cpus-common: lock-free fast path for cpu_exec_start/end
Set cpu->running without taking the cpu_list lock, only requiring it if there is a concurrent exclusive section. This requires adding a new field to CPUState, which records whether a running CPU is being counted in pending_cpus. When an exclusive section is started concurrently with cpu_exec_start, cpu_exec_start can use the new field to determine if it has to wait for the end of the exclusive section. Likewise, cpu_exec_end can use it to see if start_exclusive is waiting for that CPU. This a separate patch for easier bisection of issues. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
3359baad36
commit
c265e976f4
@ -28,6 +28,9 @@ static QemuCond exclusive_cond;
|
||||
static QemuCond exclusive_resume;
|
||||
static QemuCond qemu_work_cond;
|
||||
|
||||
/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
|
||||
* under qemu_cpu_list_lock, read with atomic operations.
|
||||
*/
|
||||
static int pending_cpus;
|
||||
|
||||
void qemu_init_cpu_list(void)
|
||||
@ -177,18 +180,26 @@ static inline void exclusive_idle(void)
|
||||
void start_exclusive(void)
|
||||
{
|
||||
CPUState *other_cpu;
|
||||
int running_cpus;
|
||||
|
||||
qemu_mutex_lock(&qemu_cpu_list_lock);
|
||||
exclusive_idle();
|
||||
|
||||
/* Make all other cpus stop executing. */
|
||||
pending_cpus = 1;
|
||||
atomic_set(&pending_cpus, 1);
|
||||
|
||||
/* Write pending_cpus before reading other_cpu->running. */
|
||||
smp_mb();
|
||||
running_cpus = 0;
|
||||
CPU_FOREACH(other_cpu) {
|
||||
if (other_cpu->running) {
|
||||
pending_cpus++;
|
||||
if (atomic_read(&other_cpu->running)) {
|
||||
other_cpu->has_waiter = true;
|
||||
running_cpus++;
|
||||
qemu_cpu_kick(other_cpu);
|
||||
}
|
||||
}
|
||||
|
||||
atomic_set(&pending_cpus, running_cpus + 1);
|
||||
while (pending_cpus > 1) {
|
||||
qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
|
||||
}
|
||||
@ -203,7 +214,7 @@ void start_exclusive(void)
|
||||
void end_exclusive(void)
|
||||
{
|
||||
qemu_mutex_lock(&qemu_cpu_list_lock);
|
||||
pending_cpus = 0;
|
||||
atomic_set(&pending_cpus, 0);
|
||||
qemu_cond_broadcast(&exclusive_resume);
|
||||
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
||||
}
|
||||
@ -211,24 +222,78 @@ void end_exclusive(void)
|
||||
/* Wait for exclusive ops to finish, and begin cpu execution. */
|
||||
void cpu_exec_start(CPUState *cpu)
|
||||
{
|
||||
qemu_mutex_lock(&qemu_cpu_list_lock);
|
||||
exclusive_idle();
|
||||
cpu->running = true;
|
||||
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
||||
atomic_set(&cpu->running, true);
|
||||
|
||||
/* Write cpu->running before reading pending_cpus. */
|
||||
smp_mb();
|
||||
|
||||
/* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
|
||||
* After taking the lock we'll see cpu->has_waiter == true and run---not
|
||||
* for long because start_exclusive kicked us. cpu_exec_end will
|
||||
* decrement pending_cpus and signal the waiter.
|
||||
*
|
||||
* 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
|
||||
* This includes the case when an exclusive item is running now.
|
||||
* Then we'll see cpu->has_waiter == false and wait for the item to
|
||||
* complete.
|
||||
*
|
||||
* 3. pending_cpus == 0. Then start_exclusive is definitely going to
|
||||
* see cpu->running == true, and it will kick the CPU.
|
||||
*/
|
||||
if (unlikely(atomic_read(&pending_cpus))) {
|
||||
qemu_mutex_lock(&qemu_cpu_list_lock);
|
||||
if (!cpu->has_waiter) {
|
||||
/* Not counted in pending_cpus, let the exclusive item
|
||||
* run. Since we have the lock, just set cpu->running to true
|
||||
* while holding it; no need to check pending_cpus again.
|
||||
*/
|
||||
atomic_set(&cpu->running, false);
|
||||
exclusive_idle();
|
||||
/* Now pending_cpus is zero. */
|
||||
atomic_set(&cpu->running, true);
|
||||
} else {
|
||||
/* Counted in pending_cpus, go ahead and release the
|
||||
* waiter at cpu_exec_end.
|
||||
*/
|
||||
}
|
||||
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
||||
}
|
||||
}
|
||||
|
||||
/* Mark cpu as not executing, and release pending exclusive ops. */
|
||||
void cpu_exec_end(CPUState *cpu)
|
||||
{
|
||||
qemu_mutex_lock(&qemu_cpu_list_lock);
|
||||
cpu->running = false;
|
||||
if (pending_cpus > 1) {
|
||||
pending_cpus--;
|
||||
if (pending_cpus == 1) {
|
||||
qemu_cond_signal(&exclusive_cond);
|
||||
atomic_set(&cpu->running, false);
|
||||
|
||||
/* Write cpu->running before reading pending_cpus. */
|
||||
smp_mb();
|
||||
|
||||
/* 1. start_exclusive saw cpu->running == true. Then it will increment
|
||||
* pending_cpus and wait for exclusive_cond. After taking the lock
|
||||
* we'll see cpu->has_waiter == true.
|
||||
*
|
||||
* 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
|
||||
* This includes the case when an exclusive item started after setting
|
||||
* cpu->running to false and before we read pending_cpus. Then we'll see
|
||||
* cpu->has_waiter == false and not touch pending_cpus. The next call to
|
||||
* cpu_exec_start will run exclusive_idle if still necessary, thus waiting
|
||||
* for the item to complete.
|
||||
*
|
||||
* 3. pending_cpus == 0. Then start_exclusive is definitely going to
|
||||
* see cpu->running == false, and it can ignore this CPU until the
|
||||
* next cpu_exec_start.
|
||||
*/
|
||||
if (unlikely(atomic_read(&pending_cpus))) {
|
||||
qemu_mutex_lock(&qemu_cpu_list_lock);
|
||||
if (cpu->has_waiter) {
|
||||
cpu->has_waiter = false;
|
||||
atomic_set(&pending_cpus, pending_cpus - 1);
|
||||
if (pending_cpus == 1) {
|
||||
qemu_cond_signal(&exclusive_cond);
|
||||
}
|
||||
}
|
||||
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
||||
}
|
||||
qemu_mutex_unlock(&qemu_cpu_list_lock);
|
||||
}
|
||||
|
||||
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
|
||||
|
@ -13,7 +13,8 @@
|
||||
* gcc pan.c -O2
|
||||
* ./a.out -a
|
||||
*
|
||||
* Tunable processor macros: N_CPUS, N_EXCLUSIVE, N_CYCLES, TEST_EXPENSIVE.
|
||||
* Tunable processor macros: N_CPUS, N_EXCLUSIVE, N_CYCLES, USE_MUTEX,
|
||||
* TEST_EXPENSIVE.
|
||||
*/
|
||||
|
||||
// Define the missing parameters for the model
|
||||
@ -22,8 +23,10 @@
|
||||
#warning defaulting to 2 CPU processes
|
||||
#endif
|
||||
|
||||
// the expensive test is not so expensive for <= 3 CPUs
|
||||
#if N_CPUS <= 3
|
||||
// the expensive test is not so expensive for <= 2 CPUs
|
||||
// If the mutex is used, it's also cheap (300 MB / 4 seconds) for 3 CPUs
|
||||
// For 3 CPUs and the lock-free option it needs 1.5 GB of RAM
|
||||
#if N_CPUS <= 2 || (N_CPUS <= 3 && defined USE_MUTEX)
|
||||
#define TEST_EXPENSIVE
|
||||
#endif
|
||||
|
||||
@ -107,6 +110,8 @@ byte has_waiter[N_CPUS];
|
||||
COND_BROADCAST(exclusive_resume); \
|
||||
MUTEX_UNLOCK(mutex);
|
||||
|
||||
#ifdef USE_MUTEX
|
||||
// Simple version using mutexes
|
||||
#define cpu_exec_start(id) \
|
||||
MUTEX_LOCK(mutex); \
|
||||
exclusive_idle(); \
|
||||
@ -127,6 +132,48 @@ byte has_waiter[N_CPUS];
|
||||
:: else -> skip; \
|
||||
fi; \
|
||||
MUTEX_UNLOCK(mutex);
|
||||
#else
|
||||
// Wait-free fast path, only needs mutex when concurrent with
|
||||
// an exclusive section
|
||||
#define cpu_exec_start(id) \
|
||||
running[id] = 1; \
|
||||
if \
|
||||
:: pending_cpus -> { \
|
||||
MUTEX_LOCK(mutex); \
|
||||
if \
|
||||
:: !has_waiter[id] -> { \
|
||||
running[id] = 0; \
|
||||
exclusive_idle(); \
|
||||
running[id] = 1; \
|
||||
} \
|
||||
:: else -> skip; \
|
||||
fi; \
|
||||
MUTEX_UNLOCK(mutex); \
|
||||
} \
|
||||
:: else -> skip; \
|
||||
fi;
|
||||
|
||||
#define cpu_exec_end(id) \
|
||||
running[id] = 0; \
|
||||
if \
|
||||
:: pending_cpus -> { \
|
||||
MUTEX_LOCK(mutex); \
|
||||
if \
|
||||
:: has_waiter[id] -> { \
|
||||
has_waiter[id] = 0; \
|
||||
pending_cpus--; \
|
||||
if \
|
||||
:: pending_cpus == 1 -> COND_BROADCAST(exclusive_cond); \
|
||||
:: else -> skip; \
|
||||
fi; \
|
||||
} \
|
||||
:: else -> skip; \
|
||||
fi; \
|
||||
MUTEX_UNLOCK(mutex); \
|
||||
} \
|
||||
:: else -> skip; \
|
||||
fi
|
||||
#endif
|
||||
|
||||
// Promela processes
|
||||
|
||||
|
@ -242,7 +242,8 @@ struct qemu_work_item;
|
||||
* @nr_threads: Number of threads within this CPU.
|
||||
* @numa_node: NUMA node this CPU is belonging to.
|
||||
* @host_tid: Host thread ID.
|
||||
* @running: #true if CPU is currently running;
|
||||
* @running: #true if CPU is currently running (lockless).
|
||||
* @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
|
||||
* valid under cpu_list_lock.
|
||||
* @created: Indicates whether the CPU thread has been successfully created.
|
||||
* @interrupt_request: Indicates a pending interrupt request.
|
||||
@ -296,7 +297,7 @@ struct CPUState {
|
||||
#endif
|
||||
int thread_id;
|
||||
uint32_t host_tid;
|
||||
bool running;
|
||||
bool running, has_waiter;
|
||||
struct QemuCond *halt_cond;
|
||||
bool thread_kicked;
|
||||
bool created;
|
||||
|
Loading…
Reference in New Issue
Block a user