diff --git a/target/hexagon/fma_emu.c b/target/hexagon/fma_emu.c
new file mode 100644
index 0000000000..842d903710
--- /dev/null
+++ b/target/hexagon/fma_emu.c
@@ -0,0 +1,702 @@
+/*
+ * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see .
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/int128.h"
+#include "fpu/softfloat.h"
+#include "macros.h"
+#include "conv_emu.h"
+#include "fma_emu.h"
+
+#define DF_INF_EXP 0x7ff
+#define DF_BIAS 1023
+#define DF_MANTBITS 52
+#define DF_NAN 0xffffffffffffffffULL
+#define DF_INF 0x7ff0000000000000ULL
+#define DF_MINUS_INF 0xfff0000000000000ULL
+#define DF_MAXF 0x7fefffffffffffffULL
+#define DF_MINUS_MAXF 0xffefffffffffffffULL
+
+#define SF_INF_EXP 0xff
+#define SF_BIAS 127
+#define SF_MANTBITS 23
+#define SF_INF 0x7f800000
+#define SF_MINUS_INF 0xff800000
+#define SF_MAXF 0x7f7fffff
+#define SF_MINUS_MAXF 0xff7fffff
+
+#define HF_INF_EXP 0x1f
+#define HF_BIAS 15
+
+#define WAY_BIG_EXP 4096
+
+typedef union {
+ double f;
+ uint64_t i;
+ struct {
+ uint64_t mant:52;
+ uint64_t exp:11;
+ uint64_t sign:1;
+ };
+} Double;
+
+typedef union {
+ float f;
+ uint32_t i;
+ struct {
+ uint32_t mant:23;
+ uint32_t exp:8;
+ uint32_t sign:1;
+ };
+} Float;
+
+static inline uint64_t float64_getmant(float64 f64)
+{
+ Double a = { .i = f64 };
+ if (float64_is_normal(f64)) {
+ return a.mant | 1ULL << 52;
+ }
+ if (float64_is_zero(f64)) {
+ return 0;
+ }
+ if (float64_is_denormal(f64)) {
+ return a.mant;
+ }
+ return ~0ULL;
+}
+
+int32_t float64_getexp(float64 f64)
+{
+ Double a = { .i = f64 };
+ if (float64_is_normal(f64)) {
+ return a.exp;
+ }
+ if (float64_is_denormal(f64)) {
+ return a.exp + 1;
+ }
+ return -1;
+}
+
+static inline uint64_t float32_getmant(float32 f32)
+{
+ Float a = { .i = f32 };
+ if (float32_is_normal(f32)) {
+ return a.mant | 1ULL << 23;
+ }
+ if (float32_is_zero(f32)) {
+ return 0;
+ }
+ if (float32_is_denormal(f32)) {
+ return a.mant;
+ }
+ return ~0ULL;
+}
+
+int32_t float32_getexp(float32 f32)
+{
+ Float a = { .i = f32 };
+ if (float32_is_normal(f32)) {
+ return a.exp;
+ }
+ if (float32_is_denormal(f32)) {
+ return a.exp + 1;
+ }
+ return -1;
+}
+
+static inline uint32_t int128_getw0(Int128 x)
+{
+ return int128_getlo(x);
+}
+
+static inline uint32_t int128_getw1(Int128 x)
+{
+ return int128_getlo(x) >> 32;
+}
+
+static inline Int128 int128_mul_6464(uint64_t ai, uint64_t bi)
+{
+ Int128 a, b;
+ uint64_t pp0, pp1a, pp1b, pp1s, pp2;
+
+ a = int128_make64(ai);
+ b = int128_make64(bi);
+ pp0 = (uint64_t)int128_getw0(a) * (uint64_t)int128_getw0(b);
+ pp1a = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw0(b);
+ pp1b = (uint64_t)int128_getw1(b) * (uint64_t)int128_getw0(a);
+ pp2 = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw1(b);
+
+ pp1s = pp1a + pp1b;
+ if ((pp1s < pp1a) || (pp1s < pp1b)) {
+ pp2 += (1ULL << 32);
+ }
+ uint64_t ret_low = pp0 + (pp1s << 32);
+ if ((ret_low < pp0) || (ret_low < (pp1s << 32))) {
+ pp2 += 1;
+ }
+
+ return int128_make128(ret_low, pp2 + (pp1s >> 32));
+}
+
+static inline Int128 int128_sub_borrow(Int128 a, Int128 b, int borrow)
+{
+ Int128 ret = int128_sub(a, b);
+ if (borrow != 0) {
+ ret = int128_sub(ret, int128_one());
+ }
+ return ret;
+}
+
+typedef struct {
+ Int128 mant;
+ int32_t exp;
+ uint8_t sign;
+ uint8_t guard;
+ uint8_t round;
+ uint8_t sticky;
+} Accum;
+
+static inline void accum_init(Accum *p)
+{
+ p->mant = int128_zero();
+ p->exp = 0;
+ p->sign = 0;
+ p->guard = 0;
+ p->round = 0;
+ p->sticky = 0;
+}
+
+static inline Accum accum_norm_left(Accum a)
+{
+ a.exp--;
+ a.mant = int128_lshift(a.mant, 1);
+ a.mant = int128_or(a.mant, int128_make64(a.guard));
+ a.guard = a.round;
+ a.round = a.sticky;
+ return a;
+}
+
+static inline Accum accum_norm_right(Accum a, int amt)
+{
+ if (amt > 130) {
+ a.sticky |=
+ a.round | a.guard | int128_nz(a.mant);
+ a.guard = a.round = 0;
+ a.mant = int128_zero();
+ a.exp += amt;
+ return a;
+
+ }
+ while (amt >= 64) {
+ a.sticky |= a.round | a.guard | (int128_getlo(a.mant) != 0);
+ a.guard = (int128_getlo(a.mant) >> 63) & 1;
+ a.round = (int128_getlo(a.mant) >> 62) & 1;
+ a.mant = int128_make64(int128_gethi(a.mant));
+ a.exp += 64;
+ amt -= 64;
+ }
+ while (amt > 0) {
+ a.exp++;
+ a.sticky |= a.round;
+ a.round = a.guard;
+ a.guard = int128_getlo(a.mant) & 1;
+ a.mant = int128_rshift(a.mant, 1);
+ amt--;
+ }
+ return a;
+}
+
+/*
+ * On the add/sub, we need to be able to shift out lots of bits, but need a
+ * sticky bit for what was shifted out, I think.
+ */
+static Accum accum_add(Accum a, Accum b);
+
+static inline Accum accum_sub(Accum a, Accum b, int negate)
+{
+ Accum ret;
+ accum_init(&ret);
+ int borrow;
+
+ if (a.sign != b.sign) {
+ b.sign = !b.sign;
+ return accum_add(a, b);
+ }
+ if (b.exp > a.exp) {
+ /* small - big == - (big - small) */
+ return accum_sub(b, a, !negate);
+ }
+ if ((b.exp == a.exp) && (int128_gt(b.mant, a.mant))) {
+ /* small - big == - (big - small) */
+ return accum_sub(b, a, !negate);
+ }
+
+ while (a.exp > b.exp) {
+ /* Try to normalize exponents: shrink a exponent and grow mantissa */
+ if (int128_gethi(a.mant) & (1ULL << 62)) {
+ /* Can't grow a any more */
+ break;
+ } else {
+ a = accum_norm_left(a);
+ }
+ }
+
+ while (a.exp > b.exp) {
+ /* Try to normalize exponents: grow b exponent and shrink mantissa */
+ /* Keep around shifted out bits... we might need those later */
+ b = accum_norm_right(b, a.exp - b.exp);
+ }
+
+ if ((int128_gt(b.mant, a.mant))) {
+ return accum_sub(b, a, !negate);
+ }
+
+ /* OK, now things should be normalized! */
+ ret.sign = a.sign;
+ ret.exp = a.exp;
+ assert(!int128_gt(b.mant, a.mant));
+ borrow = (b.round << 2) | (b.guard << 1) | b.sticky;
+ ret.mant = int128_sub_borrow(a.mant, b.mant, (borrow != 0));
+ borrow = 0 - borrow;
+ ret.guard = (borrow >> 2) & 1;
+ ret.round = (borrow >> 1) & 1;
+ ret.sticky = (borrow >> 0) & 1;
+ if (negate) {
+ ret.sign = !ret.sign;
+ }
+ return ret;
+}
+
+static Accum accum_add(Accum a, Accum b)
+{
+ Accum ret;
+ accum_init(&ret);
+ if (a.sign != b.sign) {
+ b.sign = !b.sign;
+ return accum_sub(a, b, 0);
+ }
+ if (b.exp > a.exp) {
+ /* small + big == (big + small) */
+ return accum_add(b, a);
+ }
+ if ((b.exp == a.exp) && int128_gt(b.mant, a.mant)) {
+ /* small + big == (big + small) */
+ return accum_add(b, a);
+ }
+
+ while (a.exp > b.exp) {
+ /* Try to normalize exponents: shrink a exponent and grow mantissa */
+ if (int128_gethi(a.mant) & (1ULL << 62)) {
+ /* Can't grow a any more */
+ break;
+ } else {
+ a = accum_norm_left(a);
+ }
+ }
+
+ while (a.exp > b.exp) {
+ /* Try to normalize exponents: grow b exponent and shrink mantissa */
+ /* Keep around shifted out bits... we might need those later */
+ b = accum_norm_right(b, a.exp - b.exp);
+ }
+
+ /* OK, now things should be normalized! */
+ if (int128_gt(b.mant, a.mant)) {
+ return accum_add(b, a);
+ };
+ ret.sign = a.sign;
+ ret.exp = a.exp;
+ assert(!int128_gt(b.mant, a.mant));
+ ret.mant = int128_add(a.mant, b.mant);
+ ret.guard = b.guard;
+ ret.round = b.round;
+ ret.sticky = b.sticky;
+ return ret;
+}
+
+/* Return an infinity with requested sign */
+static inline float64 infinite_float64(uint8_t sign)
+{
+ if (sign) {
+ return make_float64(DF_MINUS_INF);
+ } else {
+ return make_float64(DF_INF);
+ }
+}
+
+/* Return a maximum finite value with requested sign */
+static inline float64 maxfinite_float64(uint8_t sign)
+{
+ if (sign) {
+ return make_float64(DF_MINUS_MAXF);
+ } else {
+ return make_float64(DF_MAXF);
+ }
+}
+
+/* Return a zero value with requested sign */
+static inline float64 zero_float64(uint8_t sign)
+{
+ if (sign) {
+ return make_float64(0x8000000000000000);
+ } else {
+ return float64_zero;
+ }
+}
+
+/* Return an infinity with the requested sign */
+float32 infinite_float32(uint8_t sign)
+{
+ if (sign) {
+ return make_float32(SF_MINUS_INF);
+ } else {
+ return make_float32(SF_INF);
+ }
+}
+
+/* Return a maximum finite value with the requested sign */
+static inline float32 maxfinite_float32(uint8_t sign)
+{
+ if (sign) {
+ return make_float32(SF_MINUS_MAXF);
+ } else {
+ return make_float32(SF_MAXF);
+ }
+}
+
+/* Return a zero value with requested sign */
+static inline float32 zero_float32(uint8_t sign)
+{
+ if (sign) {
+ return make_float32(0x80000000);
+ } else {
+ return float32_zero;
+ }
+}
+
+#define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \
+static inline SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \
+{ \
+ if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \
+ && ((a.guard | a.round | a.sticky) == 0)) { \
+ /* result zero */ \
+ switch (fp_status->float_rounding_mode) { \
+ case float_round_down: \
+ return zero_##SUFFIX(1); \
+ default: \
+ return zero_##SUFFIX(0); \
+ } \
+ } \
+ /* Normalize right */ \
+ /* We want MANTBITS bits of mantissa plus the leading one. */ \
+ /* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \
+ /* So we need to normalize right while the high word is non-zero and \
+ * while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \
+ while ((int128_gethi(a.mant) != 0) || \
+ ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \
+ a = accum_norm_right(a, 1); \
+ } \
+ /* \
+ * OK, now normalize left \
+ * We want to normalize left until we have a leading one in bit 24 \
+ * Theoretically, we only need to shift a maximum of one to the left if we \
+ * shifted out lots of bits from B, or if we had no shift / 1 shift sticky \
+ * shoudl be 0 \
+ */ \
+ while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \
+ a = accum_norm_left(a); \
+ } \
+ /* \
+ * OK, now we might need to denormalize because of potential underflow. \
+ * We need to do this before rounding, and rounding might make us normal \
+ * again \
+ */ \
+ while (a.exp <= 0) { \
+ a = accum_norm_right(a, 1 - a.exp); \
+ /* \
+ * Do we have underflow? \
+ * That's when we get an inexact answer because we ran out of bits \
+ * in a denormal. \
+ */ \
+ if (a.guard || a.round || a.sticky) { \
+ float_raise(float_flag_underflow, fp_status); \
+ } \
+ } \
+ /* OK, we're relatively canonical... now we need to round */ \
+ if (a.guard || a.round || a.sticky) { \
+ float_raise(float_flag_inexact, fp_status); \
+ switch (fp_status->float_rounding_mode) { \
+ case float_round_to_zero: \
+ /* Chop and we're done */ \
+ break; \
+ case float_round_up: \
+ if (a.sign == 0) { \
+ a.mant = int128_add(a.mant, int128_one()); \
+ } \
+ break; \
+ case float_round_down: \
+ if (a.sign != 0) { \
+ a.mant = int128_add(a.mant, int128_one()); \
+ } \
+ break; \
+ default: \
+ if (a.round || a.sticky) { \
+ /* round up if guard is 1, down if guard is zero */ \
+ a.mant = int128_add(a.mant, int128_make64(a.guard)); \
+ } else if (a.guard) { \
+ /* exactly .5, round up if odd */ \
+ a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \
+ } \
+ break; \
+ } \
+ } \
+ /* \
+ * OK, now we might have carried all the way up. \
+ * So we might need to shr once \
+ * at least we know that the lsb should be zero if we rounded and \
+ * got a carry out... \
+ */ \
+ if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \
+ a = accum_norm_right(a, 1); \
+ } \
+ /* Overflow? */ \
+ if (a.exp >= INF_EXP) { \
+ /* Yep, inf result */ \
+ float_raise(float_flag_overflow, fp_status); \
+ float_raise(float_flag_inexact, fp_status); \
+ switch (fp_status->float_rounding_mode) { \
+ case float_round_to_zero: \
+ return maxfinite_##SUFFIX(a.sign); \
+ case float_round_up: \
+ if (a.sign == 0) { \
+ return infinite_##SUFFIX(a.sign); \
+ } else { \
+ return maxfinite_##SUFFIX(a.sign); \
+ } \
+ case float_round_down: \
+ if (a.sign != 0) { \
+ return infinite_##SUFFIX(a.sign); \
+ } else { \
+ return maxfinite_##SUFFIX(a.sign); \
+ } \
+ default: \
+ return infinite_##SUFFIX(a.sign); \
+ } \
+ } \
+ /* Underflow? */ \
+ if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \
+ /* Leading one means: No, we're normal. So, we should be done... */ \
+ INTERNAL_TYPE ret; \
+ ret.i = 0; \
+ ret.sign = a.sign; \
+ ret.exp = a.exp; \
+ ret.mant = int128_getlo(a.mant); \
+ return ret.i; \
+ } \
+ assert(a.exp == 1); \
+ INTERNAL_TYPE ret; \
+ ret.i = 0; \
+ ret.sign = a.sign; \
+ ret.exp = 0; \
+ ret.mant = int128_getlo(a.mant); \
+ return ret.i; \
+}
+
+GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double)
+GEN_XF_ROUND(float32, SF_MANTBITS, SF_INF_EXP, Float)
+
+static bool is_inf_prod(float64 a, float64 b)
+{
+ return ((float64_is_infinity(a) && float64_is_infinity(b)) ||
+ (float64_is_infinity(a) && is_finite(b) && (!float64_is_zero(b))) ||
+ (float64_is_infinity(b) && is_finite(a) && (!float64_is_zero(a))));
+}
+
+static inline float64 special_fma(float64 a, float64 b, float64 c,
+ float_status *fp_status)
+{
+ float64 ret = make_float64(0);
+
+ /*
+ * If A multiplied by B is an exact infinity and C is also an infinity
+ * but with the opposite sign, FMA returns NaN and raises invalid.
+ */
+ uint8_t a_sign = float64_is_neg(a);
+ uint8_t b_sign = float64_is_neg(b);
+ uint8_t c_sign = float64_is_neg(c);
+ if (is_inf_prod(a, b) && float64_is_infinity(c)) {
+ if ((a_sign ^ b_sign) != c_sign) {
+ ret = make_float64(DF_NAN);
+ float_raise(float_flag_invalid, fp_status);
+ return ret;
+ }
+ }
+ if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+ (float64_is_zero(a) && float64_is_infinity(b))) {
+ ret = make_float64(DF_NAN);
+ float_raise(float_flag_invalid, fp_status);
+ return ret;
+ }
+ /*
+ * If none of the above checks are true and C is a NaN,
+ * a NaN shall be returned
+ * If A or B are NaN, a NAN shall be returned.
+ */
+ if (float64_is_any_nan(a) ||
+ float64_is_any_nan(b) ||
+ float64_is_any_nan(c)) {
+ if (float64_is_any_nan(a) && (fGETBIT(51, a) == 0)) {
+ float_raise(float_flag_invalid, fp_status);
+ }
+ if (float64_is_any_nan(b) && (fGETBIT(51, b) == 0)) {
+ float_raise(float_flag_invalid, fp_status);
+ }
+ if (float64_is_any_nan(c) && (fGETBIT(51, c) == 0)) {
+ float_raise(float_flag_invalid, fp_status);
+ }
+ ret = make_float64(DF_NAN);
+ return ret;
+ }
+ /*
+ * We have checked for adding opposite-signed infinities.
+ * Other infinities return infinity with the correct sign
+ */
+ if (float64_is_infinity(c)) {
+ ret = infinite_float64(c_sign);
+ return ret;
+ }
+ if (float64_is_infinity(a) || float64_is_infinity(b)) {
+ ret = infinite_float64(a_sign ^ b_sign);
+ return ret;
+ }
+ g_assert_not_reached();
+}
+
+static inline float32 special_fmaf(float32 a, float32 b, float32 c,
+ float_status *fp_status)
+{
+ float64 aa, bb, cc;
+ aa = float32_to_float64(a, fp_status);
+ bb = float32_to_float64(b, fp_status);
+ cc = float32_to_float64(c, fp_status);
+ return float64_to_float32(special_fma(aa, bb, cc, fp_status), fp_status);
+}
+
+float32 internal_fmafx(float32 a, float32 b, float32 c, int scale,
+ float_status *fp_status)
+{
+ Accum prod;
+ Accum acc;
+ Accum result;
+ accum_init(&prod);
+ accum_init(&acc);
+ accum_init(&result);
+
+ uint8_t a_sign = float32_is_neg(a);
+ uint8_t b_sign = float32_is_neg(b);
+ uint8_t c_sign = float32_is_neg(c);
+ if (float32_is_infinity(a) ||
+ float32_is_infinity(b) ||
+ float32_is_infinity(c)) {
+ return special_fmaf(a, b, c, fp_status);
+ }
+ if (float32_is_any_nan(a) ||
+ float32_is_any_nan(b) ||
+ float32_is_any_nan(c)) {
+ return special_fmaf(a, b, c, fp_status);
+ }
+ if ((scale == 0) && (float32_is_zero(a) || float32_is_zero(b))) {
+ float32 tmp = float32_mul(a, b, fp_status);
+ tmp = float32_add(tmp, c, fp_status);
+ return tmp;
+ }
+
+ /* (a * 2**b) * (c * 2**d) == a*c * 2**(b+d) */
+ prod.mant = int128_mul_6464(float32_getmant(a), float32_getmant(b));
+
+ /*
+ * Note: extracting the mantissa into an int is multiplying by
+ * 2**23, so adjust here
+ */
+ prod.exp = float32_getexp(a) + float32_getexp(b) - SF_BIAS - 23;
+ prod.sign = a_sign ^ b_sign;
+ if (float32_is_zero(a) || float32_is_zero(b)) {
+ prod.exp = -2 * WAY_BIG_EXP;
+ }
+ if ((scale > 0) && float32_is_denormal(c)) {
+ acc.mant = int128_mul_6464(0, 0);
+ acc.exp = -WAY_BIG_EXP;
+ acc.sign = c_sign;
+ acc.sticky = 1;
+ result = accum_add(prod, acc);
+ } else if (!float32_is_zero(c)) {
+ acc.mant = int128_mul_6464(float32_getmant(c), 1);
+ acc.exp = float32_getexp(c);
+ acc.sign = c_sign;
+ result = accum_add(prod, acc);
+ } else {
+ result = prod;
+ }
+ result.exp += scale;
+ return accum_round_float32(result, fp_status);
+}
+
+float32 internal_mpyf(float32 a, float32 b, float_status *fp_status)
+{
+ if (float32_is_zero(a) || float32_is_zero(b)) {
+ return float32_mul(a, b, fp_status);
+ }
+ return internal_fmafx(a, b, float32_zero, 0, fp_status);
+}
+
+float64 internal_mpyhh(float64 a, float64 b,
+ unsigned long long int accumulated,
+ float_status *fp_status)
+{
+ Accum x;
+ unsigned long long int prod;
+ unsigned int sticky;
+ uint8_t a_sign, b_sign;
+
+ sticky = accumulated & 1;
+ accumulated >>= 1;
+ accum_init(&x);
+ if (float64_is_zero(a) ||
+ float64_is_any_nan(a) ||
+ float64_is_infinity(a)) {
+ return float64_mul(a, b, fp_status);
+ }
+ if (float64_is_zero(b) ||
+ float64_is_any_nan(b) ||
+ float64_is_infinity(b)) {
+ return float64_mul(a, b, fp_status);
+ }
+ x.mant = int128_mul_6464(accumulated, 1);
+ x.sticky = sticky;
+ prod = fGETUWORD(1, float64_getmant(a)) * fGETUWORD(1, float64_getmant(b));
+ x.mant = int128_add(x.mant, int128_mul_6464(prod, 0x100000000ULL));
+ x.exp = float64_getexp(a) + float64_getexp(b) - DF_BIAS - 20;
+ if (!float64_is_normal(a) || !float64_is_normal(b)) {
+ /* crush to inexact zero */
+ x.sticky = 1;
+ x.exp = -4096;
+ }
+ a_sign = float64_is_neg(a);
+ b_sign = float64_is_neg(b);
+ x.sign = a_sign ^ b_sign;
+ return accum_round_float64(x, fp_status);
+}
diff --git a/target/hexagon/fma_emu.h b/target/hexagon/fma_emu.h
new file mode 100644
index 0000000000..e3b99a8cf4
--- /dev/null
+++ b/target/hexagon/fma_emu.h
@@ -0,0 +1,36 @@
+/*
+ * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see .
+ */
+
+#ifndef HEXAGON_FMA_EMU_H
+#define HEXAGON_FMA_EMU_H
+
+static inline bool is_finite(float64 x)
+{
+ return !float64_is_any_nan(x) && !float64_is_infinity(x);
+}
+
+int32_t float64_getexp(float64 f64);
+int32_t float32_getexp(float32 f32);
+float32 infinite_float32(uint8_t sign);
+float32 internal_fmafx(float32 a, float32 b, float32 c,
+ int scale, float_status *fp_status);
+float32 internal_mpyf(float32 a, float32 b, float_status *fp_status);
+float64 internal_mpyhh(float64 a, float64 b,
+ unsigned long long int accumulated,
+ float_status *fp_status);
+
+#endif