vdi: move aiocb fields to locals

Most of the AIOCB really holds local variables that need to persist
across callback invocation.  It can go away now.

Acked-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This commit is contained in:
Paolo Bonzini 2012-03-19 18:07:48 +01:00 committed by Kevin Wolf
parent 4de659e8eb
commit bfc45fc183
1 changed files with 65 additions and 98 deletions

View File

@ -145,24 +145,8 @@ void uuid_unparse(const uuid_t uu, char *out)
typedef struct { typedef struct {
BlockDriverAIOCB common; BlockDriverAIOCB common;
int64_t sector_num;
QEMUIOVector *qiov;
uint8_t *buf; uint8_t *buf;
/* Total number of sectors. */
int nb_sectors;
/* Number of sectors for current AIO. */
int n_sectors;
/* New allocated block map entry. */
uint32_t bmap_first;
uint32_t bmap_last;
/* Buffer for new allocated block. */
void *block_buffer;
void *orig_buf; void *orig_buf;
bool is_write;
int header_modified;
struct iovec hd_iov;
QEMUIOVector hd_qiov;
QEMUBH *bh;
} VdiAIOCB; } VdiAIOCB;
typedef struct { typedef struct {
@ -492,34 +476,20 @@ static AIOPool vdi_aio_pool = {
.aiocb_size = sizeof(VdiAIOCB), .aiocb_size = sizeof(VdiAIOCB),
}; };
static VdiAIOCB *vdi_aio_setup(BlockDriverState *bs, int64_t sector_num, static VdiAIOCB *vdi_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov)
QEMUIOVector *qiov, int nb_sectors, int is_write)
{ {
VdiAIOCB *acb; VdiAIOCB *acb;
logout("%p, %" PRId64 ", %p, %d, %p, %p, %d\n", logout("%p, %p\n", bs, qiov);
bs, sector_num, qiov, nb_sectors, is_write);
acb = qemu_aio_get(&vdi_aio_pool, bs, NULL, NULL); acb = qemu_aio_get(&vdi_aio_pool, bs, NULL, NULL);
acb->sector_num = sector_num;
acb->qiov = qiov;
acb->is_write = is_write;
if (qiov->niov > 1) { if (qiov->niov > 1) {
acb->buf = qemu_blockalign(bs, qiov->size); acb->buf = qemu_blockalign(bs, qiov->size);
acb->orig_buf = acb->buf; acb->orig_buf = acb->buf;
if (is_write) {
qemu_iovec_to_buffer(qiov, acb->buf);
}
} else { } else {
acb->buf = (uint8_t *)qiov->iov->iov_base; acb->buf = (uint8_t *)qiov->iov->iov_base;
} }
acb->nb_sectors = nb_sectors;
acb->n_sectors = 0;
acb->bmap_first = VDI_UNALLOCATED;
acb->bmap_last = VDI_UNALLOCATED;
acb->block_buffer = NULL;
acb->header_modified = 0;
return acb; return acb;
} }
@ -532,24 +502,25 @@ static int vdi_co_readv(BlockDriverState *bs,
uint32_t block_index; uint32_t block_index;
uint32_t sector_in_block; uint32_t sector_in_block;
uint32_t n_sectors; uint32_t n_sectors;
struct iovec hd_iov;
QEMUIOVector hd_qiov;
int ret; int ret;
logout("\n"); logout("\n");
acb = vdi_aio_setup(bs, sector_num, qiov, nb_sectors, 0); acb = vdi_aio_setup(bs, qiov);
restart: restart:
block_index = acb->sector_num / s->block_sectors; block_index = sector_num / s->block_sectors;
sector_in_block = acb->sector_num % s->block_sectors; sector_in_block = sector_num % s->block_sectors;
n_sectors = s->block_sectors - sector_in_block; n_sectors = s->block_sectors - sector_in_block;
if (n_sectors > acb->nb_sectors) { if (n_sectors > nb_sectors) {
n_sectors = acb->nb_sectors; n_sectors = nb_sectors;
} }
logout("will read %u sectors starting at sector %" PRIu64 "\n", logout("will read %u sectors starting at sector %" PRIu64 "\n",
n_sectors, acb->sector_num); n_sectors, sector_num);
/* prepare next AIO request */ /* prepare next AIO request */
acb->n_sectors = n_sectors;
bmap_entry = le32_to_cpu(s->bmap[block_index]); bmap_entry = le32_to_cpu(s->bmap[block_index]);
if (!VDI_IS_ALLOCATED(bmap_entry)) { if (!VDI_IS_ALLOCATED(bmap_entry)) {
/* Block not allocated, return zeros, no need to wait. */ /* Block not allocated, return zeros, no need to wait. */
@ -559,23 +530,23 @@ restart:
uint64_t offset = s->header.offset_data / SECTOR_SIZE + uint64_t offset = s->header.offset_data / SECTOR_SIZE +
(uint64_t)bmap_entry * s->block_sectors + (uint64_t)bmap_entry * s->block_sectors +
sector_in_block; sector_in_block;
acb->hd_iov.iov_base = (void *)acb->buf; hd_iov.iov_base = (void *)acb->buf;
acb->hd_iov.iov_len = n_sectors * SECTOR_SIZE; hd_iov.iov_len = n_sectors * SECTOR_SIZE;
qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
ret = bdrv_co_readv(bs->file, offset, n_sectors, &acb->hd_qiov); ret = bdrv_co_readv(bs->file, offset, n_sectors, &hd_qiov);
} }
logout("%u sectors read\n", acb->n_sectors); logout("%u sectors read\n", n_sectors);
acb->nb_sectors -= acb->n_sectors; nb_sectors -= n_sectors;
acb->sector_num += acb->n_sectors; sector_num += n_sectors;
acb->buf += acb->n_sectors * SECTOR_SIZE; acb->buf += n_sectors * SECTOR_SIZE;
if (ret >= 0 && acb->nb_sectors > 0) { if (ret >= 0 && nb_sectors > 0) {
goto restart; goto restart;
} }
if (acb->qiov->niov > 1) { if (acb->orig_buf) {
qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size); qemu_iovec_from_buffer(qiov, acb->orig_buf, qiov->size);
qemu_vfree(acb->orig_buf); qemu_vfree(acb->orig_buf);
} }
qemu_aio_release(acb); qemu_aio_release(acb);
@ -591,96 +562,93 @@ static int vdi_co_writev(BlockDriverState *bs,
uint32_t block_index; uint32_t block_index;
uint32_t sector_in_block; uint32_t sector_in_block;
uint32_t n_sectors; uint32_t n_sectors;
uint32_t bmap_first = VDI_UNALLOCATED;
uint32_t bmap_last = VDI_UNALLOCATED;
struct iovec hd_iov;
QEMUIOVector hd_qiov;
uint8_t *block = NULL;
int ret; int ret;
logout("\n"); logout("\n");
acb = vdi_aio_setup(bs, sector_num, qiov, nb_sectors, 1); acb = vdi_aio_setup(bs, qiov);
if (acb->orig_buf) {
qemu_iovec_to_buffer(qiov, acb->buf);
}
restart: restart:
block_index = acb->sector_num / s->block_sectors; block_index = sector_num / s->block_sectors;
sector_in_block = acb->sector_num % s->block_sectors; sector_in_block = sector_num % s->block_sectors;
n_sectors = s->block_sectors - sector_in_block; n_sectors = s->block_sectors - sector_in_block;
if (n_sectors > acb->nb_sectors) { if (n_sectors > nb_sectors) {
n_sectors = acb->nb_sectors; n_sectors = nb_sectors;
} }
logout("will write %u sectors starting at sector %" PRIu64 "\n", logout("will write %u sectors starting at sector %" PRIu64 "\n",
n_sectors, acb->sector_num); n_sectors, sector_num);
/* prepare next AIO request */ /* prepare next AIO request */
acb->n_sectors = n_sectors;
bmap_entry = le32_to_cpu(s->bmap[block_index]); bmap_entry = le32_to_cpu(s->bmap[block_index]);
if (!VDI_IS_ALLOCATED(bmap_entry)) { if (!VDI_IS_ALLOCATED(bmap_entry)) {
/* Allocate new block and write to it. */ /* Allocate new block and write to it. */
uint64_t offset; uint64_t offset;
uint8_t *block;
bmap_entry = s->header.blocks_allocated; bmap_entry = s->header.blocks_allocated;
s->bmap[block_index] = cpu_to_le32(bmap_entry); s->bmap[block_index] = cpu_to_le32(bmap_entry);
s->header.blocks_allocated++; s->header.blocks_allocated++;
offset = s->header.offset_data / SECTOR_SIZE + offset = s->header.offset_data / SECTOR_SIZE +
(uint64_t)bmap_entry * s->block_sectors; (uint64_t)bmap_entry * s->block_sectors;
block = acb->block_buffer;
if (block == NULL) { if (block == NULL) {
block = g_malloc(s->block_size); block = g_malloc(s->block_size);
acb->block_buffer = block; bmap_first = block_index;
acb->bmap_first = block_index;
assert(!acb->header_modified);
acb->header_modified = 1;
} }
acb->bmap_last = block_index; bmap_last = block_index;
/* Copy data to be written to new block and zero unused parts. */ /* Copy data to be written to new block and zero unused parts. */
memset(block, 0, sector_in_block * SECTOR_SIZE); memset(block, 0, sector_in_block * SECTOR_SIZE);
memcpy(block + sector_in_block * SECTOR_SIZE, memcpy(block + sector_in_block * SECTOR_SIZE,
acb->buf, n_sectors * SECTOR_SIZE); acb->buf, n_sectors * SECTOR_SIZE);
memset(block + (sector_in_block + n_sectors) * SECTOR_SIZE, 0, memset(block + (sector_in_block + n_sectors) * SECTOR_SIZE, 0,
(s->block_sectors - n_sectors - sector_in_block) * SECTOR_SIZE); (s->block_sectors - n_sectors - sector_in_block) * SECTOR_SIZE);
acb->hd_iov.iov_base = (void *)block; hd_iov.iov_base = (void *)block;
acb->hd_iov.iov_len = s->block_size; hd_iov.iov_len = s->block_size;
qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
ret = bdrv_co_writev(bs->file, offset, s->block_sectors, &acb->hd_qiov); ret = bdrv_co_writev(bs->file, offset, s->block_sectors, &hd_qiov);
} else { } else {
uint64_t offset = s->header.offset_data / SECTOR_SIZE + uint64_t offset = s->header.offset_data / SECTOR_SIZE +
(uint64_t)bmap_entry * s->block_sectors + (uint64_t)bmap_entry * s->block_sectors +
sector_in_block; sector_in_block;
acb->hd_iov.iov_base = (void *)acb->buf; hd_iov.iov_base = (void *)acb->buf;
acb->hd_iov.iov_len = n_sectors * SECTOR_SIZE; hd_iov.iov_len = n_sectors * SECTOR_SIZE;
qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
ret = bdrv_co_writev(bs->file, offset, n_sectors, &acb->hd_qiov); ret = bdrv_co_writev(bs->file, offset, n_sectors, &hd_qiov);
} }
acb->nb_sectors -= acb->n_sectors; nb_sectors -= n_sectors;
acb->sector_num += acb->n_sectors; sector_num += n_sectors;
acb->buf += acb->n_sectors * SECTOR_SIZE; acb->buf += n_sectors * SECTOR_SIZE;
logout("%u sectors written\n", acb->n_sectors); logout("%u sectors written\n", n_sectors);
if (ret >= 0 && acb->nb_sectors > 0) { if (ret >= 0 && nb_sectors > 0) {
goto restart; goto restart;
} }
logout("finished data write\n"); logout("finished data write\n");
if (ret >= 0) { if (ret >= 0) {
ret = 0; ret = 0;
if (acb->header_modified) { if (block) {
VdiHeader *header = acb->block_buffer; VdiHeader *header = (VdiHeader *) block;
logout("now writing modified header\n"); logout("now writing modified header\n");
assert(VDI_IS_ALLOCATED(acb->bmap_first)); assert(VDI_IS_ALLOCATED(bmap_first));
*header = s->header; *header = s->header;
vdi_header_to_le(header); vdi_header_to_le(header);
acb->header_modified = 0; hd_iov.iov_base = block;
acb->hd_iov.iov_base = acb->block_buffer; hd_iov.iov_len = SECTOR_SIZE;
acb->hd_iov.iov_len = SECTOR_SIZE; qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); ret = bdrv_co_writev(bs->file, 0, 1, &hd_qiov);
ret = bdrv_co_writev(bs->file, 0, 1, &acb->hd_qiov);
} }
if (ret >= 0 && VDI_IS_ALLOCATED(acb->bmap_first)) { g_free(block);
block = NULL;
if (ret >= 0 && VDI_IS_ALLOCATED(bmap_first)) {
/* One or more new blocks were allocated. */ /* One or more new blocks were allocated. */
uint64_t offset; uint64_t offset;
uint32_t bmap_first;
uint32_t bmap_last;
g_free(acb->block_buffer);
acb->block_buffer = NULL;
bmap_first = acb->bmap_first;
bmap_last = acb->bmap_last;
logout("now writing modified block map entry %u...%u\n", logout("now writing modified block map entry %u...%u\n",
bmap_first, bmap_last); bmap_first, bmap_last);
/* Write modified sectors from block map. */ /* Write modified sectors from block map. */
@ -688,18 +656,17 @@ restart:
bmap_last /= (SECTOR_SIZE / sizeof(uint32_t)); bmap_last /= (SECTOR_SIZE / sizeof(uint32_t));
n_sectors = bmap_last - bmap_first + 1; n_sectors = bmap_last - bmap_first + 1;
offset = s->bmap_sector + bmap_first; offset = s->bmap_sector + bmap_first;
acb->bmap_first = VDI_UNALLOCATED; hd_iov.iov_base = (void *)((uint8_t *)&s->bmap[0] +
acb->hd_iov.iov_base = (void *)((uint8_t *)&s->bmap[0] +
bmap_first * SECTOR_SIZE); bmap_first * SECTOR_SIZE);
acb->hd_iov.iov_len = n_sectors * SECTOR_SIZE; hd_iov.iov_len = n_sectors * SECTOR_SIZE;
qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1); qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
logout("will write %u block map sectors starting from entry %u\n", logout("will write %u block map sectors starting from entry %u\n",
n_sectors, bmap_first); n_sectors, bmap_first);
ret = bdrv_co_writev(bs->file, offset, n_sectors, &acb->hd_qiov); ret = bdrv_co_writev(bs->file, offset, n_sectors, &hd_qiov);
} }
} }
if (acb->qiov->niov > 1) { if (acb->orig_buf) {
qemu_vfree(acb->orig_buf); qemu_vfree(acb->orig_buf);
} }
qemu_aio_release(acb); qemu_aio_release(acb);