target/arm: Expand vector registers for SVE

Change vfp.regs as a uint64_t to vfp.zregs as an ARMVectorReg.
The previous patches have made the change in representation
relatively painless.

Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180123035349.24538-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Richard Henderson 2018-02-09 10:40:31 +00:00 committed by Peter Maydell
parent 4cbca7d9b4
commit c39c2b9043
4 changed files with 81 additions and 28 deletions

View File

@ -153,6 +153,42 @@ typedef struct {
uint32_t base_mask;
} TCR;
/* Define a maximum sized vector register.
* For 32-bit, this is a 128-bit NEON/AdvSIMD register.
* For 64-bit, this is a 2048-bit SVE register.
*
* Note that the mapping between S, D, and Q views of the register bank
* differs between AArch64 and AArch32.
* In AArch32:
* Qn = regs[n].d[1]:regs[n].d[0]
* Dn = regs[n / 2].d[n & 1]
* Sn = regs[n / 4].d[n % 4 / 2],
* bits 31..0 for even n, and bits 63..32 for odd n
* (and regs[16] to regs[31] are inaccessible)
* In AArch64:
* Zn = regs[n].d[*]
* Qn = regs[n].d[1]:regs[n].d[0]
* Dn = regs[n].d[0]
* Sn = regs[n].d[0] bits 31..0
*
* This corresponds to the architecturally defined mapping between
* the two execution states, and means we do not need to explicitly
* map these registers when changing states.
*
* Align the data for use with TCG host vector operations.
*/
#ifdef TARGET_AARCH64
# define ARM_MAX_VQ 16
#else
# define ARM_MAX_VQ 1
#endif
typedef struct ARMVectorReg {
uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
} ARMVectorReg;
typedef struct CPUARMState {
/* Regs for current mode. */
uint32_t regs[16];
@ -477,22 +513,7 @@ typedef struct CPUARMState {
/* VFP coprocessor state. */
struct {
/* VFP/Neon register state. Note that the mapping between S, D and Q
* views of the register bank differs between AArch64 and AArch32:
* In AArch32:
* Qn = regs[2n+1]:regs[2n]
* Dn = regs[n]
* Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
* (and regs[32] to regs[63] are inaccessible)
* In AArch64:
* Qn = regs[2n+1]:regs[2n]
* Dn = regs[2n]
* Sn = regs[2n] bits 31..0
* This corresponds to the architecturally defined mapping between
* the two execution states, and means we do not need to explicitly
* map these registers when changing states.
*/
uint64_t regs[64] QEMU_ALIGNED(16);
ARMVectorReg zregs[32];
uint32_t xregs[16];
/* We store these fpcsr fields separately for convenience. */
@ -2799,7 +2820,7 @@ static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
*/
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
{
return &env->vfp.regs[regno];
return &env->vfp.zregs[regno >> 1].d[regno & 1];
}
/**
@ -2808,7 +2829,7 @@ static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
*/
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
{
return &env->vfp.regs[2 * regno];
return &env->vfp.zregs[regno].d[0];
}
/**
@ -2817,7 +2838,7 @@ static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
*/
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
{
return &env->vfp.regs[2 * regno];
return &env->vfp.zregs[regno].d[0];
}
#endif

View File

@ -50,7 +50,40 @@ static const VMStateDescription vmstate_vfp = {
.minimum_version_id = 3,
.needed = vfp_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.vfp.regs, ARMCPU, 64),
/* For compatibility, store Qn out of Zn here. */
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2),
/* The xregs array is a little awkward because element 1 (FPSCR)
* requires a specific accessor, so we have to split it up in
* the vmstate:

View File

@ -525,8 +525,8 @@ static inline int vec_reg_offset(DisasContext *s, int regno,
{
int offs = 0;
#ifdef HOST_WORDS_BIGENDIAN
/* This is complicated slightly because vfp.regs[2n] is
* still the low half and vfp.regs[2n+1] the high half
/* This is complicated slightly because vfp.zregs[n].d[0] is
* still the low half and vfp.zregs[n].d[1] the high half
* of the 128 bit vector, even on big endian systems.
* Calculate the offset assuming a fully bigendian 128 bits,
* then XOR to account for the order of the two 64 bit halves.
@ -536,7 +536,7 @@ static inline int vec_reg_offset(DisasContext *s, int regno,
#else
offs += element * (1 << size);
#endif
offs += offsetof(CPUARMState, vfp.regs[regno * 2]);
offs += offsetof(CPUARMState, vfp.zregs[regno]);
assert_fp_access_checked(s);
return offs;
}
@ -545,7 +545,7 @@ static inline int vec_reg_offset(DisasContext *s, int regno,
static inline int vec_full_reg_offset(DisasContext *s, int regno)
{
assert_fp_access_checked(s);
return offsetof(CPUARMState, vfp.regs[regno * 2]);
return offsetof(CPUARMState, vfp.zregs[regno]);
}
/* Return a newly allocated pointer to the vector register. */

View File

@ -1512,13 +1512,12 @@ static inline void gen_vfp_st(DisasContext *s, int dp, TCGv_i32 addr)
}
}
static inline long
vfp_reg_offset (int dp, int reg)
static inline long vfp_reg_offset(bool dp, unsigned reg)
{
if (dp) {
return offsetof(CPUARMState, vfp.regs[reg]);
return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]);
} else {
long ofs = offsetof(CPUARMState, vfp.regs[reg >> 1]);
long ofs = offsetof(CPUARMState, vfp.zregs[reg >> 2].d[(reg >> 1) & 1]);
if (reg & 1) {
ofs += offsetof(CPU_DoubleU, l.upper);
} else {