Merge remote-tracking branch 'pmaydell/arm-devs.for-upstream' into staging

This commit is contained in:
Anthony Liguori 2011-12-12 10:08:57 -06:00
commit ab23ebf485
8 changed files with 753 additions and 327 deletions

View File

@ -344,6 +344,7 @@ obj-arm-y = integratorcp.o versatilepb.o arm_pic.o arm_timer.o
obj-arm-y += arm_boot.o pl011.o pl031.o pl050.o pl080.o pl110.o pl181.o pl190.o
obj-arm-y += versatile_pci.o
obj-arm-y += realview_gic.o realview.o arm_sysctl.o arm11mpcore.o a9mpcore.o
obj-arm-y += arm_mptimer.o
obj-arm-y += armv7m.o armv7m_nvic.o stellaris.o pl022.o stellaris_enet.o
obj-arm-y += pl061.o
obj-arm-y += arm-semi.o

View File

@ -2,28 +2,197 @@
* Cortex-A9MPCore internal peripheral emulation.
*
* Copyright (c) 2009 CodeSourcery.
* Written by Paul Brook
* Copyright (c) 2011 Linaro Limited.
* Written by Paul Brook, Peter Maydell.
*
* This code is licensed under the GPL.
*/
/* 64 external IRQ lines. */
#define GIC_NIRQ 96
#include "mpcore.c"
#include "sysbus.h"
static SysBusDeviceInfo mpcore_priv_info = {
.init = mpcore_priv_init,
/* Configuration for arm_gic.c:
* number of external IRQ lines, max number of CPUs, how to ID current CPU
*/
#define GIC_NIRQ 96
#define NCPU 4
static inline int
gic_get_current_cpu(void)
{
return cpu_single_env->cpu_index;
}
#include "arm_gic.c"
/* A9MP private memory region. */
typedef struct a9mp_priv_state {
gic_state gic;
uint32_t scu_control;
uint32_t old_timer_status[8];
uint32_t num_cpu;
qemu_irq *timer_irq;
MemoryRegion scu_iomem;
MemoryRegion ptimer_iomem;
MemoryRegion container;
DeviceState *mptimer;
} a9mp_priv_state;
static uint64_t a9_scu_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
a9mp_priv_state *s = (a9mp_priv_state *)opaque;
switch (offset) {
case 0x00: /* Control */
return s->scu_control;
case 0x04: /* Configuration */
return (((1 << s->num_cpu) - 1) << 4) | (s->num_cpu - 1);
case 0x08: /* CPU Power Status */
return 0;
case 0x0c: /* Invalidate All Registers In Secure State */
return 0;
case 0x40: /* Filtering Start Address Register */
case 0x44: /* Filtering End Address Register */
/* RAZ/WI, like an implementation with only one AXI master */
return 0;
case 0x50: /* SCU Access Control Register */
case 0x54: /* SCU Non-secure Access Control Register */
/* unimplemented, fall through */
default:
return 0;
}
}
static void a9_scu_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
a9mp_priv_state *s = (a9mp_priv_state *)opaque;
switch (offset) {
case 0x00: /* Control */
s->scu_control = value & 1;
break;
case 0x4: /* Configuration: RO */
break;
case 0x0c: /* Invalidate All Registers In Secure State */
/* no-op as we do not implement caches */
break;
case 0x40: /* Filtering Start Address Register */
case 0x44: /* Filtering End Address Register */
/* RAZ/WI, like an implementation with only one AXI master */
break;
case 0x8: /* CPU Power Status */
case 0x50: /* SCU Access Control Register */
case 0x54: /* SCU Non-secure Access Control Register */
/* unimplemented, fall through */
default:
break;
}
}
static const MemoryRegionOps a9_scu_ops = {
.read = a9_scu_read,
.write = a9_scu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void a9mpcore_timer_irq_handler(void *opaque, int irq, int level)
{
a9mp_priv_state *s = (a9mp_priv_state *)opaque;
if (level && !s->old_timer_status[irq]) {
gic_set_pending_private(&s->gic, irq >> 1, 29 + (irq & 1));
}
s->old_timer_status[irq] = level;
}
static void a9mp_priv_reset(DeviceState *dev)
{
a9mp_priv_state *s = FROM_SYSBUSGIC(a9mp_priv_state, sysbus_from_qdev(dev));
int i;
s->scu_control = 0;
for (i = 0; i < ARRAY_SIZE(s->old_timer_status); i++) {
s->old_timer_status[i] = 0;
}
}
static int a9mp_priv_init(SysBusDevice *dev)
{
a9mp_priv_state *s = FROM_SYSBUSGIC(a9mp_priv_state, dev);
SysBusDevice *busdev;
int i;
if (s->num_cpu > NCPU) {
hw_error("a9mp_priv_init: num-cpu may not be more than %d\n", NCPU);
}
gic_init(&s->gic, s->num_cpu);
s->mptimer = qdev_create(NULL, "arm_mptimer");
qdev_prop_set_uint32(s->mptimer, "num-cpu", s->num_cpu);
qdev_init_nofail(s->mptimer);
busdev = sysbus_from_qdev(s->mptimer);
/* Memory map (addresses are offsets from PERIPHBASE):
* 0x0000-0x00ff -- Snoop Control Unit
* 0x0100-0x01ff -- GIC CPU interface
* 0x0200-0x02ff -- Global Timer
* 0x0300-0x05ff -- nothing
* 0x0600-0x06ff -- private timers and watchdogs
* 0x0700-0x0fff -- nothing
* 0x1000-0x1fff -- GIC Distributor
*
* We should implement the global timer but don't currently do so.
*/
memory_region_init(&s->container, "a9mp-priv-container", 0x2000);
memory_region_init_io(&s->scu_iomem, &a9_scu_ops, s, "a9mp-scu", 0x100);
memory_region_add_subregion(&s->container, 0, &s->scu_iomem);
/* GIC CPU interface */
memory_region_add_subregion(&s->container, 0x100, &s->gic.cpuiomem[0]);
/* Note that the A9 exposes only the "timer/watchdog for this core"
* memory region, not the "timer/watchdog for core X" ones 11MPcore has.
*/
memory_region_add_subregion(&s->container, 0x600,
sysbus_mmio_get_region(busdev, 0));
memory_region_add_subregion(&s->container, 0x620,
sysbus_mmio_get_region(busdev, 1));
memory_region_add_subregion(&s->container, 0x1000, &s->gic.iomem);
sysbus_init_mmio(dev, &s->container);
/* Wire up the interrupt from each watchdog and timer. */
s->timer_irq = qemu_allocate_irqs(a9mpcore_timer_irq_handler,
s, (s->num_cpu + 1) * 2);
for (i = 0; i < s->num_cpu * 2; i++) {
sysbus_connect_irq(busdev, i, s->timer_irq[i]);
}
return 0;
}
static const VMStateDescription vmstate_a9mp_priv = {
.name = "a9mpcore_priv",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(scu_control, a9mp_priv_state),
VMSTATE_UINT32_ARRAY(old_timer_status, a9mp_priv_state, 8),
VMSTATE_END_OF_LIST()
}
};
static SysBusDeviceInfo a9mp_priv_info = {
.init = a9mp_priv_init,
.qdev.name = "a9mpcore_priv",
.qdev.size = sizeof(mpcore_priv_state),
.qdev.size = sizeof(a9mp_priv_state),
.qdev.vmsd = &vmstate_a9mp_priv,
.qdev.reset = a9mp_priv_reset,
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("num-cpu", mpcore_priv_state, num_cpu, 1),
DEFINE_PROP_UINT32("num-cpu", a9mp_priv_state, num_cpu, 1),
DEFINE_PROP_END_OF_LIST(),
}
};
static void a9mpcore_register_devices(void)
static void a9mp_register_devices(void)
{
sysbus_register_withprop(&mpcore_priv_info);
sysbus_register_withprop(&a9mp_priv_info);
}
device_init(a9mpcore_register_devices)
device_init(a9mp_register_devices)

View File

@ -7,11 +7,139 @@
* This code is licensed under the GPL.
*/
#include "sysbus.h"
#include "qemu-timer.h"
/* ??? The MPCore TRM says the on-chip controller has 224 external IRQ lines
(+ 32 internal). However my test chip only exposes/reports 32.
More importantly Linux falls over if more than 32 are present! */
#define GIC_NIRQ 64
#include "mpcore.c"
#define NCPU 4
static inline int
gic_get_current_cpu(void)
{
return cpu_single_env->cpu_index;
}
#include "arm_gic.c"
/* MPCore private memory region. */
typedef struct mpcore_priv_state {
gic_state gic;
uint32_t scu_control;
int iomemtype;
uint32_t old_timer_status[8];
uint32_t num_cpu;
qemu_irq *timer_irq;
MemoryRegion iomem;
MemoryRegion container;
DeviceState *mptimer;
} mpcore_priv_state;
/* Per-CPU private memory mapped IO. */
static uint64_t mpcore_scu_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
mpcore_priv_state *s = (mpcore_priv_state *)opaque;
int id;
offset &= 0xff;
/* SCU */
switch (offset) {
case 0x00: /* Control. */
return s->scu_control;
case 0x04: /* Configuration. */
id = ((1 << s->num_cpu) - 1) << 4;
return id | (s->num_cpu - 1);
case 0x08: /* CPU status. */
return 0;
case 0x0c: /* Invalidate all. */
return 0;
default:
hw_error("mpcore_priv_read: Bad offset %x\n", (int)offset);
}
}
static void mpcore_scu_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
mpcore_priv_state *s = (mpcore_priv_state *)opaque;
offset &= 0xff;
/* SCU */
switch (offset) {
case 0: /* Control register. */
s->scu_control = value & 1;
break;
case 0x0c: /* Invalidate all. */
/* This is a no-op as cache is not emulated. */
break;
default:
hw_error("mpcore_priv_read: Bad offset %x\n", (int)offset);
}
}
static const MemoryRegionOps mpcore_scu_ops = {
.read = mpcore_scu_read,
.write = mpcore_scu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void mpcore_timer_irq_handler(void *opaque, int irq, int level)
{
mpcore_priv_state *s = (mpcore_priv_state *)opaque;
if (level && !s->old_timer_status[irq]) {
gic_set_pending_private(&s->gic, irq >> 1, 29 + (irq & 1));
}
s->old_timer_status[irq] = level;
}
static void mpcore_priv_map_setup(mpcore_priv_state *s)
{
int i;
SysBusDevice *busdev = sysbus_from_qdev(s->mptimer);
memory_region_init(&s->container, "mpcode-priv-container", 0x2000);
memory_region_init_io(&s->iomem, &mpcore_scu_ops, s, "mpcore-scu", 0x100);
memory_region_add_subregion(&s->container, 0, &s->iomem);
/* GIC CPU interfaces: "current CPU" at 0x100, then specific CPUs
* at 0x200, 0x300...
*/
for (i = 0; i < (s->num_cpu + 1); i++) {
target_phys_addr_t offset = 0x100 + (i * 0x100);
memory_region_add_subregion(&s->container, offset, &s->gic.cpuiomem[i]);
}
/* Add the regions for timer and watchdog for "current CPU" and
* for each specific CPU.
*/
s->timer_irq = qemu_allocate_irqs(mpcore_timer_irq_handler,
s, (s->num_cpu + 1) * 2);
for (i = 0; i < (s->num_cpu + 1) * 2; i++) {
/* Timers at 0x600, 0x700, ...; watchdogs at 0x620, 0x720, ... */
target_phys_addr_t offset = 0x600 + (i >> 1) * 0x100 + (i & 1) * 0x20;
memory_region_add_subregion(&s->container, offset,
sysbus_mmio_get_region(busdev, i));
}
memory_region_add_subregion(&s->container, 0x1000, &s->gic.iomem);
/* Wire up the interrupt from each watchdog and timer. */
for (i = 0; i < s->num_cpu * 2; i++) {
sysbus_connect_irq(busdev, i, s->timer_irq[i]);
}
}
static int mpcore_priv_init(SysBusDevice *dev)
{
mpcore_priv_state *s = FROM_SYSBUSGIC(mpcore_priv_state, dev);
gic_init(&s->gic, s->num_cpu);
s->mptimer = qdev_create(NULL, "arm_mptimer");
qdev_prop_set_uint32(s->mptimer, "num-cpu", s->num_cpu);
qdev_init_nofail(s->mptimer);
mpcore_priv_map_setup(s);
sysbus_init_mmio(dev, &s->container);
return 0;
}
/* Dummy PIC to route IRQ lines. The baseboard has 4 independent IRQ
controllers. The output of these, plus some of the raw input lines

View File

@ -103,7 +103,14 @@ typedef struct gic_state
int num_cpu;
#endif
MemoryRegion iomem;
MemoryRegion iomem; /* Distributor */
#ifndef NVIC
/* This is just so we can have an opaque pointer which identifies
* both this GIC and which CPU interface we should be accessing.
*/
struct gic_state *backref[NCPU];
MemoryRegion cpuiomem[NCPU+1]; /* CPU interfaces */
#endif
} gic_state;
/* TODO: Many places that call this routine could be optimized. */
@ -633,6 +640,54 @@ static void gic_cpu_write(gic_state *s, int cpu, int offset, uint32_t value)
}
gic_update(s);
}
/* Wrappers to read/write the GIC CPU interface for the current CPU */
static uint64_t gic_thiscpu_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
gic_state *s = (gic_state *)opaque;
return gic_cpu_read(s, gic_get_current_cpu(), addr & 0xff);
}
static void gic_thiscpu_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
gic_state *s = (gic_state *)opaque;
gic_cpu_write(s, gic_get_current_cpu(), addr & 0xff, value);
}
/* Wrappers to read/write the GIC CPU interface for a specific CPU.
* These just decode the opaque pointer into gic_state* + cpu id.
*/
static uint64_t gic_do_cpu_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
gic_state **backref = (gic_state **)opaque;
gic_state *s = *backref;
int id = (backref - s->backref);
return gic_cpu_read(s, id, addr & 0xff);
}
static void gic_do_cpu_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
gic_state **backref = (gic_state **)opaque;
gic_state *s = *backref;
int id = (backref - s->backref);
gic_cpu_write(s, id, addr & 0xff, value);
}
static const MemoryRegionOps gic_thiscpu_ops = {
.read = gic_thiscpu_read,
.write = gic_thiscpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps gic_cpu_ops = {
.read = gic_do_cpu_read,
.write = gic_do_cpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
#endif
static void gic_reset(gic_state *s)
@ -752,6 +807,24 @@ static void gic_init(gic_state *s)
sysbus_init_irq(&s->busdev, &s->parent_irq[i]);
}
memory_region_init_io(&s->iomem, &gic_dist_ops, s, "gic_dist", 0x1000);
#ifndef NVIC
/* Memory regions for the CPU interfaces (NVIC doesn't have these):
* a region for "CPU interface for this core", then a region for
* "CPU interface for core 0", "for core 1", ...
* NB that the memory region size of 0x100 applies for the 11MPCore
* and also cores following the GIC v1 spec (ie A9).
* GIC v2 defines a larger memory region (0x1000) so this will need
* to be extended when we implement A15.
*/
memory_region_init_io(&s->cpuiomem[0], &gic_thiscpu_ops, s,
"gic_cpu", 0x100);
for (i = 0; i < NUM_CPU(s); i++) {
s->backref[i] = s;
memory_region_init_io(&s->cpuiomem[i+1], &gic_cpu_ops, &s->backref[i],
"gic_cpu", 0x100);
}
#endif
gic_reset(s);
register_savevm(NULL, "arm_gic", -1, 2, gic_save, gic_load, s);
}

332
hw/arm_mptimer.c Normal file
View File

@ -0,0 +1,332 @@
/*
* Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
*
* Copyright (c) 2006-2007 CodeSourcery.
* Copyright (c) 2011 Linaro Limited
* Written by Paul Brook, Peter Maydell
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "sysbus.h"
#include "qemu-timer.h"
/* This device implements the per-cpu private timer and watchdog block
* which is used in both the ARM11MPCore and Cortex-A9MP.
*/
#define MAX_CPUS 4
/* State of a single timer or watchdog block */
typedef struct {
uint32_t count;
uint32_t load;
uint32_t control;
uint32_t status;
int64_t tick;
QEMUTimer *timer;
qemu_irq irq;
MemoryRegion iomem;
} timerblock;
typedef struct {
SysBusDevice busdev;
uint32_t num_cpu;
timerblock timerblock[MAX_CPUS * 2];
MemoryRegion iomem[2];
} arm_mptimer_state;
static inline int get_current_cpu(arm_mptimer_state *s)
{
if (cpu_single_env->cpu_index >= s->num_cpu) {
hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
s->num_cpu, cpu_single_env->cpu_index);
}
return cpu_single_env->cpu_index;
}
static inline void timerblock_update_irq(timerblock *tb)
{
qemu_set_irq(tb->irq, tb->status);
}
/* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
static inline uint32_t timerblock_scale(timerblock *tb)
{
return (((tb->control >> 8) & 0xff) + 1) * 10;
}
static void timerblock_reload(timerblock *tb, int restart)
{
if (tb->count == 0) {
return;
}
if (restart) {
tb->tick = qemu_get_clock_ns(vm_clock);
}
tb->tick += (int64_t)tb->count * timerblock_scale(tb);
qemu_mod_timer(tb->timer, tb->tick);
}
static void timerblock_tick(void *opaque)
{
timerblock *tb = (timerblock *)opaque;
tb->status = 1;
if (tb->control & 2) {
tb->count = tb->load;
timerblock_reload(tb, 0);
} else {
tb->count = 0;
}
timerblock_update_irq(tb);
}
static uint64_t timerblock_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
timerblock *tb = (timerblock *)opaque;
int64_t val;
addr &= 0x1f;
switch (addr) {
case 0: /* Load */
return tb->load;
case 4: /* Counter. */
if (((tb->control & 1) == 0) || (tb->count == 0)) {
return 0;
}
/* Slow and ugly, but hopefully won't happen too often. */
val = tb->tick - qemu_get_clock_ns(vm_clock);
val /= timerblock_scale(tb);
if (val < 0) {
val = 0;
}
return val;
case 8: /* Control. */
return tb->control;
case 12: /* Interrupt status. */
return tb->status;
default:
return 0;
}
}
static void timerblock_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
timerblock *tb = (timerblock *)opaque;
int64_t old;
addr &= 0x1f;
switch (addr) {
case 0: /* Load */
tb->load = value;
/* Fall through. */
case 4: /* Counter. */
if ((tb->control & 1) && tb->count) {
/* Cancel the previous timer. */
qemu_del_timer(tb->timer);
}
tb->count = value;
if (tb->control & 1) {
timerblock_reload(tb, 1);
}
break;
case 8: /* Control. */
old = tb->control;
tb->control = value;
if (((old & 1) == 0) && (value & 1)) {
if (tb->count == 0 && (tb->control & 2)) {
tb->count = tb->load;
}
timerblock_reload(tb, 1);
}
break;
case 12: /* Interrupt status. */
tb->status &= ~value;
timerblock_update_irq(tb);
break;
}
}
/* Wrapper functions to implement the "read timer/watchdog for
* the current CPU" memory regions.
*/
static uint64_t arm_thistimer_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
arm_mptimer_state *s = (arm_mptimer_state *)opaque;
int id = get_current_cpu(s);
return timerblock_read(&s->timerblock[id * 2], addr, size);
}
static void arm_thistimer_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
arm_mptimer_state *s = (arm_mptimer_state *)opaque;
int id = get_current_cpu(s);
timerblock_write(&s->timerblock[id * 2], addr, value, size);
}
static uint64_t arm_thiswdog_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
arm_mptimer_state *s = (arm_mptimer_state *)opaque;
int id = get_current_cpu(s);
return timerblock_read(&s->timerblock[id * 2 + 1], addr, size);
}
static void arm_thiswdog_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
arm_mptimer_state *s = (arm_mptimer_state *)opaque;
int id = get_current_cpu(s);
timerblock_write(&s->timerblock[id * 2 + 1], addr, value, size);
}
static const MemoryRegionOps arm_thistimer_ops = {
.read = arm_thistimer_read,
.write = arm_thistimer_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps arm_thiswdog_ops = {
.read = arm_thiswdog_read,
.write = arm_thiswdog_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps timerblock_ops = {
.read = timerblock_read,
.write = timerblock_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void timerblock_reset(timerblock *tb)
{
tb->count = 0;
tb->load = 0;
tb->control = 0;
tb->status = 0;
tb->tick = 0;
}
static void arm_mptimer_reset(DeviceState *dev)
{
arm_mptimer_state *s =
FROM_SYSBUS(arm_mptimer_state, sysbus_from_qdev(dev));
int i;
/* We reset every timer in the array, not just the ones we're using,
* because vmsave will look at every array element.
*/
for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
timerblock_reset(&s->timerblock[i]);
}
}
static int arm_mptimer_init(SysBusDevice *dev)
{
arm_mptimer_state *s = FROM_SYSBUS(arm_mptimer_state, dev);
int i;
if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
}
/* We implement one timer and one watchdog block per CPU, and
* expose multiple MMIO regions:
* * region 0 is "timer for this core"
* * region 1 is "watchdog for this core"
* * region 2 is "timer for core 0"
* * region 3 is "watchdog for core 0"
* * region 4 is "timer for core 1"
* * region 5 is "watchdog for core 1"
* and so on.
* The outgoing interrupt lines are
* * timer for core 0
* * watchdog for core 0
* * timer for core 1
* * watchdog for core 1
* and so on.
*/
memory_region_init_io(&s->iomem[0], &arm_thistimer_ops, s,
"arm_mptimer_timer", 0x20);
sysbus_init_mmio(dev, &s->iomem[0]);
memory_region_init_io(&s->iomem[1], &arm_thiswdog_ops, s,
"arm_mptimer_wdog", 0x20);
sysbus_init_mmio(dev, &s->iomem[1]);
for (i = 0; i < (s->num_cpu * 2); i++) {
timerblock *tb = &s->timerblock[i];
tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
sysbus_init_irq(dev, &tb->irq);
memory_region_init_io(&tb->iomem, &timerblock_ops, tb,
"arm_mptimer_timerblock", 0x20);
sysbus_init_mmio(dev, &tb->iomem);
}
return 0;
}
static const VMStateDescription vmstate_timerblock = {
.name = "arm_mptimer_timerblock",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(count, timerblock),
VMSTATE_UINT32(load, timerblock),
VMSTATE_UINT32(control, timerblock),
VMSTATE_UINT32(status, timerblock),
VMSTATE_INT64(tick, timerblock),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_arm_mptimer = {
.name = "arm_mptimer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(timerblock, arm_mptimer_state, (MAX_CPUS * 2),
1, vmstate_timerblock, timerblock),
VMSTATE_END_OF_LIST()
}
};
static SysBusDeviceInfo arm_mptimer_info = {
.init = arm_mptimer_init,
.qdev.name = "arm_mptimer",
.qdev.size = sizeof(arm_mptimer_state),
.qdev.vmsd = &vmstate_arm_mptimer,
.qdev.reset = arm_mptimer_reset,
.qdev.no_user = 1,
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("num-cpu", arm_mptimer_state, num_cpu, 0),
DEFINE_PROP_END_OF_LIST()
}
};
static void arm_mptimer_register_devices(void)
{
sysbus_register_withprop(&arm_mptimer_info);
}
device_init(arm_mptimer_register_devices)

View File

@ -170,9 +170,9 @@ static arm_timer_state *arm_timer_init(uint32_t freq)
}
/* ARM PrimeCell SP804 dual timer module.
Docs for this device don't seem to be publicly available. This
implementation is based on guesswork, the linux kernel sources and the
Integrator/CP timer modules. */
* Docs at
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0271d/index.html
*/
typedef struct {
SysBusDevice busdev;
@ -182,6 +182,13 @@ typedef struct {
qemu_irq irq;
} sp804_state;
static const uint8_t sp804_ids[] = {
/* Timer ID */
0x04, 0x18, 0x14, 0,
/* PrimeCell ID */
0xd, 0xf0, 0x05, 0xb1
};
/* Merge the IRQs from the two component devices. */
static void sp804_set_irq(void *opaque, int irq, int level)
{
@ -196,12 +203,27 @@ static uint64_t sp804_read(void *opaque, target_phys_addr_t offset,
{
sp804_state *s = (sp804_state *)opaque;
/* ??? Don't know the PrimeCell ID for this device. */
if (offset < 0x20) {
return arm_timer_read(s->timer[0], offset);
} else {
}
if (offset < 0x40) {
return arm_timer_read(s->timer[1], offset - 0x20);
}
/* TimerPeriphID */
if (offset >= 0xfe0 && offset <= 0xffc) {
return sp804_ids[(offset - 0xfe0) >> 2];
}
switch (offset) {
/* Integration Test control registers, which we won't support */
case 0xf00: /* TimerITCR */
case 0xf04: /* TimerITOP (strictly write only but..) */
return 0;
}
hw_error("%s: Bad offset %x\n", __func__, (int)offset);
return 0;
}
static void sp804_write(void *opaque, target_phys_addr_t offset,
@ -211,9 +233,16 @@ static void sp804_write(void *opaque, target_phys_addr_t offset,
if (offset < 0x20) {
arm_timer_write(s->timer[0], offset, value);
} else {
arm_timer_write(s->timer[1], offset - 0x20, value);
return;
}
if (offset < 0x40) {
arm_timer_write(s->timer[1], offset - 0x20, value);
return;
}
/* Technically we could be writing to the Test Registers, but not likely */
hw_error("%s: Bad offset %x\n", __func__, (int)offset);
}
static const MemoryRegionOps sp804_ops = {

View File

@ -1,283 +0,0 @@
/*
* ARM MPCore internal peripheral emulation (common code).
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "sysbus.h"
#include "qemu-timer.h"
#define NCPU 4
static inline int
gic_get_current_cpu(void)
{
return cpu_single_env->cpu_index;
}
#include "arm_gic.c"
/* MPCore private memory region. */
typedef struct {
uint32_t count;
uint32_t load;
uint32_t control;
uint32_t status;
uint32_t old_status;
int64_t tick;
QEMUTimer *timer;
struct mpcore_priv_state *mpcore;
int id; /* Encodes both timer/watchdog and CPU. */
} mpcore_timer_state;
typedef struct mpcore_priv_state {
gic_state gic;
uint32_t scu_control;
int iomemtype;
mpcore_timer_state timer[8];
uint32_t num_cpu;
MemoryRegion iomem;
MemoryRegion container;
} mpcore_priv_state;
/* Per-CPU Timers. */
static inline void mpcore_timer_update_irq(mpcore_timer_state *s)
{
if (s->status & ~s->old_status) {
gic_set_pending_private(&s->mpcore->gic, s->id >> 1, 29 + (s->id & 1));
}
s->old_status = s->status;
}
/* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
static inline uint32_t mpcore_timer_scale(mpcore_timer_state *s)
{
return (((s->control >> 8) & 0xff) + 1) * 10;
}
static void mpcore_timer_reload(mpcore_timer_state *s, int restart)
{
if (s->count == 0)
return;
if (restart)
s->tick = qemu_get_clock_ns(vm_clock);
s->tick += (int64_t)s->count * mpcore_timer_scale(s);
qemu_mod_timer(s->timer, s->tick);
}
static void mpcore_timer_tick(void *opaque)
{
mpcore_timer_state *s = (mpcore_timer_state *)opaque;
s->status = 1;
if (s->control & 2) {
s->count = s->load;
mpcore_timer_reload(s, 0);
} else {
s->count = 0;
}
mpcore_timer_update_irq(s);
}
static uint32_t mpcore_timer_read(mpcore_timer_state *s, int offset)
{
int64_t val;
switch (offset) {
case 0: /* Load */
return s->load;
/* Fall through. */
case 4: /* Counter. */
if (((s->control & 1) == 0) || (s->count == 0))
return 0;
/* Slow and ugly, but hopefully won't happen too often. */
val = s->tick - qemu_get_clock_ns(vm_clock);
val /= mpcore_timer_scale(s);
if (val < 0)
val = 0;
return val;
case 8: /* Control. */
return s->control;
case 12: /* Interrupt status. */
return s->status;
default:
return 0;
}
}
static void mpcore_timer_write(mpcore_timer_state *s, int offset,
uint32_t value)
{
int64_t old;
switch (offset) {
case 0: /* Load */
s->load = value;
/* Fall through. */
case 4: /* Counter. */
if ((s->control & 1) && s->count) {
/* Cancel the previous timer. */
qemu_del_timer(s->timer);
}
s->count = value;
if (s->control & 1) {
mpcore_timer_reload(s, 1);
}
break;
case 8: /* Control. */
old = s->control;
s->control = value;
if (((old & 1) == 0) && (value & 1)) {
if (s->count == 0 && (s->control & 2))
s->count = s->load;
mpcore_timer_reload(s, 1);
}
break;
case 12: /* Interrupt status. */
s->status &= ~value;
mpcore_timer_update_irq(s);
break;
}
}
static void mpcore_timer_init(mpcore_priv_state *mpcore,
mpcore_timer_state *s, int id)
{
s->id = id;
s->mpcore = mpcore;
s->timer = qemu_new_timer_ns(vm_clock, mpcore_timer_tick, s);
}
/* Per-CPU private memory mapped IO. */
static uint64_t mpcore_priv_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
mpcore_priv_state *s = (mpcore_priv_state *)opaque;
int id;
offset &= 0xfff;
if (offset < 0x100) {
/* SCU */
switch (offset) {
case 0x00: /* Control. */
return s->scu_control;
case 0x04: /* Configuration. */
id = ((1 << s->num_cpu) - 1) << 4;
return id | (s->num_cpu - 1);
case 0x08: /* CPU status. */
return 0;
case 0x0c: /* Invalidate all. */
return 0;
default:
goto bad_reg;
}
} else if (offset < 0x600) {
/* Interrupt controller. */
if (offset < 0x200) {
id = gic_get_current_cpu();
} else {
id = (offset - 0x200) >> 8;
if (id >= s->num_cpu) {
return 0;
}
}
return gic_cpu_read(&s->gic, id, offset & 0xff);
} else if (offset < 0xb00) {
/* Timers. */
if (offset < 0x700) {
id = gic_get_current_cpu();
} else {
id = (offset - 0x700) >> 8;
if (id >= s->num_cpu) {
return 0;
}
}
id <<= 1;
if (offset & 0x20)
id++;
return mpcore_timer_read(&s->timer[id], offset & 0xf);
}
bad_reg:
hw_error("mpcore_priv_read: Bad offset %x\n", (int)offset);
return 0;
}
static void mpcore_priv_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
mpcore_priv_state *s = (mpcore_priv_state *)opaque;
int id;
offset &= 0xfff;
if (offset < 0x100) {
/* SCU */
switch (offset) {
case 0: /* Control register. */
s->scu_control = value & 1;
break;
case 0x0c: /* Invalidate all. */
/* This is a no-op as cache is not emulated. */
break;
default:
goto bad_reg;
}
} else if (offset < 0x600) {
/* Interrupt controller. */
if (offset < 0x200) {
id = gic_get_current_cpu();
} else {
id = (offset - 0x200) >> 8;
}
if (id < s->num_cpu) {
gic_cpu_write(&s->gic, id, offset & 0xff, value);
}
} else if (offset < 0xb00) {
/* Timers. */
if (offset < 0x700) {
id = gic_get_current_cpu();
} else {
id = (offset - 0x700) >> 8;
}
if (id < s->num_cpu) {
id <<= 1;
if (offset & 0x20)
id++;
mpcore_timer_write(&s->timer[id], offset & 0xf, value);
}
return;
}
return;
bad_reg:
hw_error("mpcore_priv_read: Bad offset %x\n", (int)offset);
}
static const MemoryRegionOps mpcore_priv_ops = {
.read = mpcore_priv_read,
.write = mpcore_priv_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void mpcore_priv_map_setup(mpcore_priv_state *s)
{
memory_region_init(&s->container, "mpcode-priv-container", 0x2000);
memory_region_init_io(&s->iomem, &mpcore_priv_ops, s, "mpcode-priv",
0x1000);
memory_region_add_subregion(&s->container, 0, &s->iomem);
memory_region_add_subregion(&s->container, 0x1000, &s->gic.iomem);
}
static int mpcore_priv_init(SysBusDevice *dev)
{
mpcore_priv_state *s = FROM_SYSBUSGIC(mpcore_priv_state, dev);
int i;
gic_init(&s->gic, s->num_cpu);
mpcore_priv_map_setup(s);
sysbus_init_mmio(dev, &s->container);
for (i = 0; i < s->num_cpu * 2; i++) {
mpcore_timer_init(s, &s->timer[i], i);
}
return 0;
}

View File

@ -23,36 +23,13 @@ gic_get_current_cpu(void)
typedef struct {
gic_state gic;
MemoryRegion iomem;
MemoryRegion container;
} RealViewGICState;
static uint64_t realview_gic_cpu_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
gic_state *s = (gic_state *)opaque;
return gic_cpu_read(s, gic_get_current_cpu(), offset);
}
static void realview_gic_cpu_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
gic_state *s = (gic_state *)opaque;
gic_cpu_write(s, gic_get_current_cpu(), offset, value);
}
static const MemoryRegionOps realview_gic_cpu_ops = {
.read = realview_gic_cpu_read,
.write = realview_gic_cpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void realview_gic_map_setup(RealViewGICState *s)
{
memory_region_init(&s->container, "realview-gic-container", 0x2000);
memory_region_init_io(&s->iomem, &realview_gic_cpu_ops, &s->gic,
"realview-gic", 0x1000);
memory_region_add_subregion(&s->container, 0, &s->iomem);
memory_region_add_subregion(&s->container, 0, &s->gic.cpuiomem[0]);
memory_region_add_subregion(&s->container, 0x1000, &s->gic.iomem);
}