : "r"(vtcm.vscatter16), "r"(region_len),
"r"(half_offsets), "r"(vtcm.vgather16)
: "m0", "v0", "memory");
VGATHER_16(vgather, &vtcm.vscatter16, region_len, offsets);
sync_gather(vgather);
sync_gather(vtcm.vgather16);
}
static unsigned short gather_16_masked_init(void)
@ -427,31 +423,51 @@ static unsigned short gather_16_masked_init(void)
return letter | (letter << 8);
}
/* masked gather the elements from the scatter16 buffer using HVX */
void vector_gather_16_masked(void)
{
HVX_Vector *vgather = (HVX_Vector *)&vtcm.vgather16;
HVX_Vector offsets = *(HVX_Vector *)half_offsets;
HVX_Vector pred_reg = *(HVX_Vector *)half_predicates;
HVX_VectorPred preds = VAND_VAL(pred_reg, ~0);
unsigned short init = gather_16_masked_init();
*vgather = VSPLAT_H(gather_16_masked_init());
VGATHER_16_MASKED(vgather, preds, &vtcm.vscatter16, region_len, offsets);
asm ("v0.h = vsplat(%5)\n\t"
"vmem(%4 + #0) = v0\n\t" /* initialize the write area */
"r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"{ if (q0) vtmp.h = vgather(%1, m0, v0.h).h\n\t"
" vmem(%4 + #0) = vtmp.new }\n\t"
: : "r"(half_predicates), "r"(vtcm.vscatter16), "r"(region_len),
"r"(half_offsets), "r"(vtcm.vgather16), "r"(init)
: "r1", "q0", "m0", "v0", "memory");
sync_gather(vgather);
sync_gather(vtcm.vgather16);
}
/* gather the elements from the scatter32 buffer */
/* gather the elements from the scatter32 buffer using HVX */
void vector_gather_32(void)
{
HVX_Vector *vgatherlo = (HVX_Vector *)&vtcm.vgather32;
HVX_Vector *vgatherhi =
(HVX_Vector *)((int)&vtcm.vgather32 + (MATRIX_SIZE * 2));
HVX_Vector offsetslo = *(HVX_Vector *)word_offsets;
HVX_Vector offsetshi = *(HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector *vgatherlo = (HVX_Vector *)vtcm.vgather32;
HVX_Vector *vgatherhi = (HVX_Vector *)&vtcm.vgather32[MATRIX_SIZE / 2];
HVX_Vector *offsetslo = (HVX_Vector *)word_offsets;
HVX_Vector *offsetshi = (HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
VGATHER_32(vgatherlo, &vtcm.vscatter32, region_len, offsetslo);
VGATHER_32(vgatherhi, &vtcm.vscatter32, region_len, offsetshi);
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"{ vtmp.w = vgather(%0, m0, v0.w).w\n\t"
" vmem(%3 + #0) = vtmp.new }\n\t"
: : "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetslo), "r"(vgatherlo)
: "m0", "v0", "memory");
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"{ vtmp.w = vgather(%0, m0, v0.w).w\n\t"
" vmem(%3 + #0) = vtmp.new }\n\t"
: : "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetshi), "r"(vgatherhi)
: "m0", "v0", "memory");
sync_gather(vgatherlo);
sync_gather(vgatherhi);
}
@ -461,79 +477,88 @@ static unsigned int gather_32_masked_init(void)
return letter | (letter << 8) | (letter << 16) | (letter << 24);
}
/* masked gather the elements from the scatter32 buffer using HVX */
void vector_gather_32_masked(void)
{
HVX_Vector *vgatherlo = (HVX_Vector *)&vtcm.vgather32;
HVX_Vector *vgatherhi =
(HVX_Vector *)((int)&vtcm.vgather32 + (MATRIX_SIZE * 2));
HVX_Vector offsetslo = *(HVX_Vector *)word_offsets;
HVX_Vector offsetshi = *(HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector pred_reglo = *(HVX_Vector *)word_predicates;
HVX_VectorPred predslo = VAND_VAL(pred_reglo, ~0);
HVX_Vector pred_reghi = *(HVX_Vector *)&word_predicates[MATRIX_SIZE / 2];
HVX_VectorPred predshi = VAND_VAL(pred_reghi, ~0);
unsigned int init = gather_32_masked_init();
HVX_Vector *vgatherlo = (HVX_Vector *)vtcm.vgather32;
HVX_Vector *vgatherhi = (HVX_Vector *)&vtcm.vgather32[MATRIX_SIZE / 2];
HVX_Vector *offsetslo = (HVX_Vector *)word_offsets;
HVX_Vector *offsetshi = (HVX_Vector *)&word_offsets[MATRIX_SIZE / 2];
HVX_Vector *predslo = (HVX_Vector *)word_predicates;
HVX_Vector *predshi = (HVX_Vector *)&word_predicates[MATRIX_SIZE / 2];
*vgatherlo = VSPLAT_H(gather_32_masked_init());
*vgatherhi = VSPLAT_H(gather_32_masked_init());
VGATHER_32_MASKED(vgatherlo, predslo, &vtcm.vscatter32, region_len,
offsetslo);
VGATHER_32_MASKED(vgatherhi, predshi, &vtcm.vscatter32, region_len,
offsetshi);
asm ("v0.h = vsplat(%5)\n\t"
"vmem(%4 + #0) = v0\n\t" /* initialize the write area */
"r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"{ if (q0) vtmp.w = vgather(%1, m0, v0.w).w\n\t"
" vmem(%4 + #0) = vtmp.new }\n\t"
: : "r"(predslo), "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetslo), "r"(vgatherlo), "r"(init)
: "r1", "q0", "m0", "v0", "memory");
asm ("v0.h = vsplat(%5)\n\t"
"vmem(%4 + #0) = v0\n\t" /* initialize the write area */
"r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"{ if (q0) vtmp.w = vgather(%1, m0, v0.w).w\n\t"
" vmem(%4 + #0) = vtmp.new }\n\t"
: : "r"(predshi), "r"(vtcm.vscatter32), "r"(region_len),
"r"(offsetshi), "r"(vgatherhi), "r"(init)
: "r1", "q0", "m0", "v0", "memory");
sync_gather(vgatherlo);
sync_gather(vgatherhi);
}
/* gather the elements from the scatter16_32 buffer */
/* gather the elements from the scatter16_32 buffer using HVX */
void vector_gather_16_32(void)
{
HVX_Vector *vgather;
HVX_VectorPair offsets;
HVX_Vector values;
asm ("m0 = %1\n\t"
"v0 = vmem(%2 + #0)\n\t"
"v1 = vmem(%2 + #1)\n\t"
"{ vtmp.h = vgather(%0, m0, v1:0.w).h\n\t"
" vmem(%3 + #0) = vtmp.new }\n\t"
"v0 = vmem(%3 + #0)\n\t"
"v0.h = vdeal(v0.h)\n\t" /* deal the elements to get the order back */
"vmem(%3 + #0) = v0\n\t"
: : "r"(vtcm.vscatter16_32), "r"(region_len),
"r"(word_offsets), "r"(vtcm.vgather16_32)
: "m0", "v0", "v1", "memory");
/* get the vtcm address to gather from */
vgather = (HVX_Vector *)&vtcm.vgather16_32;
/* get the word offsets in a vector pair */
offsets = *(HVX_VectorPair *)word_offsets;
VGATHER_16_32(vgather, &vtcm.vscatter16_32, region_len, offsets);
/* deal the elements to get the order back */
values = *(HVX_Vector *)vgather;
values = VDEAL_H(values);
/* write it back to vtcm address */
*(HVX_Vector *)vgather = values;
sync_gather(vtcm.vgather16_32);
}
/* masked gather the elements from the scatter16_32 buffer using HVX */
void vector_gather_16_32_masked(void)
{
HVX_Vector *vgather;
HVX_VectorPair offsets;
HVX_Vector pred_reg;
HVX_VectorPred preds;
HVX_Vector values;
unsigned short init = gather_16_masked_init();
/* get the vtcm address to gather from */
vgather = (HVX_Vector *)&vtcm.vgather16_32;
asm ("v0.h = vsplat(%5)\n\t"
"vmem(%4 + #0) = v0\n\t" /* initialize the write area */
"r1 = #-1\n\t"
"v0 = vmem(%0 + #0)\n\t"
"v0.h = vshuff(v0.h)\n\t" /* shuffle the predicates */
"q0 = vand(v0, r1)\n\t"
"m0 = %2\n\t"
"v0 = vmem(%3 + #0)\n\t"
"v1 = vmem(%3 + #1)\n\t"
"{ if (q0) vtmp.h = vgather(%1, m0, v1:0.w).h\n\t"
" vmem(%4 + #0) = vtmp.new }\n\t"
"v0 = vmem(%4 + #0)\n\t"
"v0.h = vdeal(v0.h)\n\t" /* deal the elements to get the order back */
"vmem(%4 + #0) = v0\n\t"
: : "r"(half_predicates), "r"(vtcm.vscatter16_32), "r"(region_len),
"r"(word_offsets), "r"(vtcm.vgather16_32), "r"(init)
: "r1", "q0", "m0", "v0", "v1", "memory");
/* get the word offsets in a vector pair */
offsets = *(HVX_VectorPair *)word_offsets;
pred_reg = *(HVX_Vector *)half_predicates;
pred_reg = VSHUFF_H(pred_reg);
preds = VAND_VAL(pred_reg, ~0);
*vgather = VSPLAT_H(gather_16_masked_init());
VGATHER_16_32_MASKED(vgather, preds, &vtcm.vscatter16_32, region_len,
offsets);
/* deal the elements to get the order back */
values = *(HVX_Vector *)vgather;
values = VDEAL_H(values);
/* write it back to vtcm address */
*(HVX_Vector *)vgather = values;
sync_gather(vtcm.vgather16_32);
}
static void check_buffer(const char *name, void *c, void *r, size_t size)
@ -579,6 +604,7 @@ void scalar_scatter_16_acc(unsigned short *vscatter16)
}
}
/* scatter-accumulate the 16 bit elements using C */
void check_scatter_16_acc()
{
memset(vscatter16_ref, FILL_CHAR,
@ -589,7 +615,7 @@ void check_scatter_16_acc()
SCATTER_BUFFER_SIZE * sizeof(unsigned short));
}
/* scatter the 16 bit elements using C */
/* masked scatter the 16 bit elements using C */
void scalar_scatter_16_masked(unsigned short *vscatter16)
{
for (int i = 0; i < MATRIX_SIZE; i++) {
@ -628,7 +654,7 @@ void check_scatter_32()
SCATTER_BUFFER_SIZE * sizeof(unsigned int));
}
/* scatter the 32 bit elements using C */
/* scatter-accumulate the 32 bit elements using C */
void scalar_scatter_32_acc(unsigned int *vscatter32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -646,7 +672,7 @@ void check_scatter_32_acc()
SCATTER_BUFFER_SIZE * sizeof(unsigned int));
}
/* scatter the 32 bit elements using C */
/* masked scatter the 32 bit elements using C */
void scalar_scatter_32_masked(unsigned int *vscatter32)
{
for (int i = 0; i < MATRIX_SIZE; i++) {
@ -667,7 +693,7 @@ void check_scatter_32_masked()
SCATTER_BUFFER_SIZE * sizeof(unsigned int));
}
/* scatter the 32 bit elements using C */
/* scatter the 16 bit elements with 32 bit offsets using C */
void scalar_scatter_16_32(unsigned short *vscatter16_32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -684,7 +710,7 @@ void check_scatter_16_32()
SCATTER_BUFFER_SIZE * sizeof(unsigned short));
}
/* scatter the 32 bit elements using C */
/* scatter-accumulate the 16 bit elements with 32 bit offsets using C */
void scalar_scatter_16_32_acc(unsigned short *vscatter16_32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -702,6 +728,7 @@ void check_scatter_16_32_acc()
SCATTER_BUFFER_SIZE * sizeof(unsigned short));
}
/* masked scatter the 16 bit elements with 32 bit offsets using C */
void scalar_scatter_16_32_masked(unsigned short *vscatter16_32)
{
for (int i = 0; i < MATRIX_SIZE; i++) {
@ -738,6 +765,7 @@ void check_gather_16()
MATRIX_SIZE * sizeof(unsigned short));
}
/* masked gather the elements from the scatter buffer using C */
void scalar_gather_16_masked(unsigned short *vgather16)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -756,7 +784,7 @@ void check_gather_16_masked()
MATRIX_SIZE * sizeof(unsigned short));
}
/* gather the elements from the scatter buffer using C */
/* gather the elements from the scatter32 buffer using C */
void scalar_gather_32(unsigned int *vgather32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -772,6 +800,7 @@ void check_gather_32(void)
MATRIX_SIZE * sizeof(unsigned int));
}
/* masked gather the elements from the scatter32 buffer using C */
void scalar_gather_32_masked(unsigned int *vgather32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -781,7 +810,6 @@ void scalar_gather_32_masked(unsigned int *vgather32)
}
}
void check_gather_32_masked(void)
{
memset(vgather32_ref, gather_32_masked_init(),
@ -791,7 +819,7 @@ void check_gather_32_masked(void)
vgather32_ref, MATRIX_SIZE * sizeof(unsigned int));
}
/* gather the elements from the scatter buffer using C */
/* gather the elements from the scatter16_32 buffer using C */
void scalar_gather_16_32(unsigned short *vgather16_32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {
@ -807,6 +835,7 @@ void check_gather_16_32(void)
MATRIX_SIZE * sizeof(unsigned short));
}
/* masked gather the elements from the scatter16_32 buffer using C */
void scalar_gather_16_32_masked(unsigned short *vgather16_32)
{
for (int i = 0; i < MATRIX_SIZE; ++i) {