sev: Remove false abstraction of flash encryption

When AMD's SEV memory encryption is in use, flash memory banks (which are
initialed by pc_system_flash_map()) need to be encrypted with the guest's
key, so that the guest can read them.

That's abstracted via the kvm_memcrypt_encrypt_data() callback in the KVM
state.. except, that it doesn't really abstract much at all.

For starters, the only call site is in code specific to the 'pc'
family of machine types, so it's obviously specific to those and to
x86 to begin with.  But it makes a bunch of further assumptions that
need not be true about an arbitrary confidential guest system based on
memory encryption, let alone one based on other mechanisms:

 * it assumes that the flash memory is defined to be encrypted with the
   guest key, rather than being shared with hypervisor
 * it assumes that that hypervisor has some mechanism to encrypt data into
   the guest, even though it can't decrypt it out, since that's the whole
   point
 * the interface assumes that this encrypt can be done in place, which
   implies that the hypervisor can write into a confidential guests's
   memory, even if what it writes isn't meaningful

So really, this "abstraction" is actually pretty specific to the way SEV
works.  So, this patch removes it and instead has the PC flash
initialization code call into a SEV specific callback.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
This commit is contained in:
David Gibson 2021-01-12 11:58:04 +11:00
parent f91f9f254b
commit aacdb84413
8 changed files with 31 additions and 85 deletions

View File

@ -123,10 +123,6 @@ struct KVMState
KVMMemoryListener memory_listener;
QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
/* memory encryption */
void *memcrypt_handle;
int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
/* For "info mtree -f" to tell if an MR is registered in KVM */
int nr_as;
struct KVMAs {
@ -225,26 +221,6 @@ int kvm_get_max_memslots(void)
return s->nr_slots;
}
bool kvm_memcrypt_enabled(void)
{
if (kvm_state && kvm_state->memcrypt_handle) {
return true;
}
return false;
}
int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
{
if (kvm_state->memcrypt_handle &&
kvm_state->memcrypt_encrypt_data) {
return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
ptr, len);
}
return 1;
}
/* Called with KVMMemoryListener.slots_lock held */
static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
{
@ -2209,13 +2185,10 @@ static int kvm_init(MachineState *ms)
* encryption context.
*/
if (ms->memory_encryption) {
kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
if (!kvm_state->memcrypt_handle) {
ret = -1;
ret = sev_guest_init(ms->memory_encryption);
if (ret < 0) {
goto err;
}
kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
}
ret = kvm_arch_init(ms, s);

View File

@ -15,12 +15,7 @@
#include "qemu-common.h"
#include "sysemu/sev.h"
int sev_encrypt_data(void *handle, uint8_t *ptr, uint64_t len)
int sev_guest_init(const char *id)
{
abort();
}
void *sev_guest_init(const char *id)
{
return NULL;
return -1;
}

View File

@ -81,16 +81,6 @@ int kvm_on_sigbus(int code, void *addr)
return 1;
}
bool kvm_memcrypt_enabled(void)
{
return false;
}
int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
{
return 1;
}
#ifndef CONFIG_USER_ONLY
int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
{

View File

@ -38,6 +38,7 @@
#include "sysemu/sysemu.h"
#include "hw/block/flash.h"
#include "sysemu/kvm.h"
#include "sysemu/sev.h"
#define FLASH_SECTOR_SIZE 4096
@ -147,7 +148,7 @@ static void pc_system_flash_map(PCMachineState *pcms,
PFlashCFI01 *system_flash;
MemoryRegion *flash_mem;
void *flash_ptr;
int ret, flash_size;
int flash_size;
assert(PC_MACHINE_GET_CLASS(pcms)->pci_enabled);
@ -191,16 +192,10 @@ static void pc_system_flash_map(PCMachineState *pcms,
flash_mem = pflash_cfi01_get_memory(system_flash);
pc_isa_bios_init(rom_memory, flash_mem, size);
/* Encrypt the pflash boot ROM */
if (kvm_memcrypt_enabled()) {
flash_ptr = memory_region_get_ram_ptr(flash_mem);
flash_size = memory_region_size(flash_mem);
ret = kvm_memcrypt_encrypt_data(flash_ptr, flash_size);
if (ret) {
error_report("failed to encrypt pflash rom");
exit(1);
}
}
/* Encrypt the pflash boot ROM, if necessary */
flash_ptr = memory_region_get_ram_ptr(flash_mem);
flash_size = memory_region_size(flash_mem);
sev_encrypt_flash(flash_ptr, flash_size, &error_fatal);
}
}
}

View File

@ -233,22 +233,6 @@ int kvm_has_intx_set_mask(void);
*/
bool kvm_arm_supports_user_irq(void);
/**
* kvm_memcrypt_enabled - return boolean indicating whether memory encryption
* is enabled
* Returns: 1 memory encryption is enabled
* 0 memory encryption is disabled
*/
bool kvm_memcrypt_enabled(void);
/**
* kvm_memcrypt_encrypt_data: encrypt the memory range
*
* Return: 1 failed to encrypt the range
* 0 succesfully encrypted memory region
*/
int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len);
#ifdef NEED_CPU_H
#include "cpu.h"

View File

@ -16,8 +16,8 @@
#include "sysemu/kvm.h"
void *sev_guest_init(const char *id);
int sev_encrypt_data(void *handle, uint8_t *ptr, uint64_t len);
int sev_guest_init(const char *id);
int sev_encrypt_flash(uint8_t *ptr, uint64_t len, Error **errp);
int sev_inject_launch_secret(const char *hdr, const char *secret,
uint64_t gpa, Error **errp);
#endif

View File

@ -54,3 +54,8 @@ int sev_inject_launch_secret(const char *hdr, const char *secret,
{
return 1;
}
int sev_encrypt_flash(uint8_t *ptr, uint64_t len, Error **errp)
{
return 0;
}

View File

@ -682,7 +682,7 @@ sev_vm_state_change(void *opaque, int running, RunState state)
}
}
void *
int
sev_guest_init(const char *id)
{
SevGuestState *sev;
@ -695,7 +695,7 @@ sev_guest_init(const char *id)
ret = ram_block_discard_disable(true);
if (ret) {
error_report("%s: cannot disable RAM discard", __func__);
return NULL;
return -1;
}
sev = lookup_sev_guest_info(id);
@ -766,23 +766,27 @@ sev_guest_init(const char *id)
qemu_add_machine_init_done_notifier(&sev_machine_done_notify);
qemu_add_vm_change_state_handler(sev_vm_state_change, sev);
return sev;
return 0;
err:
sev_guest = NULL;
ram_block_discard_disable(false);
return NULL;
return -1;
}
int
sev_encrypt_data(void *handle, uint8_t *ptr, uint64_t len)
sev_encrypt_flash(uint8_t *ptr, uint64_t len, Error **errp)
{
SevGuestState *sev = handle;
assert(sev);
if (!sev_guest) {
return 0;
}
/* if SEV is in update state then encrypt the data else do nothing */
if (sev_check_state(sev, SEV_STATE_LAUNCH_UPDATE)) {
return sev_launch_update_data(sev, ptr, len);
if (sev_check_state(sev_guest, SEV_STATE_LAUNCH_UPDATE)) {
int ret = sev_launch_update_data(sev_guest, ptr, len);
if (ret < 0) {
error_setg(errp, "failed to encrypt pflash rom");
return ret;
}
}
return 0;