Initial commit for the Qualcomm Hexagon processor.

-----BEGIN PGP SIGNATURE-----
 
 iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmAulUwdHHJpY2hhcmQu
 aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV+2Vwf7BvUWIqL0UTaQWj/s
 2esOf50lV7f5BloKMKsDrOJTQS8UUTKAcrJKLjBjWkUdKZvUvRNDP+co1JFXLGBY
 YFdvDgkd/1daXLOnX09CyzwAozyLzEDztHWChzBvSp/SrsoYXTrGsnK7tybr1vam
 Aum3VcGjmvChi0fokQxWYBcK03XO7UJqHhgeczc4tt9Ok9LO+hPzpdep6oHLZicQ
 qhbej3HokiZ40tFY4kB/8l9W+4XSwJhuGj4z5LPqQk3j544jr6z4Azqo+VmSgWJS
 sgFOAqP5DHIYbLQSvR1yApP1ValgFd5BK/jCPGov/HNZgw31u45JwZarnyR8ylBe
 DcRHDw==
 =h1qI
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/rth-gitlab/tags/pull-hex-20210218' into staging

Initial commit for the Qualcomm Hexagon processor.

# gpg: Signature made Thu 18 Feb 2021 16:26:52 GMT
# gpg:                using RSA key 7A481E78868B4DB6A85A05C064DF38E8AF7E215F
# gpg:                issuer "richard.henderson@linaro.org"
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full]
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A  05C0 64DF 38E8 AF7E 215F

* remotes/rth-gitlab/tags/pull-hex-20210218: (35 commits)
  Hexagon build infrastructure
  Hexagon (tests/tcg/hexagon) TCG tests - floating point
  Hexagon (tests/tcg/hexagon) TCG tests - atomics/load/store/misc
  Hexagon (tests/tcg/hexagon) TCG tests - multiarch
  Hexagon (linux-user/hexagon) Linux user emulation
  Hexagon (target/hexagon) translation
  Hexagon (target/hexagon) TCG for floating point instructions
  Hexagon (target/hexagon) TCG for instructions with multiple definitions
  Hexagon (target/hexagon) TCG generation
  Hexagon (target/hexagon) instruction classes
  Hexagon (target/hexagon) macros
  Hexagon (target/hexagon) opcode data structures
  Hexagon (target/hexagon) generater phase 4 - decode tree
  Hexagon (target/hexagon) generator phase 3 - C preprocessor for decode tree
  Hexagon (target/hexagon) generator phase 2 - generate header files
  Hexagon (target/hexagon) generator phase 1 - C preprocessor for semantics
  Hexagon (target/hexagon/imported) arch import
  Hexagon (target/hexagon/fma_emu.[ch]) utility functions
  Hexagon (target/hexagon/conv_emu.[ch]) utility functions
  Hexagon (target/hexagon/arch.[ch]) utility functions
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2021-02-18 16:33:36 +00:00
commit c79f01c945
102 changed files with 23183 additions and 2 deletions

View File

@ -188,6 +188,15 @@ F: include/hw/cris/
F: tests/tcg/cris/ F: tests/tcg/cris/
F: disas/cris.c F: disas/cris.c
Hexagon TCG CPUs
M: Taylor Simpson <tsimpson@quicinc.com>
S: Supported
F: target/hexagon/
F: linux-user/hexagon/
F: tests/tcg/hexagon/
F: disas/hexagon.c
F: default-configs/targets/hexagon-linux-user.mak
HPPA (PA-RISC) TCG CPUs HPPA (PA-RISC) TCG CPUs
M: Richard Henderson <richard.henderson@linaro.org> M: Richard Henderson <richard.henderson@linaro.org>
S: Maintained S: Maintained

View File

@ -0,0 +1 @@
TARGET_ARCH=hexagon

65
disas/hexagon.c Normal file
View File

@ -0,0 +1,65 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* QEMU Hexagon Disassembler
*/
#include "qemu/osdep.h"
#include "disas/dis-asm.h"
#include "target/hexagon/cpu_bits.h"
/*
* We will disassemble a packet with up to 4 instructions, so we need
* a hefty size buffer.
*/
#define PACKET_BUFFER_LEN 1028
int print_insn_hexagon(bfd_vma memaddr, struct disassemble_info *info)
{
uint32_t words[PACKET_WORDS_MAX];
bool found_end = false;
GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
int i, len;
for (i = 0; i < PACKET_WORDS_MAX && !found_end; i++) {
int status = (*info->read_memory_func)(memaddr + i * sizeof(uint32_t),
(bfd_byte *)&words[i],
sizeof(uint32_t), info);
if (status) {
if (i > 0) {
break;
}
(*info->memory_error_func)(status, memaddr, info);
return status;
}
if (is_packet_end(words[i])) {
found_end = true;
}
}
if (!found_end) {
(*info->fprintf_func)(info->stream, "<invalid>");
return PACKET_WORDS_MAX * sizeof(uint32_t);
}
len = disassemble_hexagon(words, i, memaddr, buf);
(*info->fprintf_func)(info->stream, "%s", buf->str);
g_string_free(buf, true);
return len;
}

View File

@ -6,6 +6,7 @@ common_ss.add(when: 'CONFIG_ARM_A64_DIS', if_true: files('arm-a64.cc'))
common_ss.add_all(when: 'CONFIG_ARM_A64_DIS', if_true: libvixl_ss) common_ss.add_all(when: 'CONFIG_ARM_A64_DIS', if_true: libvixl_ss)
common_ss.add(when: 'CONFIG_ARM_DIS', if_true: files('arm.c')) common_ss.add(when: 'CONFIG_ARM_DIS', if_true: files('arm.c'))
common_ss.add(when: 'CONFIG_CRIS_DIS', if_true: files('cris.c')) common_ss.add(when: 'CONFIG_CRIS_DIS', if_true: files('cris.c'))
common_ss.add(when: 'CONFIG_HEXAGON_DIS', if_true: files('hexagon.c'))
common_ss.add(when: 'CONFIG_HPPA_DIS', if_true: files('hppa.c')) common_ss.add(when: 'CONFIG_HPPA_DIS', if_true: files('hppa.c'))
common_ss.add(when: 'CONFIG_I386_DIS', if_true: files('i386.c')) common_ss.add(when: 'CONFIG_I386_DIS', if_true: files('i386.c'))
common_ss.add(when: 'CONFIG_LM32_DIS', if_true: files('lm32.c')) common_ss.add(when: 'CONFIG_LM32_DIS', if_true: files('lm32.c'))

View File

@ -459,6 +459,7 @@ int print_insn_xtensa (bfd_vma, disassemble_info*);
int print_insn_riscv32 (bfd_vma, disassemble_info*); int print_insn_riscv32 (bfd_vma, disassemble_info*);
int print_insn_riscv64 (bfd_vma, disassemble_info*); int print_insn_riscv64 (bfd_vma, disassemble_info*);
int print_insn_rx(bfd_vma, disassemble_info *); int print_insn_rx(bfd_vma, disassemble_info *);
int print_insn_hexagon(bfd_vma, disassemble_info *);
#ifdef CONFIG_CAPSTONE #ifdef CONFIG_CAPSTONE
bool cap_disas_target(disassemble_info *info, uint64_t pc, size_t size); bool cap_disas_target(disassemble_info *info, uint64_t pc, size_t size);

View File

@ -176,6 +176,7 @@ typedef struct mips_elf_abiflags_v0 {
#define EM_UNICORE32 110 /* UniCore32 */ #define EM_UNICORE32 110 /* UniCore32 */
#define EM_HEXAGON 164 /* Qualcomm Hexagon */
#define EM_RX 173 /* Renesas RX family */ #define EM_RX 173 /* Renesas RX family */
#define EM_RISCV 243 /* RISC-V */ #define EM_RISCV 243 /* RISC-V */

View File

@ -58,6 +58,11 @@ static inline Int128 int128_and(Int128 a, Int128 b)
return a & b; return a & b;
} }
static inline Int128 int128_or(Int128 a, Int128 b)
{
return a | b;
}
static inline Int128 int128_rshift(Int128 a, int n) static inline Int128 int128_rshift(Int128 a, int n)
{ {
return a >> n; return a >> n;
@ -208,6 +213,11 @@ static inline Int128 int128_and(Int128 a, Int128 b)
return (Int128) { a.lo & b.lo, a.hi & b.hi }; return (Int128) { a.lo & b.lo, a.hi & b.hi };
} }
static inline Int128 int128_or(Int128 a, Int128 b)
{
return (Int128) { a.lo | b.lo, a.hi | b.hi };
}
static inline Int128 int128_rshift(Int128 a, int n) static inline Int128 int128_rshift(Int128 a, int n)
{ {
int64_t h; int64_t h;

View File

@ -1514,6 +1514,22 @@ static void elf_core_copy_regs(target_elf_gregset_t *regs,
#endif /* TARGET_XTENSA */ #endif /* TARGET_XTENSA */
#ifdef TARGET_HEXAGON
#define ELF_START_MMAP 0x20000000
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_HEXAGON
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
regs->sepc = infop->entry;
regs->sp = infop->start_stack;
}
#endif /* TARGET_HEXAGON */
#ifndef ELF_PLATFORM #ifndef ELF_PLATFORM
#define ELF_PLATFORM (NULL) #define ELF_PLATFORM (NULL)
#endif #endif

View File

@ -0,0 +1,100 @@
/*
* qemu user cpu loop
*
* Copyright (c) 2003-2008 Fabrice Bellard
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "cpu_loop-common.h"
#include "internal.h"
void cpu_loop(CPUHexagonState *env)
{
CPUState *cs = CPU(hexagon_env_get_cpu(env));
int trapnr, signum, sigcode;
target_ulong sigaddr;
target_ulong syscallnum;
target_ulong ret;
for (;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
signum = 0;
sigcode = 0;
sigaddr = 0;
switch (trapnr) {
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case HEX_EXCP_TRAP0:
syscallnum = env->gpr[6];
env->gpr[HEX_REG_PC] += 4;
ret = do_syscall(env,
syscallnum,
env->gpr[0],
env->gpr[1],
env->gpr[2],
env->gpr[3],
env->gpr[4],
env->gpr[5],
0, 0);
if (ret == -TARGET_ERESTARTSYS) {
env->gpr[HEX_REG_PC] -= 4;
} else if (ret != -TARGET_QEMU_ESIGRETURN) {
env->gpr[0] = ret;
}
break;
case HEX_EXCP_FETCH_NO_UPAGE:
case HEX_EXCP_PRIV_NO_UREAD:
case HEX_EXCP_PRIV_NO_UWRITE:
signum = TARGET_SIGSEGV;
sigcode = TARGET_SEGV_MAPERR;
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
default:
EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n",
trapnr);
exit(EXIT_FAILURE);
}
if (signum) {
target_siginfo_t info = {
.si_signo = signum,
.si_errno = 0,
.si_code = sigcode,
._sifields._sigfault._addr = sigaddr
};
queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
}
process_pending_signals(env);
}
}
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
env->gpr[HEX_REG_PC] = regs->sepc;
env->gpr[HEX_REG_SP] = regs->sp;
env->gpr[HEX_REG_USR] = 0x56000;
}

276
linux-user/hexagon/signal.c Normal file
View File

@ -0,0 +1,276 @@
/*
* Emulation of Linux signals
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "signal-common.h"
#include "linux-user/trace.h"
struct target_sigcontext {
target_ulong r0, r1, r2, r3;
target_ulong r4, r5, r6, r7;
target_ulong r8, r9, r10, r11;
target_ulong r12, r13, r14, r15;
target_ulong r16, r17, r18, r19;
target_ulong r20, r21, r22, r23;
target_ulong r24, r25, r26, r27;
target_ulong r28, r29, r30, r31;
target_ulong sa0;
target_ulong lc0;
target_ulong sa1;
target_ulong lc1;
target_ulong m0;
target_ulong m1;
target_ulong usr;
target_ulong p3_0;
target_ulong gp;
target_ulong ugp;
target_ulong pc;
target_ulong cause;
target_ulong badva;
target_ulong pad1;
target_ulong pad2;
target_ulong pad3;
};
struct target_ucontext {
unsigned long uc_flags;
target_ulong uc_link; /* target pointer */
target_stack_t uc_stack;
struct target_sigcontext uc_mcontext;
target_sigset_t uc_sigmask;
};
struct target_rt_sigframe {
uint32_t tramp[2];
struct target_siginfo info;
struct target_ucontext uc;
};
static abi_ulong get_sigframe(struct target_sigaction *ka,
CPUHexagonState *regs, size_t framesize)
{
abi_ulong sp = get_sp_from_cpustate(regs);
/* This is the X/Open sanctioned signal stack switching. */
sp = target_sigsp(sp, ka) - framesize;
sp = QEMU_ALIGN_DOWN(sp, 8);
return sp;
}
static void setup_sigcontext(struct target_sigcontext *sc, CPUHexagonState *env)
{
__put_user(env->gpr[HEX_REG_R00], &sc->r0);
__put_user(env->gpr[HEX_REG_R01], &sc->r1);
__put_user(env->gpr[HEX_REG_R02], &sc->r2);
__put_user(env->gpr[HEX_REG_R03], &sc->r3);
__put_user(env->gpr[HEX_REG_R04], &sc->r4);
__put_user(env->gpr[HEX_REG_R05], &sc->r5);
__put_user(env->gpr[HEX_REG_R06], &sc->r6);
__put_user(env->gpr[HEX_REG_R07], &sc->r7);
__put_user(env->gpr[HEX_REG_R08], &sc->r8);
__put_user(env->gpr[HEX_REG_R09], &sc->r9);
__put_user(env->gpr[HEX_REG_R10], &sc->r10);
__put_user(env->gpr[HEX_REG_R11], &sc->r11);
__put_user(env->gpr[HEX_REG_R12], &sc->r12);
__put_user(env->gpr[HEX_REG_R13], &sc->r13);
__put_user(env->gpr[HEX_REG_R14], &sc->r14);
__put_user(env->gpr[HEX_REG_R15], &sc->r15);
__put_user(env->gpr[HEX_REG_R16], &sc->r16);
__put_user(env->gpr[HEX_REG_R17], &sc->r17);
__put_user(env->gpr[HEX_REG_R18], &sc->r18);
__put_user(env->gpr[HEX_REG_R19], &sc->r19);
__put_user(env->gpr[HEX_REG_R20], &sc->r20);
__put_user(env->gpr[HEX_REG_R21], &sc->r21);
__put_user(env->gpr[HEX_REG_R22], &sc->r22);
__put_user(env->gpr[HEX_REG_R23], &sc->r23);
__put_user(env->gpr[HEX_REG_R24], &sc->r24);
__put_user(env->gpr[HEX_REG_R25], &sc->r25);
__put_user(env->gpr[HEX_REG_R26], &sc->r26);
__put_user(env->gpr[HEX_REG_R27], &sc->r27);
__put_user(env->gpr[HEX_REG_R28], &sc->r28);
__put_user(env->gpr[HEX_REG_R29], &sc->r29);
__put_user(env->gpr[HEX_REG_R30], &sc->r30);
__put_user(env->gpr[HEX_REG_R31], &sc->r31);
__put_user(env->gpr[HEX_REG_SA0], &sc->sa0);
__put_user(env->gpr[HEX_REG_LC0], &sc->lc0);
__put_user(env->gpr[HEX_REG_SA1], &sc->sa1);
__put_user(env->gpr[HEX_REG_LC1], &sc->lc1);
__put_user(env->gpr[HEX_REG_M0], &sc->m0);
__put_user(env->gpr[HEX_REG_M1], &sc->m1);
__put_user(env->gpr[HEX_REG_USR], &sc->usr);
__put_user(env->gpr[HEX_REG_P3_0], &sc->p3_0);
__put_user(env->gpr[HEX_REG_GP], &sc->gp);
__put_user(env->gpr[HEX_REG_UGP], &sc->ugp);
__put_user(env->gpr[HEX_REG_PC], &sc->pc);
}
static void setup_ucontext(struct target_ucontext *uc,
CPUHexagonState *env, target_sigset_t *set)
{
__put_user(0, &(uc->uc_flags));
__put_user(0, &(uc->uc_link));
target_save_altstack(&uc->uc_stack, env);
int i;
for (i = 0; i < TARGET_NSIG_WORDS; i++) {
__put_user(set->sig[i], &(uc->uc_sigmask.sig[i]));
}
setup_sigcontext(&uc->uc_mcontext, env);
}
static inline void install_sigtramp(uint32_t *tramp)
{
__put_user(0x7800d166, tramp + 0); /* { r6=#__NR_rt_sigreturn } */
__put_user(0x5400c004, tramp + 1); /* { trap0(#1) } */
}
void setup_rt_frame(int sig, struct target_sigaction *ka,
target_siginfo_t *info,
target_sigset_t *set, CPUHexagonState *env)
{
abi_ulong frame_addr;
struct target_rt_sigframe *frame;
frame_addr = get_sigframe(ka, env, sizeof(*frame));
trace_user_setup_rt_frame(env, frame_addr);
if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
goto badframe;
}
setup_ucontext(&frame->uc, env, set);
tswap_siginfo(&frame->info, info);
install_sigtramp(frame->tramp);
env->gpr[HEX_REG_PC] = ka->_sa_handler;
env->gpr[HEX_REG_SP] = frame_addr;
env->gpr[HEX_REG_R00] = sig;
env->gpr[HEX_REG_R01] =
frame_addr + offsetof(struct target_rt_sigframe, info);
env->gpr[HEX_REG_R02] =
frame_addr + offsetof(struct target_rt_sigframe, uc);
env->gpr[HEX_REG_LR] =
frame_addr + offsetof(struct target_rt_sigframe, tramp);
return;
badframe:
unlock_user_struct(frame, frame_addr, 1);
if (sig == TARGET_SIGSEGV) {
ka->_sa_handler = TARGET_SIG_DFL;
}
force_sig(TARGET_SIGSEGV);
}
static void restore_sigcontext(CPUHexagonState *env,
struct target_sigcontext *sc)
{
__get_user(env->gpr[HEX_REG_R00], &sc->r0);
__get_user(env->gpr[HEX_REG_R01], &sc->r1);
__get_user(env->gpr[HEX_REG_R02], &sc->r2);
__get_user(env->gpr[HEX_REG_R03], &sc->r3);
__get_user(env->gpr[HEX_REG_R04], &sc->r4);
__get_user(env->gpr[HEX_REG_R05], &sc->r5);
__get_user(env->gpr[HEX_REG_R06], &sc->r6);
__get_user(env->gpr[HEX_REG_R07], &sc->r7);
__get_user(env->gpr[HEX_REG_R08], &sc->r8);
__get_user(env->gpr[HEX_REG_R09], &sc->r9);
__get_user(env->gpr[HEX_REG_R10], &sc->r10);
__get_user(env->gpr[HEX_REG_R11], &sc->r11);
__get_user(env->gpr[HEX_REG_R12], &sc->r12);
__get_user(env->gpr[HEX_REG_R13], &sc->r13);
__get_user(env->gpr[HEX_REG_R14], &sc->r14);
__get_user(env->gpr[HEX_REG_R15], &sc->r15);
__get_user(env->gpr[HEX_REG_R16], &sc->r16);
__get_user(env->gpr[HEX_REG_R17], &sc->r17);
__get_user(env->gpr[HEX_REG_R18], &sc->r18);
__get_user(env->gpr[HEX_REG_R19], &sc->r19);
__get_user(env->gpr[HEX_REG_R20], &sc->r20);
__get_user(env->gpr[HEX_REG_R21], &sc->r21);
__get_user(env->gpr[HEX_REG_R22], &sc->r22);
__get_user(env->gpr[HEX_REG_R23], &sc->r23);
__get_user(env->gpr[HEX_REG_R24], &sc->r24);
__get_user(env->gpr[HEX_REG_R25], &sc->r25);
__get_user(env->gpr[HEX_REG_R26], &sc->r26);
__get_user(env->gpr[HEX_REG_R27], &sc->r27);
__get_user(env->gpr[HEX_REG_R28], &sc->r28);
__get_user(env->gpr[HEX_REG_R29], &sc->r29);
__get_user(env->gpr[HEX_REG_R30], &sc->r30);
__get_user(env->gpr[HEX_REG_R31], &sc->r31);
__get_user(env->gpr[HEX_REG_SA0], &sc->sa0);
__get_user(env->gpr[HEX_REG_LC0], &sc->lc0);
__get_user(env->gpr[HEX_REG_SA1], &sc->sa1);
__get_user(env->gpr[HEX_REG_LC1], &sc->lc1);
__get_user(env->gpr[HEX_REG_M0], &sc->m0);
__get_user(env->gpr[HEX_REG_M1], &sc->m1);
__get_user(env->gpr[HEX_REG_USR], &sc->usr);
__get_user(env->gpr[HEX_REG_P3_0], &sc->p3_0);
__get_user(env->gpr[HEX_REG_GP], &sc->gp);
__get_user(env->gpr[HEX_REG_UGP], &sc->ugp);
__get_user(env->gpr[HEX_REG_PC], &sc->pc);
}
static void restore_ucontext(CPUHexagonState *env, struct target_ucontext *uc)
{
sigset_t blocked;
target_sigset_t target_set;
int i;
target_sigemptyset(&target_set);
for (i = 0; i < TARGET_NSIG_WORDS; i++) {
__get_user(target_set.sig[i], &(uc->uc_sigmask.sig[i]));
}
target_to_host_sigset_internal(&blocked, &target_set);
set_sigmask(&blocked);
restore_sigcontext(env, &uc->uc_mcontext);
}
long do_rt_sigreturn(CPUHexagonState *env)
{
struct target_rt_sigframe *frame;
abi_ulong frame_addr;
frame_addr = env->gpr[HEX_REG_SP];
trace_user_do_sigreturn(env, frame_addr);
if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) {
goto badframe;
}
restore_ucontext(env, &frame->uc);
if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe,
uc.uc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) {
goto badframe;
}
unlock_user_struct(frame, frame_addr, 0);
return -TARGET_QEMU_ESIGRETURN;
badframe:
unlock_user_struct(frame, frame_addr, 0);
force_sig(TARGET_SIGSEGV);
return 0;
}

View File

@ -0,0 +1,18 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "../generic/sockbits.h"

View File

@ -0,0 +1,322 @@
/*
* This file contains the system call numbers.
* Do not modify.
* This file is generated by scripts/gensyscalls.sh
*/
#ifndef LINUX_USER_HEXAGON_SYSCALL_NR_H
#define LINUX_USER_HEXAGON_SYSCALL_NR_H
#define TARGET_NR_io_setup 0
#define TARGET_NR_io_destroy 1
#define TARGET_NR_io_submit 2
#define TARGET_NR_io_cancel 3
#define TARGET_NR_io_getevents 4
#define TARGET_NR_setxattr 5
#define TARGET_NR_lsetxattr 6
#define TARGET_NR_fsetxattr 7
#define TARGET_NR_getxattr 8
#define TARGET_NR_lgetxattr 9
#define TARGET_NR_fgetxattr 10
#define TARGET_NR_listxattr 11
#define TARGET_NR_llistxattr 12
#define TARGET_NR_flistxattr 13
#define TARGET_NR_removexattr 14
#define TARGET_NR_lremovexattr 15
#define TARGET_NR_fremovexattr 16
#define TARGET_NR_getcwd 17
#define TARGET_NR_lookup_dcookie 18
#define TARGET_NR_eventfd2 19
#define TARGET_NR_epoll_create1 20
#define TARGET_NR_epoll_ctl 21
#define TARGET_NR_epoll_pwait 22
#define TARGET_NR_dup 23
#define TARGET_NR_dup3 24
#define TARGET_NR_fcntl64 25
#define TARGET_NR_inotify_init1 26
#define TARGET_NR_inotify_add_watch 27
#define TARGET_NR_inotify_rm_watch 28
#define TARGET_NR_ioctl 29
#define TARGET_NR_ioprio_set 30
#define TARGET_NR_ioprio_get 31
#define TARGET_NR_flock 32
#define TARGET_NR_mknodat 33
#define TARGET_NR_mkdirat 34
#define TARGET_NR_unlinkat 35
#define TARGET_NR_symlinkat 36
#define TARGET_NR_linkat 37
#define TARGET_NR_renameat 38
#define TARGET_NR_umount2 39
#define TARGET_NR_mount 40
#define TARGET_NR_pivot_root 41
#define TARGET_NR_nfsservctl 42
#define TARGET_NR_statfs64 43
#define TARGET_NR_fstatfs64 44
#define TARGET_NR_truncate64 45
#define TARGET_NR_ftruncate64 46
#define TARGET_NR_fallocate 47
#define TARGET_NR_faccessat 48
#define TARGET_NR_chdir 49
#define TARGET_NR_fchdir 50
#define TARGET_NR_chroot 51
#define TARGET_NR_fchmod 52
#define TARGET_NR_fchmodat 53
#define TARGET_NR_fchownat 54
#define TARGET_NR_fchown 55
#define TARGET_NR_openat 56
#define TARGET_NR_close 57
#define TARGET_NR_vhangup 58
#define TARGET_NR_pipe2 59
#define TARGET_NR_quotactl 60
#define TARGET_NR_getdents64 61
#define TARGET_NR_llseek 62
#define TARGET_NR_read 63
#define TARGET_NR_write 64
#define TARGET_NR_readv 65
#define TARGET_NR_writev 66
#define TARGET_NR_pread64 67
#define TARGET_NR_pwrite64 68
#define TARGET_NR_preadv 69
#define TARGET_NR_pwritev 70
#define TARGET_NR_sendfile64 71
#define TARGET_NR_pselect6 72
#define TARGET_NR_ppoll 73
#define TARGET_NR_signalfd4 74
#define TARGET_NR_vmsplice 75
#define TARGET_NR_splice 76
#define TARGET_NR_tee 77
#define TARGET_NR_readlinkat 78
#define TARGET_NR_fstatat64 79
#define TARGET_NR_fstat64 80
#define TARGET_NR_sync 81
#define TARGET_NR_fsync 82
#define TARGET_NR_fdatasync 83
#define TARGET_NR_sync_file_range 84
#define TARGET_NR_timerfd_create 85
#define TARGET_NR_timerfd_settime 86
#define TARGET_NR_timerfd_gettime 87
#define TARGET_NR_utimensat 88
#define TARGET_NR_acct 89
#define TARGET_NR_capget 90
#define TARGET_NR_capset 91
#define TARGET_NR_personality 92
#define TARGET_NR_exit 93
#define TARGET_NR_exit_group 94
#define TARGET_NR_waitid 95
#define TARGET_NR_set_tid_address 96
#define TARGET_NR_unshare 97
#define TARGET_NR_futex 98
#define TARGET_NR_set_robust_list 99
#define TARGET_NR_get_robust_list 100
#define TARGET_NR_nanosleep 101
#define TARGET_NR_getitimer 102
#define TARGET_NR_setitimer 103
#define TARGET_NR_kexec_load 104
#define TARGET_NR_init_module 105
#define TARGET_NR_delete_module 106
#define TARGET_NR_timer_create 107
#define TARGET_NR_timer_gettime 108
#define TARGET_NR_timer_getoverrun 109
#define TARGET_NR_timer_settime 110
#define TARGET_NR_timer_delete 111
#define TARGET_NR_clock_settime 112
#define TARGET_NR_clock_gettime 113
#define TARGET_NR_clock_getres 114
#define TARGET_NR_clock_nanosleep 115
#define TARGET_NR_syslog 116
#define TARGET_NR_ptrace 117
#define TARGET_NR_sched_setparam 118
#define TARGET_NR_sched_setscheduler 119
#define TARGET_NR_sched_getscheduler 120
#define TARGET_NR_sched_getparam 121
#define TARGET_NR_sched_setaffinity 122
#define TARGET_NR_sched_getaffinity 123
#define TARGET_NR_sched_yield 124
#define TARGET_NR_sched_get_priority_max 125
#define TARGET_NR_sched_get_priority_min 126
#define TARGET_NR_sched_rr_get_interval 127
#define TARGET_NR_restart_syscall 128
#define TARGET_NR_kill 129
#define TARGET_NR_tkill 130
#define TARGET_NR_tgkill 131
#define TARGET_NR_sigaltstack 132
#define TARGET_NR_rt_sigsuspend 133
#define TARGET_NR_rt_sigaction 134
#define TARGET_NR_rt_sigprocmask 135
#define TARGET_NR_rt_sigpending 136
#define TARGET_NR_rt_sigtimedwait 137
#define TARGET_NR_rt_sigqueueinfo 138
#define TARGET_NR_rt_sigreturn 139
#define TARGET_NR_setpriority 140
#define TARGET_NR_getpriority 141
#define TARGET_NR_reboot 142
#define TARGET_NR_setregid 143
#define TARGET_NR_setgid 144
#define TARGET_NR_setreuid 145
#define TARGET_NR_setuid 146
#define TARGET_NR_setresuid 147
#define TARGET_NR_getresuid 148
#define TARGET_NR_setresgid 149
#define TARGET_NR_getresgid 150
#define TARGET_NR_setfsuid 151
#define TARGET_NR_setfsgid 152
#define TARGET_NR_times 153
#define TARGET_NR_setpgid 154
#define TARGET_NR_getpgid 155
#define TARGET_NR_getsid 156
#define TARGET_NR_setsid 157
#define TARGET_NR_getgroups 158
#define TARGET_NR_setgroups 159
#define TARGET_NR_uname 160
#define TARGET_NR_sethostname 161
#define TARGET_NR_setdomainname 162
#define TARGET_NR_getrlimit 163
#define TARGET_NR_setrlimit 164
#define TARGET_NR_getrusage 165
#define TARGET_NR_umask 166
#define TARGET_NR_prctl 167
#define TARGET_NR_getcpu 168
#define TARGET_NR_gettimeofday 169
#define TARGET_NR_settimeofday 170
#define TARGET_NR_adjtimex 171
#define TARGET_NR_getpid 172
#define TARGET_NR_getppid 173
#define TARGET_NR_getuid 174
#define TARGET_NR_geteuid 175
#define TARGET_NR_getgid 176
#define TARGET_NR_getegid 177
#define TARGET_NR_gettid 178
#define TARGET_NR_sysinfo 179
#define TARGET_NR_mq_open 180
#define TARGET_NR_mq_unlink 181
#define TARGET_NR_mq_timedsend 182
#define TARGET_NR_mq_timedreceive 183
#define TARGET_NR_mq_notify 184
#define TARGET_NR_mq_getsetattr 185
#define TARGET_NR_msgget 186
#define TARGET_NR_msgctl 187
#define TARGET_NR_msgrcv 188
#define TARGET_NR_msgsnd 189
#define TARGET_NR_semget 190
#define TARGET_NR_semctl 191
#define TARGET_NR_semtimedop 192
#define TARGET_NR_semop 193
#define TARGET_NR_shmget 194
#define TARGET_NR_shmctl 195
#define TARGET_NR_shmat 196
#define TARGET_NR_shmdt 197
#define TARGET_NR_socket 198
#define TARGET_NR_socketpair 199
#define TARGET_NR_bind 200
#define TARGET_NR_listen 201
#define TARGET_NR_accept 202
#define TARGET_NR_connect 203
#define TARGET_NR_getsockname 204
#define TARGET_NR_getpeername 205
#define TARGET_NR_sendto 206
#define TARGET_NR_recvfrom 207
#define TARGET_NR_setsockopt 208
#define TARGET_NR_getsockopt 209
#define TARGET_NR_shutdown 210
#define TARGET_NR_sendmsg 211
#define TARGET_NR_recvmsg 212
#define TARGET_NR_readahead 213
#define TARGET_NR_brk 214
#define TARGET_NR_munmap 215
#define TARGET_NR_mremap 216
#define TARGET_NR_add_key 217
#define TARGET_NR_request_key 218
#define TARGET_NR_keyctl 219
#define TARGET_NR_clone 220
#define TARGET_NR_execve 221
#define TARGET_NR_mmap2 222
#define TARGET_NR_fadvise64_64 223
#define TARGET_NR_swapon 224
#define TARGET_NR_swapoff 225
#define TARGET_NR_mprotect 226
#define TARGET_NR_msync 227
#define TARGET_NR_mlock 228
#define TARGET_NR_munlock 229
#define TARGET_NR_mlockall 230
#define TARGET_NR_munlockall 231
#define TARGET_NR_mincore 232
#define TARGET_NR_madvise 233
#define TARGET_NR_remap_file_pages 234
#define TARGET_NR_mbind 235
#define TARGET_NR_get_mempolicy 236
#define TARGET_NR_set_mempolicy 237
#define TARGET_NR_migrate_pages 238
#define TARGET_NR_move_pages 239
#define TARGET_NR_rt_tgsigqueueinfo 240
#define TARGET_NR_perf_event_open 241
#define TARGET_NR_accept4 242
#define TARGET_NR_recvmmsg 243
#define TARGET_NR_arch_specific_syscall 244
#define TARGET_NR_wait4 260
#define TARGET_NR_prlimit64 261
#define TARGET_NR_fanotify_init 262
#define TARGET_NR_fanotify_mark 263
#define TARGET_NR_name_to_handle_at 264
#define TARGET_NR_open_by_handle_at 265
#define TARGET_NR_clock_adjtime 266
#define TARGET_NR_syncfs 267
#define TARGET_NR_setns 268
#define TARGET_NR_sendmmsg 269
#define TARGET_NR_process_vm_readv 270
#define TARGET_NR_process_vm_writev 271
#define TARGET_NR_kcmp 272
#define TARGET_NR_finit_module 273
#define TARGET_NR_sched_setattr 274
#define TARGET_NR_sched_getattr 275
#define TARGET_NR_renameat2 276
#define TARGET_NR_seccomp 277
#define TARGET_NR_getrandom 278
#define TARGET_NR_memfd_create 279
#define TARGET_NR_bpf 280
#define TARGET_NR_execveat 281
#define TARGET_NR_userfaultfd 282
#define TARGET_NR_membarrier 283
#define TARGET_NR_mlock2 284
#define TARGET_NR_copy_file_range 285
#define TARGET_NR_preadv2 286
#define TARGET_NR_pwritev2 287
#define TARGET_NR_pkey_mprotect 288
#define TARGET_NR_pkey_alloc 289
#define TARGET_NR_pkey_free 290
#define TARGET_NR_statx 291
#define TARGET_NR_io_pgetevents 292
#define TARGET_NR_rseq 293
#define TARGET_NR_kexec_file_load 294
#define TARGET_NR_clock_gettime64 403
#define TARGET_NR_clock_settime64 404
#define TARGET_NR_clock_adjtime64 405
#define TARGET_NR_clock_getres_time64 406
#define TARGET_NR_clock_nanosleep_time64 407
#define TARGET_NR_timer_gettime64 408
#define TARGET_NR_timer_settime64 409
#define TARGET_NR_timerfd_gettime64 410
#define TARGET_NR_timerfd_settime64 411
#define TARGET_NR_utimensat_time64 412
#define TARGET_NR_pselect6_time64 413
#define TARGET_NR_ppoll_time64 414
#define TARGET_NR_io_pgetevents_time64 416
#define TARGET_NR_recvmmsg_time64 417
#define TARGET_NR_mq_timedsend_time64 418
#define TARGET_NR_mq_timedreceive_time64 419
#define TARGET_NR_semtimedop_time64 420
#define TARGET_NR_rt_sigtimedwait_time64 421
#define TARGET_NR_futex_time64 422
#define TARGET_NR_sched_rr_get_interval_time64 423
#define TARGET_NR_pidfd_send_signal 424
#define TARGET_NR_io_uring_setup 425
#define TARGET_NR_io_uring_enter 426
#define TARGET_NR_io_uring_register 427
#define TARGET_NR_open_tree 428
#define TARGET_NR_move_mount 429
#define TARGET_NR_fsopen 430
#define TARGET_NR_fsconfig 431
#define TARGET_NR_fsmount 432
#define TARGET_NR_fspick 433
#define TARGET_NR_pidfd_open 434
#define TARGET_NR_syscalls 436
#endif /* LINUX_USER_HEXAGON_SYSCALL_NR_H */

View File

@ -0,0 +1,44 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_TARGET_CPU_H
#define HEXAGON_TARGET_CPU_H
static inline void cpu_clone_regs_child(CPUHexagonState *env,
target_ulong newsp, unsigned flags)
{
if (newsp) {
env->gpr[HEX_REG_SP] = newsp;
}
env->gpr[0] = 0;
}
static inline void cpu_clone_regs_parent(CPUHexagonState *env, unsigned flags)
{
}
static inline void cpu_set_tls(CPUHexagonState *env, target_ulong newtls)
{
env->gpr[HEX_REG_UGP] = newtls;
}
static inline abi_ulong get_sp_from_cpustate(CPUHexagonState *state)
{
return state->gpr[HEX_REG_SP];
}
#endif

View File

@ -0,0 +1,40 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_TARGET_ELF_H
#define HEXAGON_TARGET_ELF_H
static inline const char *cpu_get_model(uint32_t eflags)
{
/* For now, treat anything newer than v5 as a v67 */
/* FIXME - Disable instructions that are newer than the specified arch */
if (eflags == 0x04 || /* v5 */
eflags == 0x05 || /* v55 */
eflags == 0x60 || /* v60 */
eflags == 0x61 || /* v61 */
eflags == 0x62 || /* v62 */
eflags == 0x65 || /* v65 */
eflags == 0x66 || /* v66 */
eflags == 0x67 || /* v67 */
eflags == 0x8067 /* v67t */
) {
return "v67";
}
return "unknown";
}
#endif

View File

@ -0,0 +1,18 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "../generic/fcntl.h"

View File

@ -0,0 +1,34 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_TARGET_SIGNAL_H
#define HEXAGON_TARGET_SIGNAL_H
typedef struct target_sigaltstack {
abi_ulong ss_sp;
abi_int ss_flags;
abi_ulong ss_size;
} target_stack_t;
#define TARGET_SS_ONSTACK 1
#define TARGET_SS_DISABLE 2
#define TARGET_MINSIGSTKSZ 2048
#include "../generic/signal.h"
#endif /* TARGET_SIGNAL_H */

View File

@ -0,0 +1,54 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Hexagon specific structures for linux-user
*/
#ifndef HEXAGON_TARGET_STRUCTS_H
#define HEXAGON_TARGET_STRUCTS_H
struct target_ipc_perm {
abi_int __key; /* Key. */
abi_uint uid; /* Owner's user ID. */
abi_uint gid; /* Owner's group ID. */
abi_uint cuid; /* Creator's user ID. */
abi_uint cgid; /* Creator's group ID. */
abi_ushort mode; /* Read/write permission. */
abi_ushort __pad1;
abi_ushort __seq; /* Sequence number. */
abi_ushort __pad2;
abi_ulong __unused1;
abi_ulong __unused2;
};
struct target_shmid_ds {
struct target_ipc_perm shm_perm; /* operation permission struct */
abi_long shm_segsz; /* size of segment in bytes */
abi_ulong shm_atime; /* time of last shmat() */
abi_ulong __unused1;
abi_ulong shm_dtime; /* time of last shmdt() */
abi_ulong __unused2;
abi_ulong shm_ctime; /* time of last change by shmctl() */
abi_ulong __unused3;
abi_int shm_cpid; /* pid of creator */
abi_int shm_lpid; /* pid of last shmop */
abi_ulong shm_nattch; /* number of current attaches */
abi_ulong __unused4;
abi_ulong __unused5;
};
#endif

View File

@ -0,0 +1,36 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_TARGET_SYSCALL_H
#define HEXAGON_TARGET_SYSCALL_H
struct target_pt_regs {
abi_long sepc;
abi_long sp;
};
#define UNAME_MACHINE "hexagon"
#define UNAME_MINIMUM_RELEASE "4.15.0"
#define TARGET_MLOCKALL_MCL_CURRENT 1
#define TARGET_MLOCKALL_MCL_FUTURE 2
#define TARGET_MCL_CURRENT 1
#define TARGET_MCL_FUTURE 2
#define TARGET_MCL_ONFAULT 4
#endif

View File

@ -0,0 +1,18 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "../generic/termbits.h"

View File

@ -718,6 +718,8 @@ static inline int regpairs_aligned(void *cpu_env, int num)
} }
#elif defined(TARGET_XTENSA) #elif defined(TARGET_XTENSA)
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
#elif defined(TARGET_HEXAGON)
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
#else #else
static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
#endif #endif

View File

@ -104,6 +104,14 @@
#define TARGET_IOC_WRITE 2U #define TARGET_IOC_WRITE 2U
#define TARGET_IOC_READ 1U #define TARGET_IOC_READ 1U
#elif defined(TARGET_HEXAGON)
#define TARGET_IOC_SIZEBITS 14
#define TARGET_IOC_NONE 0U
#define TARGET_IOC_WRITE 1U
#define TARGET_IOC_READ 2U
#else #else
#error unsupported CPU #error unsupported CPU
#endif #endif
@ -2253,6 +2261,31 @@ struct target_stat64 {
uint64_t st_ino; uint64_t st_ino;
}; };
#elif defined(TARGET_HEXAGON)
struct target_stat {
unsigned long long st_dev;
unsigned long long st_ino;
unsigned int st_mode;
unsigned int st_nlink;
unsigned int st_uid;
unsigned int st_gid;
unsigned long long st_rdev;
target_ulong __pad1;
long long st_size;
target_long st_blksize;
int __pad2;
long long st_blocks;
target_long target_st_atime;
target_long target_st_atime_nsec;
target_long target_st_mtime;
target_long target_st_mtime_nsec;
target_long target_st_ctime;
target_long target_st_ctime_nsec;
int __unused[2];
};
#else #else
#error unsupported CPU #error unsupported CPU
#endif #endif

View File

@ -1188,6 +1188,7 @@ disassemblers = {
'arm' : ['CONFIG_ARM_DIS'], 'arm' : ['CONFIG_ARM_DIS'],
'avr' : ['CONFIG_AVR_DIS'], 'avr' : ['CONFIG_AVR_DIS'],
'cris' : ['CONFIG_CRIS_DIS'], 'cris' : ['CONFIG_CRIS_DIS'],
'hexagon' : ['CONFIG_HEXAGON_DIS'],
'hppa' : ['CONFIG_HPPA_DIS'], 'hppa' : ['CONFIG_HPPA_DIS'],
'i386' : ['CONFIG_I386_DIS'], 'i386' : ['CONFIG_I386_DIS'],
'x86_64' : ['CONFIG_I386_DIS'], 'x86_64' : ['CONFIG_I386_DIS'],

View File

@ -98,4 +98,5 @@ generate_syscall_nr openrisc 32 "$output/linux-user/openrisc/syscall_nr.h"
generate_syscall_nr riscv 32 "$output/linux-user/riscv/syscall32_nr.h" generate_syscall_nr riscv 32 "$output/linux-user/riscv/syscall32_nr.h"
generate_syscall_nr riscv 64 "$output/linux-user/riscv/syscall64_nr.h" generate_syscall_nr riscv 64 "$output/linux-user/riscv/syscall64_nr.h"
generate_syscall_nr hexagon 32 "$output/linux-user/hexagon/syscall_nr.h"
rm -fr "$TMP" rm -fr "$TMP"

View File

@ -4,7 +4,7 @@
qemu_target_list="i386 i486 alpha arm armeb sparc sparc32plus sparc64 \ qemu_target_list="i386 i486 alpha arm armeb sparc sparc32plus sparc64 \
ppc ppc64 ppc64le m68k mips mipsel mipsn32 mipsn32el mips64 mips64el \ ppc ppc64 ppc64le m68k mips mipsel mipsn32 mipsn32el mips64 mips64el \
sh4 sh4eb s390x aarch64 aarch64_be hppa riscv32 riscv64 xtensa xtensaeb \ sh4 sh4eb s390x aarch64 aarch64_be hppa riscv32 riscv64 xtensa xtensaeb \
microblaze microblazeel or1k x86_64" microblaze microblazeel or1k x86_64 hexagon"
i386_magic='\x7fELF\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03\x00' i386_magic='\x7fELF\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03\x00'
i386_mask='\xff\xff\xff\xff\xff\xfe\xfe\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff' i386_mask='\xff\xff\xff\xff\xff\xfe\xfe\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff'
@ -136,6 +136,10 @@ or1k_magic='\x7fELF\x01\x02\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\
or1k_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff' or1k_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff'
or1k_family=or1k or1k_family=or1k
hexagon_magic='\x7fELF\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\xa4\x00'
hexagon_mask='\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff'
hexagon_family=hexagon
qemu_get_family() { qemu_get_family() {
cpu=${HOST_ARCH:-$(uname -m)} cpu=${HOST_ARCH:-$(uname -m)}
case "$cpu" in case "$cpu" in

235
target/hexagon/README Normal file
View File

@ -0,0 +1,235 @@
Hexagon is Qualcomm's very long instruction word (VLIW) digital signal
processor(DSP).
The following versions of the Hexagon core are supported
Scalar core: v67
https://developer.qualcomm.com/downloads/qualcomm-hexagon-v67-programmer-s-reference-manual
We presented an overview of the project at the 2019 KVM Forum.
https://kvmforum2019.sched.com/event/Tmwc/qemu-hexagon-automatic-translation-of-the-isa-manual-pseudcode-to-tiny-code-instructions-of-a-vliw-architecture-niccolo-izzo-revng-taylor-simpson-qualcomm-innovation-center
*** Tour of the code ***
The qemu-hexagon implementation is a combination of qemu and the Hexagon
architecture library (aka archlib). The three primary directories with
Hexagon-specific code are
qemu/target/hexagon
This has all the instruction and packet semantics
qemu/target/hexagon/imported
These files are imported with very little modification from archlib
*.idef Instruction semantics definition
macros.def Mapping of macros to instruction attributes
encode*.def Encoding patterns for each instruction
iclass.def Instruction class definitions used to determine
legal VLIW slots for each instruction
qemu/linux-user/hexagon
Helpers for loading the ELF file and making Linux system calls,
signals, etc
We start with scripts that generate a bunch of include files. This
is a two step process. The first step is to use the C preprocessor to expand
macros inside the architecture definition files. This is done in
target/hexagon/gen_semantics.c. This step produces
<BUILD_DIR>/target/hexagon/semantics_generated.pyinc.
That file is consumed by the following python scripts to produce the indicated
header files in <BUILD_DIR>/target/hexagon
gen_opcodes_def.py -> opcodes_def_generated.h.inc
gen_op_regs.py -> op_regs_generated.h.inc
gen_printinsn.py -> printinsn_generated.h.inc
gen_op_attribs.py -> op_attribs_generated.h.inc
gen_helper_protos.py -> helper_protos_generated.h.inc
gen_shortcode.py -> shortcode_generated.h.inc
gen_tcg_funcs.py -> tcg_funcs_generated.c.inc
gen_tcg_func_table.py -> tcg_func_table_generated.c.inc
gen_helper_funcs.py -> helper_funcs_generated.c.inc
Qemu helper functions have 3 parts
DEF_HELPER declaration indicates the signature of the helper
gen_helper_<NAME> will generate a TCG call to the helper function
The helper implementation
Here's an example of the A2_add instruction.
Instruction tag A2_add
Assembly syntax "Rd32=add(Rs32,Rt32)"
Instruction semantics "{ RdV=RsV+RtV;}"
By convention, the operands are identified by letter
RdV is the destination register
RsV, RtV are source registers
The generator uses the operand naming conventions (see large comment in
hex_common.py) to determine the signature of the helper function. Here are the
results for A2_add
helper_protos_generated.h.inc
DEF_HELPER_3(A2_add, s32, env, s32, s32)
tcg_funcs_generated.c.inc
static void generate_A2_add(
CPUHexagonState *env,
DisasContext *ctx,
Insn *insn,
Packet *pkt)
{
TCGv RdV = tcg_temp_local_new();
const int RdN = insn->regno[0];
TCGv RsV = hex_gpr[insn->regno[1]];
TCGv RtV = hex_gpr[insn->regno[2]];
gen_helper_A2_add(RdV, cpu_env, RsV, RtV);
gen_log_reg_write(RdN, RdV);
ctx_log_reg_write(ctx, RdN);
tcg_temp_free(RdV);
}
helper_funcs_generated.c.inc
int32_t HELPER(A2_add)(CPUHexagonState *env, int32_t RsV, int32_t RtV)
{
uint32_t slot __attribute__((unused)) = 4;
int32_t RdV = 0;
{ RdV=RsV+RtV;}
return RdV;
}
Note that generate_A2_add updates the disassembly context to be processed
when the packet commits (see "Packet Semantics" below).
The generator checks for fGEN_TCG_<tag> macro. This allows us to generate
TCG code instead of a call to the helper. If defined, the macro takes 1
argument.
C semantics (aka short code)
This allows the code generator to override the auto-generated code. In some
cases this is necessary for correct execution. We can also override for
faster emulation. For example, calling a helper for add is more expensive
than generating a TCG add operation.
The gen_tcg.h file has any overrides. For example, we could write
#define fGEN_TCG_A2_add(GENHLPR, SHORTCODE) \
tcg_gen_add_tl(RdV, RsV, RtV)
The instruction semantics C code relies heavily on macros. In cases where the
C semantics are specified only with macros, we can override the default with
the short semantics option and #define the macros to generate TCG code. One
example is L2_loadw_locked:
Instruction tag L2_loadw_locked
Assembly syntax "Rd32=memw_locked(Rs32)"
Instruction semantics "{ fEA_REG(RsV); fLOAD_LOCKED(1,4,u,EA,RdV) }"
In gen_tcg.h, we use the shortcode
#define fGEN_TCG_L2_loadw_locked(SHORTCODE) \
SHORTCODE
There are also cases where we brute force the TCG code generation.
Instructions with multiple definitions are examples. These require special
handling because qemu helpers can only return a single value.
In addition to instruction semantics, we use a generator to create the decode
tree. This generation is also a two step process. The first step is to run
target/hexagon/gen_dectree_import.c to produce
<BUILD_DIR>/target/hexagon/iset.py
This file is imported by target/hexagon/dectree.py to produce
<BUILD_DIR>/target/hexagon/dectree_generated.h.inc
*** Key Files ***
cpu.h
This file contains the definition of the CPUHexagonState struct. It is the
runtime information for each thread and contains stuff like the GPR and
predicate registers.
macros.h
The Hexagon arch lib relies heavily on macros for the instruction semantics.
This is a great advantage for qemu because we can override them for different
purposes. You will also notice there are sometimes two definitions of a macro.
The QEMU_GENERATE variable determines whether we want the macro to generate TCG
code. If QEMU_GENERATE is not defined, we want the macro to generate vanilla
C code that will work in the helper implementation.
translate.c
The functions in this file generate TCG code for a translation block. Some
important functions in this file are
gen_start_packet - initialize the data structures for packet semantics
gen_commit_packet - commit the register writes, stores, etc for a packet
decode_and_translate_packet - disassemble a packet and generate code
genptr.c
gen_tcg.h
These files create a function for each instruction. It is mostly composed of
fGEN_TCG_<tag> definitions followed by including tcg_funcs_generated.c.inc.
op_helper.c
This file contains the implementations of all the helpers. There are a few
general purpose helpers, but most of them are generated by including
helper_funcs_generated.c.inc. There are also several helpers used for debugging.
*** Packet Semantics ***
VLIW packet semantics differ from serial semantics in that all input operands
are read, then the operations are performed, then all the results are written.
For exmaple, this packet performs a swap of registers r0 and r1
{ r0 = r1; r1 = r0 }
Note that the result is different if the instructions are executed serially.
Packet semantics dictate that we defer any changes of state until the entire
packet is committed. We record the results of each instruction in a side data
structure, and update the visible processor state when we commit the packet.
The data structures are divided between the runtime state and the translation
context.
During the TCG generation (see translate.[ch]), we use the DisasContext to
track what needs to be done during packet commit. Here are the relevant
fields
reg_log list of registers written
reg_log_idx index into ctx_reg_log
pred_log list of predicates written
pred_log_idx index into ctx_pred_log
store_width width of stores (indexed by slot)
During runtime, the following fields in CPUHexagonState (see cpu.h) are used
new_value new value of a given register
reg_written boolean indicating if register was written
new_pred_value new value of a predicate register
pred_written boolean indicating if predicate was written
mem_log_stores record of the stores (indexed by slot)
*** Debugging ***
You can turn on a lot of debugging by changing the HEX_DEBUG macro to 1 in
internal.h. This will stream a lot of information as it generates TCG and
executes the code.
To track down nasty issues with Hexagon->TCG generation, we compare the
execution results with actual hardware running on a Hexagon Linux target.
Run qemu with the "-d cpu" option. Then, we can diff the results and figure
out where qemu and hardware behave differently.
The stacks are located at different locations. We handle this by changing
env->stack_adjust in translate.c. First, set this to zero and run qemu.
Then, change env->stack_adjust to the difference between the two stack
locations. Then rebuild qemu and run again. That will produce a very
clean diff.
Here are some handy places to set breakpoints
At the call to gen_start_packet for a given PC (note that the line number
might change in the future)
br translate.c:602 if ctx->base.pc_next == 0xdeadbeef
The helper function for each instruction is named helper_<TAG>, so here's
an example that will set a breakpoint at the start
br helper_A2_add
If you have the HEX_DEBUG macro set, the following will be useful
At the start of execution of a packet for a given PC
br helper_debug_start_packet if env->gpr[41] == 0xdeadbeef
At the end of execution of a packet for a given PC
br helper_debug_commit_end if env->this_PC == 0xdeadbeef

300
target/hexagon/arch.c Normal file
View File

@ -0,0 +1,300 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "fpu/softfloat.h"
#include "cpu.h"
#include "fma_emu.h"
#include "arch.h"
#include "macros.h"
#define SF_BIAS 127
#define SF_MAXEXP 254
#define SF_MANTBITS 23
#define float32_nan make_float32(0xffffffff)
#define BITS_MASK_8 0x5555555555555555ULL
#define PAIR_MASK_8 0x3333333333333333ULL
#define NYBL_MASK_8 0x0f0f0f0f0f0f0f0fULL
#define BYTE_MASK_8 0x00ff00ff00ff00ffULL
#define HALF_MASK_8 0x0000ffff0000ffffULL
#define WORD_MASK_8 0x00000000ffffffffULL
uint64_t interleave(uint32_t odd, uint32_t even)
{
/* Convert to long long */
uint64_t myodd = odd;
uint64_t myeven = even;
/* First, spread bits out */
myodd = (myodd | (myodd << 16)) & HALF_MASK_8;
myeven = (myeven | (myeven << 16)) & HALF_MASK_8;
myodd = (myodd | (myodd << 8)) & BYTE_MASK_8;
myeven = (myeven | (myeven << 8)) & BYTE_MASK_8;
myodd = (myodd | (myodd << 4)) & NYBL_MASK_8;
myeven = (myeven | (myeven << 4)) & NYBL_MASK_8;
myodd = (myodd | (myodd << 2)) & PAIR_MASK_8;
myeven = (myeven | (myeven << 2)) & PAIR_MASK_8;
myodd = (myodd | (myodd << 1)) & BITS_MASK_8;
myeven = (myeven | (myeven << 1)) & BITS_MASK_8;
/* Now OR together */
return myeven | (myodd << 1);
}
uint64_t deinterleave(uint64_t src)
{
/* Get odd and even bits */
uint64_t myodd = ((src >> 1) & BITS_MASK_8);
uint64_t myeven = (src & BITS_MASK_8);
/* Unspread bits */
myeven = (myeven | (myeven >> 1)) & PAIR_MASK_8;
myodd = (myodd | (myodd >> 1)) & PAIR_MASK_8;
myeven = (myeven | (myeven >> 2)) & NYBL_MASK_8;
myodd = (myodd | (myodd >> 2)) & NYBL_MASK_8;
myeven = (myeven | (myeven >> 4)) & BYTE_MASK_8;
myodd = (myodd | (myodd >> 4)) & BYTE_MASK_8;
myeven = (myeven | (myeven >> 8)) & HALF_MASK_8;
myodd = (myodd | (myodd >> 8)) & HALF_MASK_8;
myeven = (myeven | (myeven >> 16)) & WORD_MASK_8;
myodd = (myodd | (myodd >> 16)) & WORD_MASK_8;
/* Return odd bits in upper half */
return myeven | (myodd << 32);
}
uint32_t carry_from_add64(uint64_t a, uint64_t b, uint32_t c)
{
uint64_t tmpa, tmpb, tmpc;
tmpa = fGETUWORD(0, a);
tmpb = fGETUWORD(0, b);
tmpc = tmpa + tmpb + c;
tmpa = fGETUWORD(1, a);
tmpb = fGETUWORD(1, b);
tmpc = tmpa + tmpb + fGETUWORD(1, tmpc);
tmpc = fGETUWORD(1, tmpc);
return tmpc;
}
int32_t conv_round(int32_t a, int n)
{
int64_t val;
if (n == 0) {
val = a;
} else if ((a & ((1 << (n - 1)) - 1)) == 0) { /* N-1..0 all zero? */
/* Add LSB from int part */
val = ((fSE32_64(a)) + (int64_t) (((uint32_t) ((1 << n) & a)) >> 1));
} else {
val = ((fSE32_64(a)) + (1 << (n - 1)));
}
val = val >> n;
return (int32_t)val;
}
/* Floating Point Stuff */
static const int softfloat_roundingmodes[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_down,
float_round_up,
};
void arch_fpop_start(CPUHexagonState *env)
{
set_float_exception_flags(0, &env->fp_status);
set_float_rounding_mode(
softfloat_roundingmodes[fREAD_REG_FIELD(USR, USR_FPRND)],
&env->fp_status);
}
#ifdef CONFIG_USER_ONLY
/*
* Hexagon Linux kernel only sets the relevant bits in USR (user status
* register). The exception isn't raised to user mode, so we don't
* model it in qemu user mode.
*/
#define RAISE_FP_EXCEPTION do {} while (0)
#endif
#define SOFTFLOAT_TEST_FLAG(FLAG, MYF, MYE) \
do { \
if (flags & FLAG) { \
if (GET_USR_FIELD(USR_##MYF) == 0) { \
SET_USR_FIELD(USR_##MYF, 1); \
if (GET_USR_FIELD(USR_##MYE)) { \
RAISE_FP_EXCEPTION; \
} \
} \
} \
} while (0)
void arch_fpop_end(CPUHexagonState *env)
{
int flags = get_float_exception_flags(&env->fp_status);
if (flags != 0) {
SOFTFLOAT_TEST_FLAG(float_flag_inexact, FPINPF, FPINPE);
SOFTFLOAT_TEST_FLAG(float_flag_divbyzero, FPDBZF, FPDBZE);
SOFTFLOAT_TEST_FLAG(float_flag_invalid, FPINVF, FPINVE);
SOFTFLOAT_TEST_FLAG(float_flag_overflow, FPOVFF, FPOVFE);
SOFTFLOAT_TEST_FLAG(float_flag_underflow, FPUNFF, FPUNFE);
}
}
static float32 float32_mul_pow2(float32 a, uint32_t p, float_status *fp_status)
{
float32 b = make_float32((SF_BIAS + p) << SF_MANTBITS);
return float32_mul(a, b, fp_status);
}
int arch_sf_recip_common(float32 *Rs, float32 *Rt, float32 *Rd, int *adjust,
float_status *fp_status)
{
int n_exp;
int d_exp;
int ret = 0;
float32 RsV, RtV, RdV;
int PeV = 0;
RsV = *Rs;
RtV = *Rt;
if (float32_is_any_nan(RsV) && float32_is_any_nan(RtV)) {
if (extract32(RsV & RtV, 22, 1) == 0) {
float_raise(float_flag_invalid, fp_status);
}
RdV = RsV = RtV = float32_nan;
} else if (float32_is_any_nan(RsV)) {
if (extract32(RsV, 22, 1) == 0) {
float_raise(float_flag_invalid, fp_status);
}
RdV = RsV = RtV = float32_nan;
} else if (float32_is_any_nan(RtV)) {
/* or put NaN in num/den fixup? */
if (extract32(RtV, 22, 1) == 0) {
float_raise(float_flag_invalid, fp_status);
}
RdV = RsV = RtV = float32_nan;
} else if (float32_is_infinity(RsV) && float32_is_infinity(RtV)) {
/* or put Inf in num fixup? */
RdV = RsV = RtV = float32_nan;
float_raise(float_flag_invalid, fp_status);
} else if (float32_is_zero(RsV) && float32_is_zero(RtV)) {
/* or put zero in num fixup? */
RdV = RsV = RtV = float32_nan;
float_raise(float_flag_invalid, fp_status);
} else if (float32_is_zero(RtV)) {
/* or put Inf in num fixup? */
uint8_t RsV_sign = float32_is_neg(RsV);
uint8_t RtV_sign = float32_is_neg(RtV);
RsV = infinite_float32(RsV_sign ^ RtV_sign);
RtV = float32_one;
RdV = float32_one;
if (float32_is_infinity(RsV)) {
float_raise(float_flag_divbyzero, fp_status);
}
} else if (float32_is_infinity(RtV)) {
RsV = make_float32(0x80000000 & (RsV ^ RtV));
RtV = float32_one;
RdV = float32_one;
} else if (float32_is_zero(RsV)) {
/* Does this just work itself out? */
/* No, 0/Inf causes problems. */
RsV = make_float32(0x80000000 & (RsV ^ RtV));
RtV = float32_one;
RdV = float32_one;
} else if (float32_is_infinity(RsV)) {
uint8_t RsV_sign = float32_is_neg(RsV);
uint8_t RtV_sign = float32_is_neg(RtV);
RsV = infinite_float32(RsV_sign ^ RtV_sign);
RtV = float32_one;
RdV = float32_one;
} else {
PeV = 0x00;
/* Basic checks passed */
n_exp = float32_getexp(RsV);
d_exp = float32_getexp(RtV);
if ((n_exp - d_exp + SF_BIAS) <= SF_MANTBITS) {
/* Near quotient underflow / inexact Q */
PeV = 0x80;
RtV = float32_mul_pow2(RtV, -64, fp_status);
RsV = float32_mul_pow2(RsV, 64, fp_status);
} else if ((n_exp - d_exp + SF_BIAS) > (SF_MAXEXP - 24)) {
/* Near quotient overflow */
PeV = 0x40;
RtV = float32_mul_pow2(RtV, 32, fp_status);
RsV = float32_mul_pow2(RsV, -32, fp_status);
} else if (n_exp <= SF_MANTBITS + 2) {
RtV = float32_mul_pow2(RtV, 64, fp_status);
RsV = float32_mul_pow2(RsV, 64, fp_status);
} else if (d_exp <= 1) {
RtV = float32_mul_pow2(RtV, 32, fp_status);
RsV = float32_mul_pow2(RsV, 32, fp_status);
} else if (d_exp > 252) {
RtV = float32_mul_pow2(RtV, -32, fp_status);
RsV = float32_mul_pow2(RsV, -32, fp_status);
}
RdV = 0;
ret = 1;
}
*Rs = RsV;
*Rt = RtV;
*Rd = RdV;
*adjust = PeV;
return ret;
}
int arch_sf_invsqrt_common(float32 *Rs, float32 *Rd, int *adjust,
float_status *fp_status)
{
float32 RsV, RdV;
int PeV = 0;
int r_exp;
int ret = 0;
RsV = *Rs;
if (float32_is_infinity(RsV)) {
if (extract32(RsV, 22, 1) == 0) {
float_raise(float_flag_invalid, fp_status);
}
RdV = RsV = float32_nan;
} else if (float32_lt(RsV, float32_zero, fp_status)) {
/* Negative nonzero values are NaN */
float_raise(float_flag_invalid, fp_status);
RsV = float32_nan;
RdV = float32_nan;
} else if (float32_is_infinity(RsV)) {
/* or put Inf in num fixup? */
RsV = infinite_float32(1);
RdV = infinite_float32(1);
} else if (float32_is_zero(RsV)) {
/* or put zero in num fixup? */
RdV = float32_one;
} else {
PeV = 0x00;
/* Basic checks passed */
r_exp = float32_getexp(RsV);
if (r_exp <= 24) {
RsV = float32_mul_pow2(RsV, 64, fp_status);
PeV = 0xe0;
}
RdV = 0;
ret = 1;
}
*Rs = RsV;
*Rd = RdV;
*adjust = PeV;
return ret;
}

34
target/hexagon/arch.h Normal file
View File

@ -0,0 +1,34 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_ARCH_H
#define HEXAGON_ARCH_H
#include "qemu/int128.h"
uint64_t interleave(uint32_t odd, uint32_t even);
uint64_t deinterleave(uint64_t src);
uint32_t carry_from_add64(uint64_t a, uint64_t b, uint32_t c);
int32_t conv_round(int32_t a, int n);
void arch_fpop_start(CPUHexagonState *env);
void arch_fpop_end(CPUHexagonState *env);
int arch_sf_recip_common(float32 *Rs, float32 *Rt, float32 *Rd,
int *adjust, float_status *fp_status);
int arch_sf_invsqrt_common(float32 *Rs, float32 *Rd, int *adjust,
float_status *fp_status);
#endif

35
target/hexagon/attribs.h Normal file
View File

@ -0,0 +1,35 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_ATTRIBS_H
#define HEXAGON_ATTRIBS_H
#include "qemu/bitmap.h"
#include "opcodes.h"
enum {
#define DEF_ATTRIB(NAME, ...) A_##NAME,
#include "attribs_def.h.inc"
#undef DEF_ATTRIB
};
extern DECLARE_BITMAP(opcode_attribs[XX_LAST_OPCODE], A_ZZ_LASTATTRIB);
#define GET_ATTRIB(opcode, attrib) \
test_bit(attrib, opcode_attribs[opcode])
#endif /* ATTRIBS_H */

View File

@ -0,0 +1,97 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Keep this as the first attribute: */
DEF_ATTRIB(AA_DUMMY, "Dummy Zeroth Attribute", "", "")
/* Misc */
DEF_ATTRIB(EXTENSION, "Extension instruction", "", "")
DEF_ATTRIB(PRIV, "Not available in user or guest mode", "", "")
DEF_ATTRIB(GUEST, "Not available in user mode", "", "")
DEF_ATTRIB(FPOP, "Floating Point Operation", "", "")
DEF_ATTRIB(EXTENDABLE, "Immediate may be extended", "", "")
DEF_ATTRIB(ARCHV2, "V2 architecture", "", "")
DEF_ATTRIB(ARCHV3, "V3 architecture", "", "")
DEF_ATTRIB(ARCHV4, "V4 architecture", "", "")
DEF_ATTRIB(ARCHV5, "V5 architecture", "", "")
DEF_ATTRIB(SUBINSN, "sub-instruction", "", "")
/* Load and Store attributes */
DEF_ATTRIB(LOAD, "Loads from memory", "", "")
DEF_ATTRIB(STORE, "Stores to memory", "", "")
DEF_ATTRIB(MEMLIKE, "Memory-like instruction", "", "")
DEF_ATTRIB(MEMLIKE_PACKET_RULES, "follows Memory-like packet rules", "", "")
/* Change-of-flow attributes */
DEF_ATTRIB(JUMP, "Jump-type instruction", "", "")
DEF_ATTRIB(INDIRECT, "Absolute register jump", "", "")
DEF_ATTRIB(CALL, "Function call instruction", "", "")
DEF_ATTRIB(COF, "Change-of-flow instruction", "", "")
DEF_ATTRIB(CONDEXEC, "May be cancelled by a predicate", "", "")
DEF_ATTRIB(DOTNEWVALUE, "Uses a register value generated in this pkt", "", "")
DEF_ATTRIB(NEWCMPJUMP, "Compound compare and jump", "", "")
/* access to implicit registers */
DEF_ATTRIB(IMPLICIT_WRITES_LR, "Writes the link register", "", "UREG.LR")
DEF_ATTRIB(IMPLICIT_WRITES_SP, "Writes the stack pointer", "", "UREG.SP")
DEF_ATTRIB(IMPLICIT_WRITES_FP, "Writes the frame pointer", "", "UREG.FP")
DEF_ATTRIB(IMPLICIT_WRITES_LC0, "Writes loop count for loop 0", "", "UREG.LC0")
DEF_ATTRIB(IMPLICIT_WRITES_LC1, "Writes loop count for loop 1", "", "UREG.LC1")
DEF_ATTRIB(IMPLICIT_WRITES_SA0, "Writes start addr for loop 0", "", "UREG.SA0")
DEF_ATTRIB(IMPLICIT_WRITES_SA1, "Writes start addr for loop 1", "", "UREG.SA1")
DEF_ATTRIB(IMPLICIT_WRITES_P0, "Writes Predicate 0", "", "UREG.P0")
DEF_ATTRIB(IMPLICIT_WRITES_P1, "Writes Predicate 1", "", "UREG.P1")
DEF_ATTRIB(IMPLICIT_WRITES_P2, "Writes Predicate 1", "", "UREG.P2")
DEF_ATTRIB(IMPLICIT_WRITES_P3, "May write Predicate 3", "", "UREG.P3")
DEF_ATTRIB(IMPLICIT_READS_PC, "Reads the PC register", "", "")
DEF_ATTRIB(WRITES_PRED_REG, "Writes a predicate register", "", "")
DEF_ATTRIB(CRSLOT23, "Can execute in slot 2 or slot 3 (CR)", "", "")
DEF_ATTRIB(IT_NOP, "nop instruction", "", "")
DEF_ATTRIB(IT_EXTENDER, "constant extender instruction", "", "")
/* Restrictions to make note of */
DEF_ATTRIB(RESTRICT_SLOT0ONLY, "Must execute on slot0", "", "")
DEF_ATTRIB(RESTRICT_SLOT1ONLY, "Must execute on slot1", "", "")
DEF_ATTRIB(RESTRICT_SLOT2ONLY, "Must execute on slot2", "", "")
DEF_ATTRIB(RESTRICT_SLOT3ONLY, "Must execute on slot3", "", "")
DEF_ATTRIB(RESTRICT_NOSLOT1, "No slot 1 instruction in parallel", "", "")
DEF_ATTRIB(RESTRICT_PREFERSLOT0, "Try to encode into slot 0", "", "")
DEF_ATTRIB(ICOP, "Instruction cache op", "", "")
DEF_ATTRIB(HWLOOP0_END, "Ends HW loop0", "", "")
DEF_ATTRIB(HWLOOP1_END, "Ends HW loop1", "", "")
DEF_ATTRIB(DCZEROA, "dczeroa type", "", "")
DEF_ATTRIB(ICFLUSHOP, "icflush op type", "", "")
DEF_ATTRIB(DCFLUSHOP, "dcflush op type", "", "")
DEF_ATTRIB(DCFETCH, "dcfetch type", "", "")
DEF_ATTRIB(L2FETCH, "Instruction is l2fetch type", "", "")
DEF_ATTRIB(ICINVA, "icinva", "", "")
DEF_ATTRIB(DCCLEANINVA, "dccleaninva", "", "")
/* Keep this as the last attribute: */
DEF_ATTRIB(ZZ_LASTATTRIB, "Last attribute in the file", "", "")

177
target/hexagon/conv_emu.c Normal file
View File

@ -0,0 +1,177 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/host-utils.h"
#include "fpu/softfloat.h"
#include "macros.h"
#include "conv_emu.h"
#define LL_MAX_POS 0x7fffffffffffffffULL
#define MAX_POS 0x7fffffffU
static uint64_t conv_f64_to_8u_n(float64 in, int will_negate,
float_status *fp_status)
{
uint8_t sign = float64_is_neg(in);
if (float64_is_infinity(in)) {
float_raise(float_flag_invalid, fp_status);
if (float64_is_neg(in)) {
return 0ULL;
} else {
return ~0ULL;
}
}
if (float64_is_any_nan(in)) {
float_raise(float_flag_invalid, fp_status);
return ~0ULL;
}
if (float64_is_zero(in)) {
return 0;
}
if (sign) {
float_raise(float_flag_invalid, fp_status);
return 0;
}
if (float64_lt(in, float64_half, fp_status)) {
/* Near zero, captures large fracshifts, denorms, etc */
float_raise(float_flag_inexact, fp_status);
switch (get_float_rounding_mode(fp_status)) {
case float_round_down:
if (will_negate) {
return 1;
} else {
return 0;
}
case float_round_up:
if (!will_negate) {
return 1;
} else {
return 0;
}
default:
return 0; /* nearest or towards zero */
}
}
return float64_to_uint64(in, fp_status);
}
static void clr_float_exception_flags(uint8_t flag, float_status *fp_status)
{
uint8_t flags = fp_status->float_exception_flags;
flags &= ~flag;
set_float_exception_flags(flags, fp_status);
}
static uint32_t conv_df_to_4u_n(float64 fp64, int will_negate,
float_status *fp_status)
{
uint64_t tmp;
tmp = conv_f64_to_8u_n(fp64, will_negate, fp_status);
if (tmp > 0x00000000ffffffffULL) {
clr_float_exception_flags(float_flag_inexact, fp_status);
float_raise(float_flag_invalid, fp_status);
return ~0U;
}
return (uint32_t)tmp;
}
uint64_t conv_df_to_8u(float64 in, float_status *fp_status)
{
return conv_f64_to_8u_n(in, 0, fp_status);
}
uint32_t conv_df_to_4u(float64 in, float_status *fp_status)
{
return conv_df_to_4u_n(in, 0, fp_status);
}
int64_t conv_df_to_8s(float64 in, float_status *fp_status)
{
uint8_t sign = float64_is_neg(in);
uint64_t tmp;
if (float64_is_any_nan(in)) {
float_raise(float_flag_invalid, fp_status);
return -1;
}
if (sign) {
float64 minus_fp64 = float64_abs(in);
tmp = conv_f64_to_8u_n(minus_fp64, 1, fp_status);
} else {
tmp = conv_f64_to_8u_n(in, 0, fp_status);
}
if (tmp > (LL_MAX_POS + sign)) {
clr_float_exception_flags(float_flag_inexact, fp_status);
float_raise(float_flag_invalid, fp_status);
tmp = (LL_MAX_POS + sign);
}
if (sign) {
return -tmp;
} else {
return tmp;
}
}
int32_t conv_df_to_4s(float64 in, float_status *fp_status)
{
uint8_t sign = float64_is_neg(in);
uint64_t tmp;
if (float64_is_any_nan(in)) {
float_raise(float_flag_invalid, fp_status);
return -1;
}
if (sign) {
float64 minus_fp64 = float64_abs(in);
tmp = conv_f64_to_8u_n(minus_fp64, 1, fp_status);
} else {
tmp = conv_f64_to_8u_n(in, 0, fp_status);
}
if (tmp > (MAX_POS + sign)) {
clr_float_exception_flags(float_flag_inexact, fp_status);
float_raise(float_flag_invalid, fp_status);
tmp = (MAX_POS + sign);
}
if (sign) {
return -tmp;
} else {
return tmp;
}
}
uint64_t conv_sf_to_8u(float32 in, float_status *fp_status)
{
float64 fp64 = float32_to_float64(in, fp_status);
return conv_df_to_8u(fp64, fp_status);
}
uint32_t conv_sf_to_4u(float32 in, float_status *fp_status)
{
float64 fp64 = float32_to_float64(in, fp_status);
return conv_df_to_4u(fp64, fp_status);
}
int64_t conv_sf_to_8s(float32 in, float_status *fp_status)
{
float64 fp64 = float32_to_float64(in, fp_status);
return conv_df_to_8s(fp64, fp_status);
}
int32_t conv_sf_to_4s(float32 in, float_status *fp_status)
{
float64 fp64 = float32_to_float64(in, fp_status);
return conv_df_to_4s(fp64, fp_status);
}

31
target/hexagon/conv_emu.h Normal file
View File

@ -0,0 +1,31 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_CONV_EMU_H
#define HEXAGON_CONV_EMU_H
uint64_t conv_sf_to_8u(float32 in, float_status *fp_status);
uint32_t conv_sf_to_4u(float32 in, float_status *fp_status);
int64_t conv_sf_to_8s(float32 in, float_status *fp_status);
int32_t conv_sf_to_4s(float32 in, float_status *fp_status);
uint64_t conv_df_to_8u(float64 in, float_status *fp_status);
uint32_t conv_df_to_4u(float64 in, float_status *fp_status);
int64_t conv_df_to_8s(float64 in, float_status *fp_status);
int32_t conv_df_to_4s(float64 in, float_status *fp_status);
#endif

View File

@ -0,0 +1,29 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_CPU_PARAM_H
#define HEXAGON_CPU_PARAM_H
#define TARGET_PAGE_BITS 16 /* 64K pages */
#define TARGET_LONG_BITS 32
#define TARGET_PHYS_ADDR_SPACE_BITS 36
#define TARGET_VIRT_ADDR_SPACE_BITS 32
#define NB_MMU_MODES 1
#endif

318
target/hexagon/cpu.c Normal file
View File

@ -0,0 +1,318 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/qemu-print.h"
#include "cpu.h"
#include "internal.h"
#include "exec/exec-all.h"
#include "qapi/error.h"
#include "hw/qdev-properties.h"
static void hexagon_v67_cpu_init(Object *obj)
{
}
static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
cpuname = g_strsplit(cpu_model, ",", 1);
typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
oc = object_class_by_name(typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
static Property hexagon_lldb_compat_property =
DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
static Property hexagon_lldb_stack_adjust_property =
DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
0, qdev_prop_uint32, target_ulong);
const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
"usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
"c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "c22", "c23",
"c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
};
/*
* One of the main debugging techniques is to use "-d cpu" and compare against
* LLDB output when single stepping. However, the target and qemu put the
* stacks at different locations. This is used to compensate so the diff is
* cleaner.
*/
static inline target_ulong adjust_stack_ptrs(CPUHexagonState *env,
target_ulong addr)
{
HexagonCPU *cpu = container_of(env, HexagonCPU, env);
target_ulong stack_adjust = cpu->lldb_stack_adjust;
target_ulong stack_start = env->stack_start;
target_ulong stack_size = 0x10000;
if (stack_adjust == 0) {
return addr;
}
if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
return addr - stack_adjust;
}
return addr;
}
/* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */
static inline target_ulong read_p3_0(CPUHexagonState *env)
{
int32_t control_reg = 0;
int i;
for (i = NUM_PREGS - 1; i >= 0; i--) {
control_reg <<= 8;
control_reg |= env->pred[i] & 0xff;
}
return control_reg;
}
static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
{
target_ulong value;
if (regnum == HEX_REG_P3_0) {
value = read_p3_0(env);
} else {
value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
: env->gpr[regnum];
}
qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
hexagon_regnames[regnum], value);
}
static void hexagon_dump(CPUHexagonState *env, FILE *f)
{
HexagonCPU *cpu = container_of(env, HexagonCPU, env);
if (cpu->lldb_compat) {
/*
* When comparing with LLDB, it doesn't step through single-cycle
* hardware loops the same way. So, we just skip them here
*/
if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
return;
}
env->last_pc_dumped = env->gpr[HEX_REG_PC];
}
qemu_fprintf(f, "General Purpose Registers = {\n");
for (int i = 0; i < 32; i++) {
print_reg(f, env, i);
}
print_reg(f, env, HEX_REG_SA0);
print_reg(f, env, HEX_REG_LC0);
print_reg(f, env, HEX_REG_SA1);
print_reg(f, env, HEX_REG_LC1);
print_reg(f, env, HEX_REG_M0);
print_reg(f, env, HEX_REG_M1);
print_reg(f, env, HEX_REG_USR);
print_reg(f, env, HEX_REG_P3_0);
print_reg(f, env, HEX_REG_GP);
print_reg(f, env, HEX_REG_UGP);
print_reg(f, env, HEX_REG_PC);
#ifdef CONFIG_USER_ONLY
/*
* Not modelled in user mode, print junk to minimize the diff's
* with LLDB output
*/
qemu_fprintf(f, " cause = 0x000000db\n");
qemu_fprintf(f, " badva = 0x00000000\n");
qemu_fprintf(f, " cs0 = 0x00000000\n");
qemu_fprintf(f, " cs1 = 0x00000000\n");
#else
print_reg(f, env, HEX_REG_CAUSE);
print_reg(f, env, HEX_REG_BADVA);
print_reg(f, env, HEX_REG_CS0);
print_reg(f, env, HEX_REG_CS1);
#endif
qemu_fprintf(f, "}\n");
}
static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
{
HexagonCPU *cpu = HEXAGON_CPU(cs);
CPUHexagonState *env = &cpu->env;
hexagon_dump(env, f);
}
void hexagon_debug(CPUHexagonState *env)
{
hexagon_dump(env, stdout);
}
static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
{
HexagonCPU *cpu = HEXAGON_CPU(cs);
CPUHexagonState *env = &cpu->env;
env->gpr[HEX_REG_PC] = value;
}
static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
HexagonCPU *cpu = HEXAGON_CPU(cs);
CPUHexagonState *env = &cpu->env;
env->gpr[HEX_REG_PC] = tb->pc;
}
static bool hexagon_cpu_has_work(CPUState *cs)
{
return true;
}
void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb,
target_ulong *data)
{
env->gpr[HEX_REG_PC] = data[0];
}
static void hexagon_cpu_reset(DeviceState *dev)
{
CPUState *cs = CPU(dev);
HexagonCPU *cpu = HEXAGON_CPU(cs);
HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
mcc->parent_reset(dev);
}
static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
{
info->print_insn = print_insn_hexagon;
}
static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
Error *local_err = NULL;
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
qemu_init_vcpu(cs);
cpu_reset(cs);
mcc->parent_realize(dev, errp);
}
static void hexagon_cpu_init(Object *obj)
{
HexagonCPU *cpu = HEXAGON_CPU(obj);
cpu_set_cpustate_pointers(cpu);
qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
}
static bool hexagon_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
#ifdef CONFIG_USER_ONLY
switch (access_type) {
case MMU_INST_FETCH:
cs->exception_index = HEX_EXCP_FETCH_NO_UPAGE;
break;
case MMU_DATA_LOAD:
cs->exception_index = HEX_EXCP_PRIV_NO_UREAD;
break;
case MMU_DATA_STORE:
cs->exception_index = HEX_EXCP_PRIV_NO_UWRITE;
break;
}
cpu_loop_exit_restore(cs, retaddr);
#else
#error System mode not implemented for Hexagon
#endif
}
#include "hw/core/tcg-cpu-ops.h"
static struct TCGCPUOps hexagon_tcg_ops = {
.initialize = hexagon_translate_init,
.synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
.tlb_fill = hexagon_tlb_fill,
};
static void hexagon_cpu_class_init(ObjectClass *c, void *data)
{
HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
CPUClass *cc = CPU_CLASS(c);
DeviceClass *dc = DEVICE_CLASS(c);
device_class_set_parent_realize(dc, hexagon_cpu_realize,
&mcc->parent_realize);
device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset);
cc->class_by_name = hexagon_cpu_class_by_name;
cc->has_work = hexagon_cpu_has_work;
cc->dump_state = hexagon_dump_state;
cc->set_pc = hexagon_cpu_set_pc;
cc->gdb_read_register = hexagon_gdb_read_register;
cc->gdb_write_register = hexagon_gdb_write_register;
cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS;
cc->gdb_stop_before_watchpoint = true;
cc->disas_set_info = hexagon_cpu_disas_set_info;
cc->tcg_ops = &hexagon_tcg_ops;
}
#define DEFINE_CPU(type_name, initfn) \
{ \
.name = type_name, \
.parent = TYPE_HEXAGON_CPU, \
.instance_init = initfn \
}
static const TypeInfo hexagon_cpu_type_infos[] = {
{
.name = TYPE_HEXAGON_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(HexagonCPU),
.instance_init = hexagon_cpu_init,
.abstract = true,
.class_size = sizeof(HexagonCPUClass),
.class_init = hexagon_cpu_class_init,
},
DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
};
DEFINE_TYPES(hexagon_cpu_type_infos)

159
target/hexagon/cpu.h Normal file
View File

@ -0,0 +1,159 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_CPU_H
#define HEXAGON_CPU_H
/* Forward declaration needed by some of the header files */
typedef struct CPUHexagonState CPUHexagonState;
#include "fpu/softfloat-types.h"
#include "qemu-common.h"
#include "exec/cpu-defs.h"
#include "hex_regs.h"
#define NUM_PREGS 4
#define TOTAL_PER_THREAD_REGS 64
#define SLOTS_MAX 4
#define STORES_MAX 2
#define REG_WRITES_MAX 32
#define PRED_WRITES_MAX 5 /* 4 insns + endloop */
#define TYPE_HEXAGON_CPU "hexagon-cpu"
#define HEXAGON_CPU_TYPE_SUFFIX "-" TYPE_HEXAGON_CPU
#define HEXAGON_CPU_TYPE_NAME(name) (name HEXAGON_CPU_TYPE_SUFFIX)
#define CPU_RESOLVING_TYPE TYPE_HEXAGON_CPU
#define TYPE_HEXAGON_CPU_V67 HEXAGON_CPU_TYPE_NAME("v67")
#define MMU_USER_IDX 0
typedef struct {
target_ulong va;
uint8_t width;
uint32_t data32;
uint64_t data64;
} MemLog;
#define EXEC_STATUS_OK 0x0000
#define EXEC_STATUS_STOP 0x0002
#define EXEC_STATUS_REPLAY 0x0010
#define EXEC_STATUS_LOCKED 0x0020
#define EXEC_STATUS_EXCEPTION 0x0100
#define EXCEPTION_DETECTED (env->status & EXEC_STATUS_EXCEPTION)
#define REPLAY_DETECTED (env->status & EXEC_STATUS_REPLAY)
#define CLEAR_EXCEPTION (env->status &= (~EXEC_STATUS_EXCEPTION))
#define SET_EXCEPTION (env->status |= EXEC_STATUS_EXCEPTION)
struct CPUHexagonState {
target_ulong gpr[TOTAL_PER_THREAD_REGS];
target_ulong pred[NUM_PREGS];
target_ulong branch_taken;
target_ulong next_PC;
/* For comparing with LLDB on target - see adjust_stack_ptrs function */
target_ulong last_pc_dumped;
target_ulong stack_start;
uint8_t slot_cancelled;
target_ulong new_value[TOTAL_PER_THREAD_REGS];
/*
* Only used when HEX_DEBUG is on, but unconditionally included
* to reduce recompile time when turning HEX_DEBUG on/off.
*/
target_ulong this_PC;
target_ulong reg_written[TOTAL_PER_THREAD_REGS];
target_ulong new_pred_value[NUM_PREGS];
target_ulong pred_written;
MemLog mem_log_stores[STORES_MAX];
target_ulong pkt_has_store_s1;
target_ulong dczero_addr;
float_status fp_status;
target_ulong llsc_addr;
target_ulong llsc_val;
uint64_t llsc_val_i64;
target_ulong is_gather_store_insn;
target_ulong gather_issued;
};
#define HEXAGON_CPU_CLASS(klass) \
OBJECT_CLASS_CHECK(HexagonCPUClass, (klass), TYPE_HEXAGON_CPU)
#define HEXAGON_CPU(obj) \
OBJECT_CHECK(HexagonCPU, (obj), TYPE_HEXAGON_CPU)
#define HEXAGON_CPU_GET_CLASS(obj) \
OBJECT_GET_CLASS(HexagonCPUClass, (obj), TYPE_HEXAGON_CPU)
typedef struct HexagonCPUClass {
/*< private >*/
CPUClass parent_class;
/*< public >*/
DeviceRealize parent_realize;
DeviceReset parent_reset;
} HexagonCPUClass;
typedef struct HexagonCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPUHexagonState env;
bool lldb_compat;
target_ulong lldb_stack_adjust;
} HexagonCPU;
static inline HexagonCPU *hexagon_env_get_cpu(CPUHexagonState *env)
{
return container_of(env, HexagonCPU, env);
}
#include "cpu_bits.h"
#define cpu_signal_handler cpu_hexagon_signal_handler
int cpu_hexagon_signal_handler(int host_signum, void *pinfo, void *puc);
static inline void cpu_get_tb_cpu_state(CPUHexagonState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *flags)
{
*pc = env->gpr[HEX_REG_PC];
*cs_base = 0;
#ifdef CONFIG_USER_ONLY
*flags = 0;
#else
#error System mode not supported on Hexagon yet
#endif
}
typedef struct CPUHexagonState CPUArchState;
typedef HexagonCPU ArchCPU;
void hexagon_translate_init(void);
#include "exec/cpu-all.h"
#endif /* HEXAGON_CPU_H */

58
target/hexagon/cpu_bits.h Normal file
View File

@ -0,0 +1,58 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_CPU_BITS_H
#define HEXAGON_CPU_BITS_H
#include "qemu/bitops.h"
#define HEX_EXCP_FETCH_NO_UPAGE 0x012
#define HEX_EXCP_INVALID_PACKET 0x015
#define HEX_EXCP_INVALID_OPCODE 0x015
#define HEX_EXCP_PRIV_NO_UREAD 0x024
#define HEX_EXCP_PRIV_NO_UWRITE 0x025
#define HEX_EXCP_TRAP0 0x172
#define PACKET_WORDS_MAX 4
static inline uint32_t parse_bits(uint32_t encoding)
{
/* The parse bits are [15:14] */
return extract32(encoding, 14, 2);
}
static inline uint32_t iclass_bits(uint32_t encoding)
{
/* The instruction class is encoded in bits [31:28] */
uint32_t iclass = extract32(encoding, 28, 4);
/* If parse bits are zero, this is a duplex */
if (parse_bits(encoding) == 0) {
iclass += 16;
}
return iclass;
}
static inline int is_packet_end(uint32_t endocing)
{
uint32_t bits = parse_bits(endocing);
return ((bits == 0x3) || (bits == 0x0));
}
int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc, GString *buf);
#endif

957
target/hexagon/decode.c Normal file
View File

@ -0,0 +1,957 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "iclass.h"
#include "attribs.h"
#include "genptr.h"
#include "decode.h"
#include "insn.h"
#include "printinsn.h"
#define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
enum {
EXT_IDX_noext = 0,
EXT_IDX_noext_AFTER = 4,
EXT_IDX_mmvec = 4,
EXT_IDX_mmvec_AFTER = 8,
XX_LAST_EXT_IDX
};
/*
* Certain operand types represent a non-contiguous set of values.
* For example, the compound compare-and-jump instruction can only access
* registers R0-R7 and R16-23.
* This table represents the mapping from the encoding to the actual values.
*/
#define DEF_REGMAP(NAME, ELEMENTS, ...) \
static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
{ __VA_ARGS__ };
/* Name Num Table */
DEF_REGMAP(R_16, 16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
DEF_REGMAP(R__8, 8, 0, 2, 4, 6, 16, 18, 20, 22)
#define DECODE_MAPPED_REG(REGNO, NAME) \
insn->regno[REGNO] = DECODE_REGISTER_##NAME[insn->regno[REGNO]];
typedef struct {
const struct DectreeTable *table_link;
const struct DectreeTable *table_link_b;
Opcode opcode;
enum {
DECTREE_ENTRY_INVALID,
DECTREE_TABLE_LINK,
DECTREE_SUBINSNS,
DECTREE_EXTSPACE,
DECTREE_TERMINAL
} type;
} DectreeEntry;
typedef struct DectreeTable {
unsigned int (*lookup_function)(int startbit, int width, uint32_t opcode);
unsigned int size;
unsigned int startbit;
unsigned int width;
const DectreeEntry table[];
} DectreeTable;
#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT) \
static const DectreeTable dectree_table_##TAG;
#define TABLE_LINK(TABLE) /* NOTHING */
#define TERMINAL(TAG, ENC) /* NOTHING */
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC) /* NOTHING */
#define EXTSPACE(TAG, ENC) /* NOTHING */
#define INVALID() /* NOTHING */
#define DECODE_END_TABLE(...) /* NOTHING */
#define DECODE_MATCH_INFO(...) /* NOTHING */
#define DECODE_LEGACY_MATCH_INFO(...) /* NOTHING */
#define DECODE_OPINFO(...) /* NOTHING */
#include "dectree_generated.h.inc"
#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_SEPARATOR_BITS
#define DECODE_SEPARATOR_BITS(START, WIDTH) NULL, START, WIDTH
#define DECODE_NEW_TABLE_HELPER(TAG, SIZE, FN, START, WIDTH) \
static const DectreeTable dectree_table_##TAG = { \
.size = SIZE, \
.lookup_function = FN, \
.startbit = START, \
.width = WIDTH, \
.table = {
#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT) \
DECODE_NEW_TABLE_HELPER(TAG, SIZE, WHATNOT)
#define TABLE_LINK(TABLE) \
{ .type = DECTREE_TABLE_LINK, .table_link = &dectree_table_##TABLE },
#define TERMINAL(TAG, ENC) \
{ .type = DECTREE_TERMINAL, .opcode = TAG },
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC) \
{ \
.type = DECTREE_SUBINSNS, \
.table_link = &dectree_table_DECODE_SUBINSN_##CLASSA, \
.table_link_b = &dectree_table_DECODE_SUBINSN_##CLASSB \
},
#define EXTSPACE(TAG, ENC) { .type = DECTREE_EXTSPACE },
#define INVALID() { .type = DECTREE_ENTRY_INVALID, .opcode = XX_LAST_OPCODE },
#define DECODE_END_TABLE(...) } };
#define DECODE_MATCH_INFO(...) /* NOTHING */
#define DECODE_LEGACY_MATCH_INFO(...) /* NOTHING */
#define DECODE_OPINFO(...) /* NOTHING */
#include "dectree_generated.h.inc"
#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_NEW_TABLE_HELPER
#undef DECODE_SEPARATOR_BITS
static const DectreeTable dectree_table_DECODE_EXT_EXT_noext = {
.size = 1, .lookup_function = NULL, .startbit = 0, .width = 0,
.table = {
{ .type = DECTREE_ENTRY_INVALID, .opcode = XX_LAST_OPCODE },
}
};
static const DectreeTable *ext_trees[XX_LAST_EXT_IDX];
static void decode_ext_init(void)
{
int i;
for (i = EXT_IDX_noext; i < EXT_IDX_noext_AFTER; i++) {
ext_trees[i] = &dectree_table_DECODE_EXT_EXT_noext;
}
}
typedef struct {
uint32_t mask;
uint32_t match;
} DecodeITableEntry;
#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT) /* NOTHING */
#define TABLE_LINK(TABLE) /* NOTHING */
#define TERMINAL(TAG, ENC) /* NOTHING */
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC) /* NOTHING */
#define EXTSPACE(TAG, ENC) /* NOTHING */
#define INVALID() /* NOTHING */
#define DECODE_END_TABLE(...) /* NOTHING */
#define DECODE_OPINFO(...) /* NOTHING */
#define DECODE_MATCH_INFO_NORMAL(TAG, MASK, MATCH) \
[TAG] = { \
.mask = MASK, \
.match = MATCH, \
},
#define DECODE_MATCH_INFO_NULL(TAG, MASK, MATCH) \
[TAG] = { .match = ~0 },
#define DECODE_MATCH_INFO(...) DECODE_MATCH_INFO_NORMAL(__VA_ARGS__)
#define DECODE_LEGACY_MATCH_INFO(...) /* NOTHING */
static const DecodeITableEntry decode_itable[XX_LAST_OPCODE] = {
#include "dectree_generated.h.inc"
};
#undef DECODE_MATCH_INFO
#define DECODE_MATCH_INFO(...) DECODE_MATCH_INFO_NULL(__VA_ARGS__)
#undef DECODE_LEGACY_MATCH_INFO
#define DECODE_LEGACY_MATCH_INFO(...) DECODE_MATCH_INFO_NORMAL(__VA_ARGS__)
static const DecodeITableEntry decode_legacy_itable[XX_LAST_OPCODE] = {
#include "dectree_generated.h.inc"
};
#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_SEPARATOR_BITS
void decode_init(void)
{
decode_ext_init();
}
void decode_send_insn_to(Packet *packet, int start, int newloc)
{
Insn tmpinsn;
int direction;
int i;
if (start == newloc) {
return;
}
if (start < newloc) {
/* Move towards end */
direction = 1;
} else {
/* move towards beginning */
direction = -1;
}
for (i = start; i != newloc; i += direction) {
tmpinsn = packet->insn[i];
packet->insn[i] = packet->insn[i + direction];
packet->insn[i + direction] = tmpinsn;
}
}
/* Fill newvalue registers with the correct regno */
static void
decode_fill_newvalue_regno(Packet *packet)
{
int i, use_regidx, offset, def_idx, dst_idx;
uint16_t def_opcode, use_opcode;
char *dststr;
for (i = 1; i < packet->num_insns; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
!GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
use_opcode = packet->insn[i].opcode;
/* It's a store, so we're adjusting the Nt field */
if (GET_ATTRIB(use_opcode, A_STORE)) {
use_regidx = strchr(opcode_reginfo[use_opcode], 't') -
opcode_reginfo[use_opcode];
} else { /* It's a Jump, so we're adjusting the Ns field */
use_regidx = strchr(opcode_reginfo[use_opcode], 's') -
opcode_reginfo[use_opcode];
}
/*
* What's encoded at the N-field is the offset to who's producing
* the value. Shift off the LSB which indicates odd/even register,
* then walk backwards and skip over the constant extenders.
*/
offset = packet->insn[i].regno[use_regidx] >> 1;
def_idx = i - offset;
for (int j = 0; j < offset; j++) {
if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
def_idx--;
}
}
/*
* Check for a badly encoded N-field which points to an instruction
* out-of-range
*/
g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));
/*
* packet->insn[def_idx] is the producer
* Figure out which type of destination it produces
* and the corresponding index in the reginfo
*/
def_opcode = packet->insn[def_idx].opcode;
dststr = strstr(opcode_wregs[def_opcode], "Rd");
if (dststr) {
dststr = strchr(opcode_reginfo[def_opcode], 'd');
} else {
dststr = strstr(opcode_wregs[def_opcode], "Rx");
if (dststr) {
dststr = strchr(opcode_reginfo[def_opcode], 'x');
} else {
dststr = strstr(opcode_wregs[def_opcode], "Re");
if (dststr) {
dststr = strchr(opcode_reginfo[def_opcode], 'e');
} else {
dststr = strstr(opcode_wregs[def_opcode], "Ry");
if (dststr) {
dststr = strchr(opcode_reginfo[def_opcode], 'y');
} else {
g_assert_not_reached();
}
}
}
}
g_assert(dststr != NULL);
/* Now patch up the consumer with the register number */
dst_idx = dststr - opcode_reginfo[def_opcode];
packet->insn[i].regno[use_regidx] =
packet->insn[def_idx].regno[dst_idx];
/*
* We need to remember who produces this value to later
* check if it was dynamically cancelled
*/
packet->insn[i].new_value_producer_slot =
packet->insn[def_idx].slot;
}
}
}
/* Split CJ into a compare and a jump */
static void decode_split_cmpjump(Packet *pkt)
{
int last, i;
int numinsns = pkt->num_insns;
/*
* First, split all compare-jumps.
* The compare is sent to the end as a new instruction.
* Do it this way so we don't reorder dual jumps. Those need to stay in
* original order.
*/
for (i = 0; i < numinsns; i++) {
/* It's a cmp-jump */
if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
last = pkt->num_insns;
pkt->insn[last] = pkt->insn[i]; /* copy the instruction */
pkt->insn[last].part1 = 1; /* last instruction does the CMP */
pkt->insn[i].part1 = 0; /* existing instruction does the JUMP */
pkt->num_insns++;
}
}
/* Now re-shuffle all the compares back to the beginning */
for (i = 0; i < pkt->num_insns; i++) {
if (pkt->insn[i].part1) {
decode_send_insn_to(pkt, i, 0);
}
}
}
static inline int decode_opcode_can_jump(int opcode)
{
if ((GET_ATTRIB(opcode, A_JUMP)) ||
(GET_ATTRIB(opcode, A_CALL)) ||
(opcode == J2_trap0) ||
(opcode == J2_pause)) {
/* Exception to A_JUMP attribute */
if (opcode == J4_hintjumpr) {
return 0;
}
return 1;
}
return 0;
}
static inline int decode_opcode_ends_loop(int opcode)
{
return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
GET_ATTRIB(opcode, A_HWLOOP1_END);
}
/* Set the is_* fields in each instruction */
static void decode_set_insn_attr_fields(Packet *pkt)
{
int i;
int numinsns = pkt->num_insns;
uint16_t opcode;
pkt->pkt_has_cof = 0;
pkt->pkt_has_endloop = 0;
pkt->pkt_has_dczeroa = 0;
for (i = 0; i < numinsns; i++) {
opcode = pkt->insn[i].opcode;
if (pkt->insn[i].part1) {
continue; /* Skip compare of cmp-jumps */
}
if (GET_ATTRIB(opcode, A_DCZEROA)) {
pkt->pkt_has_dczeroa = 1;
}
if (GET_ATTRIB(opcode, A_STORE)) {
if (pkt->insn[i].slot == 0) {
pkt->pkt_has_store_s0 = 1;
} else {
pkt->pkt_has_store_s1 = 1;
}
}
pkt->pkt_has_cof |= decode_opcode_can_jump(opcode);
pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);
pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;
pkt->pkt_has_cof |= pkt->pkt_has_endloop;
}
}
/*
* Shuffle for execution
* Move stores to end (in same order as encoding)
* Move compares to beginning (for use by .new insns)
*/
static void decode_shuffle_for_execution(Packet *packet)
{
int changed = 0;
int i;
int flag; /* flag means we've seen a non-memory instruction */
int n_mems;
int last_insn = packet->num_insns - 1;
/*
* Skip end loops, somehow an end loop is getting in and messing
* up the order
*/
if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
last_insn--;
}
do {
changed = 0;
/*
* Stores go last, must not reorder.
* Cannot shuffle stores past loads, either.
* Iterate backwards. If we see a non-memory instruction,
* then a store, shuffle the store to the front. Don't shuffle
* stores wrt each other or a load.
*/
for (flag = n_mems = 0, i = last_insn; i >= 0; i--) {
int opcode = packet->insn[i].opcode;
if (flag && GET_ATTRIB(opcode, A_STORE)) {
decode_send_insn_to(packet, i, last_insn - n_mems);
n_mems++;
changed = 1;
} else if (GET_ATTRIB(opcode, A_STORE)) {
n_mems++;
} else if (GET_ATTRIB(opcode, A_LOAD)) {
/*
* Don't set flag, since we don't want to shuffle a
* store past a load
*/
n_mems++;
} else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
/*
* Don't set flag, since we don't want to shuffle past
* a .new value
*/
} else {
flag = 1;
}
}
if (changed) {
continue;
}
/* Compares go first, may be reordered wrt each other */
for (flag = 0, i = 0; i < last_insn + 1; i++) {
int opcode = packet->insn[i].opcode;
if ((strstr(opcode_wregs[opcode], "Pd4") ||
strstr(opcode_wregs[opcode], "Pe4")) &&
GET_ATTRIB(opcode, A_STORE) == 0) {
/* This should be a compare (not a store conditional) */
if (flag) {
decode_send_insn_to(packet, i, 0);
changed = 1;
continue;
}
} else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
!decode_opcode_ends_loop(packet->insn[i].opcode)) {
/*
* spNloop instruction
* Don't reorder endloops; they are not valid for .new uses,
* and we want to match HW
*/
if (flag) {
decode_send_insn_to(packet, i, 0);
changed = 1;
continue;
}
} else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
!GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
if (flag) {
decode_send_insn_to(packet, i, 0);
changed = 1;
continue;
}
} else {
flag = 1;
}
}
if (changed) {
continue;
}
} while (changed);
/*
* If we have a .new register compare/branch, move that to the very
* very end, past stores
*/
for (i = 0; i < last_insn; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
decode_send_insn_to(packet, i, last_insn);
break;
}
}
}
static void
apply_extender(Packet *pkt, int i, uint32_t extender)
{
int immed_num;
uint32_t base_immed;
immed_num = opcode_which_immediate_is_extended(pkt->insn[i].opcode);
base_immed = pkt->insn[i].immed[immed_num];
pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
}
static void decode_apply_extenders(Packet *packet)
{
int i;
for (i = 0; i < packet->num_insns; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
packet->insn[i + 1].extension_valid = 1;
apply_extender(packet, i + 1, packet->insn[i].immed[0]);
}
}
}
static void decode_remove_extenders(Packet *packet)
{
int i, j;
for (i = 0; i < packet->num_insns; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
/* Remove this one by moving the remaining instructions down */
for (j = i;
(j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
j++) {
packet->insn[j] = packet->insn[j + 1];
}
packet->num_insns--;
}
}
}
static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
{
return find_iclass_slots(pkt->insn[slot].opcode,
pkt->insn[slot].iclass);
}
#define DECODE_NEW_TABLE(TAG, SIZE, WHATNOT) /* NOTHING */
#define TABLE_LINK(TABLE) /* NOTHING */
#define TERMINAL(TAG, ENC) /* NOTHING */
#define SUBINSNS(TAG, CLASSA, CLASSB, ENC) /* NOTHING */
#define EXTSPACE(TAG, ENC) /* NOTHING */
#define INVALID() /* NOTHING */
#define DECODE_END_TABLE(...) /* NOTHING */
#define DECODE_MATCH_INFO(...) /* NOTHING */
#define DECODE_LEGACY_MATCH_INFO(...) /* NOTHING */
#define DECODE_REG(REGNO, WIDTH, STARTBIT) \
insn->regno[REGNO] = ((encoding >> STARTBIT) & ((1 << WIDTH) - 1));
#define DECODE_IMPL_REG(REGNO, VAL) \
insn->regno[REGNO] = VAL;
#define DECODE_IMM(IMMNO, WIDTH, STARTBIT, VALSTART) \
insn->immed[IMMNO] |= (((encoding >> STARTBIT) & ((1 << WIDTH) - 1))) << \
(VALSTART);
#define DECODE_IMM_SXT(IMMNO, WIDTH) \
insn->immed[IMMNO] = ((((int32_t)insn->immed[IMMNO]) << (32 - WIDTH)) >> \
(32 - WIDTH));
#define DECODE_IMM_NEG(IMMNO, WIDTH) \
insn->immed[IMMNO] = -insn->immed[IMMNO];
#define DECODE_IMM_SHIFT(IMMNO, SHAMT) \
if ((!insn->extension_valid) || \
(insn->which_extended != IMMNO)) { \
insn->immed[IMMNO] <<= SHAMT; \
}
#define DECODE_OPINFO(TAG, BEH) \
case TAG: \
{ BEH } \
break; \
/*
* Fill in the operands of the instruction
* dectree_generated.h.inc has a DECODE_OPINFO entry for each opcode
* For example,
* DECODE_OPINFO(A2_addi,
* DECODE_REG(0,5,0)
* DECODE_REG(1,5,16)
* DECODE_IMM(0,7,21,9)
* DECODE_IMM(0,9,5,0)
* DECODE_IMM_SXT(0,16)
* with the macros defined above, we'll fill in a switch statement
* where each case is an opcode tag.
*/
static void
decode_op(Insn *insn, Opcode tag, uint32_t encoding)
{
insn->immed[0] = 0;
insn->immed[1] = 0;
insn->opcode = tag;
if (insn->extension_valid) {
insn->which_extended = opcode_which_immediate_is_extended(tag);
}
switch (tag) {
#include "dectree_generated.h.inc"
default:
break;
}
insn->generate = opcode_genptr[tag];
insn->iclass = iclass_bits(encoding);
}
#undef DECODE_REG
#undef DECODE_IMPL_REG
#undef DECODE_IMM
#undef DECODE_IMM_SHIFT
#undef DECODE_OPINFO
#undef DECODE_MATCH_INFO
#undef DECODE_LEGACY_MATCH_INFO
#undef DECODE_END_TABLE
#undef INVALID
#undef TERMINAL
#undef SUBINSNS
#undef EXTSPACE
#undef TABLE_LINK
#undef DECODE_NEW_TABLE
#undef DECODE_SEPARATOR_BITS
static unsigned int
decode_subinsn_tablewalk(Insn *insn, const DectreeTable *table,
uint32_t encoding)
{
unsigned int i;
Opcode opc;
if (table->lookup_function) {
i = table->lookup_function(table->startbit, table->width, encoding);
} else {
i = extract32(encoding, table->startbit, table->width);
}
if (table->table[i].type == DECTREE_TABLE_LINK) {
return decode_subinsn_tablewalk(insn, table->table[i].table_link,
encoding);
} else if (table->table[i].type == DECTREE_TERMINAL) {
opc = table->table[i].opcode;
if ((encoding & decode_itable[opc].mask) != decode_itable[opc].match) {
return 0;
}
decode_op(insn, opc, encoding);
return 1;
} else {
return 0;
}
}
static unsigned int get_insn_a(uint32_t encoding)
{
return extract32(encoding, 0, 13);
}
static unsigned int get_insn_b(uint32_t encoding)
{
return extract32(encoding, 16, 13);
}
static unsigned int
decode_insns_tablewalk(Insn *insn, const DectreeTable *table,
uint32_t encoding)
{
unsigned int i;
unsigned int a, b;
Opcode opc;
if (table->lookup_function) {
i = table->lookup_function(table->startbit, table->width, encoding);
} else {
i = extract32(encoding, table->startbit, table->width);
}
if (table->table[i].type == DECTREE_TABLE_LINK) {
return decode_insns_tablewalk(insn, table->table[i].table_link,
encoding);
} else if (table->table[i].type == DECTREE_SUBINSNS) {
a = get_insn_a(encoding);
b = get_insn_b(encoding);
b = decode_subinsn_tablewalk(insn, table->table[i].table_link_b, b);
a = decode_subinsn_tablewalk(insn + 1, table->table[i].table_link, a);
if ((a == 0) || (b == 0)) {
return 0;
}
return 2;
} else if (table->table[i].type == DECTREE_TERMINAL) {
opc = table->table[i].opcode;
if ((encoding & decode_itable[opc].mask) != decode_itable[opc].match) {
if ((encoding & decode_legacy_itable[opc].mask) !=
decode_legacy_itable[opc].match) {
return 0;
}
}
decode_op(insn, opc, encoding);
return 1;
} else {
return 0;
}
}
static unsigned int
decode_insns(Insn *insn, uint32_t encoding)
{
const DectreeTable *table;
if (parse_bits(encoding) != 0) {
/* Start with PP table - 32 bit instructions */
table = &dectree_table_DECODE_ROOT_32;
} else {
/* start with EE table - duplex instructions */
table = &dectree_table_DECODE_ROOT_EE;
}
return decode_insns_tablewalk(insn, table, encoding);
}
static void decode_add_endloop_insn(Insn *insn, int loopnum)
{
if (loopnum == 10) {
insn->opcode = J2_endloop01;
insn->generate = opcode_genptr[J2_endloop01];
} else if (loopnum == 1) {
insn->opcode = J2_endloop1;
insn->generate = opcode_genptr[J2_endloop1];
} else if (loopnum == 0) {
insn->opcode = J2_endloop0;
insn->generate = opcode_genptr[J2_endloop0];
} else {
g_assert_not_reached();
}
}
static inline int decode_parsebits_is_loopend(uint32_t encoding32)
{
uint32_t bits = parse_bits(encoding32);
return bits == 0x2;
}
static void
decode_set_slot_number(Packet *pkt)
{
int slot;
int i;
int hit_mem_insn = 0;
int hit_duplex = 0;
/*
* The slots are encoded in reverse order
* For each instruction, count down until you find a suitable slot
*/
for (i = 0, slot = 3; i < pkt->num_insns; i++) {
SlotMask valid_slots = get_valid_slots(pkt, i);
while (!(valid_slots & (1 << slot))) {
slot--;
}
pkt->insn[i].slot = slot;
if (slot) {
/* I've assigned the slot, now decrement it for the next insn */
slot--;
}
}
/* Fix the exceptions - mem insns to slot 0,1 */
for (i = pkt->num_insns - 1; i >= 0; i--) {
/* First memory instruction always goes to slot 0 */
if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
!hit_mem_insn) {
hit_mem_insn = 1;
pkt->insn[i].slot = 0;
continue;
}
/* Next memory instruction always goes to slot 1 */
if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
hit_mem_insn) {
pkt->insn[i].slot = 1;
}
}
/* Fix the exceptions - duplex always slot 0,1 */
for (i = pkt->num_insns - 1; i >= 0; i--) {
/* First subinsn always goes to slot 0 */
if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
hit_duplex = 1;
pkt->insn[i].slot = 0;
continue;
}
/* Next subinsn always goes to slot 1 */
if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
pkt->insn[i].slot = 1;
}
}
/* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
int slot0_found = 0;
int slot1_found = 0;
int slot1_iidx = 0;
for (i = pkt->num_insns - 1; i >= 0; i--) {
/* Is slot0 used? */
if (pkt->insn[i].slot == 0) {
int is_endloop = (pkt->insn[i].opcode == J2_endloop01);
is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
is_endloop |= (pkt->insn[i].opcode == J2_endloop1);
/*
* Make sure it's not endloop since, we're overloading
* slot0 for endloop
*/
if (!is_endloop) {
slot0_found = 1;
}
}
/* Is slot1 used? */
if (pkt->insn[i].slot == 1) {
slot1_found = 1;
slot1_iidx = i;
}
}
/* Is slot0 empty and slot1 used? */
if ((slot0_found == 0) && (slot1_found == 1)) {
/* Then push it to slot0 */
pkt->insn[slot1_iidx].slot = 0;
}
}
/*
* decode_packet
* Decodes packet with given words
* Returns 0 on insufficient words,
* or number of words used on success
*/
int decode_packet(int max_words, const uint32_t *words, Packet *pkt,
bool disas_only)
{
int num_insns = 0;
int words_read = 0;
int end_of_packet = 0;
int new_insns = 0;
uint32_t encoding32;
/* Initialize */
memset(pkt, 0, sizeof(*pkt));
/* Try to build packet */
while (!end_of_packet && (words_read < max_words)) {
encoding32 = words[words_read];
end_of_packet = is_packet_end(encoding32);
new_insns = decode_insns(&pkt->insn[num_insns], encoding32);
g_assert(new_insns > 0);
/*
* If we saw an extender, mark next word extended so immediate
* decode works
*/
if (pkt->insn[num_insns].opcode == A4_ext) {
pkt->insn[num_insns + 1].extension_valid = 1;
}
num_insns += new_insns;
words_read++;
}
pkt->num_insns = num_insns;
if (!end_of_packet) {
/* Ran out of words! */
return 0;
}
pkt->encod_pkt_size_in_bytes = words_read * 4;
/*
* Check for :endloop in the parse bits
* Section 10.6 of the Programmer's Reference describes the encoding
* The end of hardware loop 0 can be encoded with 2 words
* The end of hardware loop 1 needs 3 words
*/
if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
}
if (words_read >= 3) {
uint32_t has_loop0, has_loop1;
has_loop0 = decode_parsebits_is_loopend(words[0]);
has_loop1 = decode_parsebits_is_loopend(words[1]);
if (has_loop0 && has_loop1) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
} else if (has_loop1) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
} else if (has_loop0) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
}
}
decode_apply_extenders(pkt);
if (!disas_only) {
decode_remove_extenders(pkt);
}
decode_set_slot_number(pkt);
decode_fill_newvalue_regno(pkt);
if (!disas_only) {
decode_shuffle_for_execution(pkt);
decode_split_cmpjump(pkt);
decode_set_insn_attr_fields(pkt);
}
return words_read;
}
/* Used for "-d in_asm" logging */
int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
GString *buf)
{
Packet pkt;
if (decode_packet(nwords, words, &pkt, true) > 0) {
snprint_a_pkt_disas(buf, &pkt, words, pc);
return pkt.encod_pkt_size_in_bytes;
} else {
g_string_assign(buf, "<invalid>");
return 0;
}
}

32
target/hexagon/decode.h Normal file
View File

@ -0,0 +1,32 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_DECODE_H
#define HEXAGON_DECODE_H
#include "cpu.h"
#include "opcodes.h"
#include "insn.h"
void decode_init(void);
void decode_send_insn_to(Packet *packet, int start, int newloc);
int decode_packet(int max_words, const uint32_t *words, Packet *pkt,
bool disas_only);
#endif

351
target/hexagon/dectree.py Executable file
View File

@ -0,0 +1,351 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import io
import re
import sys
import iset
encs = {tag : ''.join(reversed(iset.iset[tag]['enc'].replace(' ', '')))
for tag in iset.tags if iset.iset[tag]['enc'] != 'MISSING ENCODING'}
enc_classes = set([iset.iset[tag]['enc_class'] for tag in encs.keys()])
subinsn_enc_classes = \
set([enc_class for enc_class in enc_classes \
if enc_class.startswith('SUBINSN_')])
ext_enc_classes = \
set([enc_class for enc_class in enc_classes \
if enc_class not in ('NORMAL', '16BIT') and \
not enc_class.startswith('SUBINSN_')])
try:
subinsn_groupings = iset.subinsn_groupings
except AttributeError:
subinsn_groupings = {}
for (tag, subinsn_grouping) in subinsn_groupings.items():
encs[tag] = ''.join(reversed(subinsn_grouping['enc'].replace(' ', '')))
dectree_normal = {'leaves' : set()}
dectree_16bit = {'leaves' : set()}
dectree_subinsn_groupings = {'leaves' : set()}
dectree_subinsns = {name : {'leaves' : set()} for name in subinsn_enc_classes}
dectree_extensions = {name : {'leaves' : set()} for name in ext_enc_classes}
for tag in encs.keys():
if tag in subinsn_groupings:
dectree_subinsn_groupings['leaves'].add(tag)
continue
enc_class = iset.iset[tag]['enc_class']
if enc_class.startswith('SUBINSN_'):
if len(encs[tag]) != 32:
encs[tag] = encs[tag] + '0' * (32 - len(encs[tag]))
dectree_subinsns[enc_class]['leaves'].add(tag)
elif enc_class == '16BIT':
if len(encs[tag]) != 16:
raise Exception('Tag "{}" has enc_class "{}" and not an encoding ' +
'width of 16 bits!'.format(tag, enc_class))
dectree_16bit['leaves'].add(tag)
else:
if len(encs[tag]) != 32:
raise Exception('Tag "{}" has enc_class "{}" and not an encoding ' +
'width of 32 bits!'.format(tag, enc_class))
if enc_class == 'NORMAL':
dectree_normal['leaves'].add(tag)
else:
dectree_extensions[enc_class]['leaves'].add(tag)
faketags = set()
for (tag, enc) in iset.enc_ext_spaces.items():
faketags.add(tag)
encs[tag] = ''.join(reversed(enc.replace(' ', '')))
dectree_normal['leaves'].add(tag)
faketags |= set(subinsn_groupings.keys())
def every_bit_counts(bitset):
for i in range(1, len(next(iter(bitset)))):
if len(set([bits[:i] + bits[i+1:] for bits in bitset])) == len(bitset):
return False
return True
def auto_separate(node):
tags = node['leaves']
if len(tags) <= 1:
return
enc_width = len(encs[next(iter(tags))])
opcode_bit_for_all = \
[all([encs[tag][i] in '01' \
for tag in tags]) for i in range(enc_width)]
opcode_bit_is_0_for_all = \
[opcode_bit_for_all[i] and all([encs[tag][i] == '0' \
for tag in tags]) for i in range(enc_width)]
opcode_bit_is_1_for_all = \
[opcode_bit_for_all[i] and all([encs[tag][i] == '1' \
for tag in tags]) for i in range(enc_width)]
differentiator_opcode_bit = \
[opcode_bit_for_all[i] and \
not (opcode_bit_is_0_for_all[i] or \
opcode_bit_is_1_for_all[i]) \
for i in range(enc_width)]
best_width = 0
for width in range(4, 0, -1):
for lsb in range(enc_width - width, -1, -1):
bitset = set([encs[tag][lsb:lsb+width] for tag in tags])
if all(differentiator_opcode_bit[lsb:lsb+width]) and \
(len(bitset) == len(tags) or every_bit_counts(bitset)):
best_width = width
best_lsb = lsb
caught_all_tags = len(bitset) == len(tags)
break
if best_width != 0:
break
if best_width == 0:
raise Exception('Could not find a way to differentiate the encodings ' +
'of the following tags:\n{}'.format('\n'.join(tags)))
if caught_all_tags:
for width in range(1, best_width):
for lsb in range(enc_width - width, -1, -1):
bitset = set([encs[tag][lsb:lsb+width] for tag in tags])
if all(differentiator_opcode_bit[lsb:lsb+width]) and \
len(bitset) == len(tags):
best_width = width
best_lsb = lsb
break
else:
continue
break
node['separator_lsb'] = best_lsb
node['separator_width'] = best_width
node['children'] = []
for value in range(2 ** best_width):
child = {}
bits = ''.join(reversed('{:0{}b}'.format(value, best_width)))
child['leaves'] = \
set([tag for tag in tags \
if encs[tag][best_lsb:best_lsb+best_width] == bits])
node['children'].append(child)
for child in node['children']:
auto_separate(child)
auto_separate(dectree_normal)
auto_separate(dectree_16bit)
if subinsn_groupings:
auto_separate(dectree_subinsn_groupings)
for dectree_subinsn in dectree_subinsns.values():
auto_separate(dectree_subinsn)
for dectree_ext in dectree_extensions.values():
auto_separate(dectree_ext)
for tag in faketags:
del encs[tag]
def table_name(parents, node):
path = parents + [node]
root = path[0]
tag = next(iter(node['leaves']))
if tag in subinsn_groupings:
enc_width = len(subinsn_groupings[tag]['enc'].replace(' ', ''))
else:
tag = next(iter(node['leaves'] - faketags))
enc_width = len(encs[tag])
determining_bits = ['_'] * enc_width
for (parent, child) in zip(path[:-1], path[1:]):
lsb = parent['separator_lsb']
width = parent['separator_width']
value = parent['children'].index(child)
determining_bits[lsb:lsb+width] = \
list(reversed('{:0{}b}'.format(value, width)))
if tag in subinsn_groupings:
name = 'DECODE_ROOT_EE'
else:
enc_class = iset.iset[tag]['enc_class']
if enc_class in ext_enc_classes:
name = 'DECODE_EXT_{}'.format(enc_class)
elif enc_class in subinsn_enc_classes:
name = 'DECODE_SUBINSN_{}'.format(enc_class)
else:
name = 'DECODE_ROOT_{}'.format(enc_width)
if node != root:
name += '_' + ''.join(reversed(determining_bits))
return name
def print_node(f, node, parents):
if len(node['leaves']) <= 1:
return
name = table_name(parents, node)
lsb = node['separator_lsb']
width = node['separator_width']
print('DECODE_NEW_TABLE({},{},DECODE_SEPARATOR_BITS({},{}))'.\
format(name, 2 ** width, lsb, width), file=f)
for child in node['children']:
if len(child['leaves']) == 0:
print('INVALID()', file=f)
elif len(child['leaves']) == 1:
(tag,) = child['leaves']
if tag in subinsn_groupings:
class_a = subinsn_groupings[tag]['class_a']
class_b = subinsn_groupings[tag]['class_b']
enc = subinsn_groupings[tag]['enc'].replace(' ', '')
if 'RESERVED' in tag:
print('INVALID()', file=f)
else:
print('SUBINSNS({},{},{},"{}")'.\
format(tag, class_a, class_b, enc), file=f)
elif tag in iset.enc_ext_spaces:
enc = iset.enc_ext_spaces[tag].replace(' ', '')
print('EXTSPACE({},"{}")'.format(tag, enc), file=f)
else:
enc = ''.join(reversed(encs[tag]))
print('TERMINAL({},"{}")'.format(tag, enc), file=f)
else:
print('TABLE_LINK({})'.format(table_name(parents + [node], child)),
file=f)
print('DECODE_END_TABLE({},{},DECODE_SEPARATOR_BITS({},{}))'.\
format(name, 2 ** width, lsb, width), file=f)
print(file=f)
parents.append(node)
for child in node['children']:
print_node(f, child, parents)
parents.pop()
def print_tree(f, tree):
print_node(f, tree, [])
def print_match_info(f):
for tag in sorted(encs.keys(), key=iset.tags.index):
enc = ''.join(reversed(encs[tag]))
mask = int(re.sub(r'[^1]', r'0', enc.replace('0', '1')), 2)
match = int(re.sub(r'[^01]', r'0', enc), 2)
suffix = ''
print('DECODE{}_MATCH_INFO({},0x{:x}U,0x{:x}U)'.\
format(suffix, tag, mask, match), file=f)
regre = re.compile(
r'((?<!DUP)[MNORCPQXSGVZA])([stuvwxyzdefg]+)([.]?[LlHh]?)(\d+S?)')
immre = re.compile(r'[#]([rRsSuUm])(\d+)(?:[:](\d+))?')
def ordered_unique(l):
return sorted(set(l), key=l.index)
implicit_registers = {
'SP' : 29,
'FP' : 30,
'LR' : 31
}
num_registers = {
'R' : 32,
'V' : 32
}
def print_op_info(f):
for tag in sorted(encs.keys(), key=iset.tags.index):
enc = encs[tag]
print(file=f)
print('DECODE_OPINFO({},'.format(tag), file=f)
regs = ordered_unique(regre.findall(iset.iset[tag]['syntax']))
imms = ordered_unique(immre.findall(iset.iset[tag]['syntax']))
regno = 0
for reg in regs:
reg_type = reg[0]
reg_letter = reg[1][0]
reg_num_choices = int(reg[3].rstrip('S'))
reg_mapping = reg[0] + ''.join(['_' for letter in reg[1]]) + reg[3]
reg_enc_fields = re.findall(reg_letter + '+', enc)
if len(reg_enc_fields) == 0:
raise Exception('Tag "{}" missing register field!'.format(tag))
if len(reg_enc_fields) > 1:
raise Exception('Tag "{}" has split register field!'.\
format(tag))
reg_enc_field = reg_enc_fields[0]
if 2 ** len(reg_enc_field) != reg_num_choices:
raise Exception('Tag "{}" has incorrect register field width!'.\
format(tag))
print(' DECODE_REG({},{},{})'.\
format(regno, len(reg_enc_field), enc.index(reg_enc_field)),
file=f)
if reg_type in num_registers and \
reg_num_choices != num_registers[reg_type]:
print(' DECODE_MAPPED_REG({},{})'.\
format(regno, reg_mapping), file=f)
regno += 1
def implicit_register_key(reg):
return implicit_registers[reg]
for reg in sorted(
set([r for r in (iset.iset[tag]['rregs'].split(',') + \
iset.iset[tag]['wregs'].split(',')) \
if r in implicit_registers]), key=implicit_register_key):
print(' DECODE_IMPL_REG({},{})'.\
format(regno, implicit_registers[reg]), file=f)
regno += 1
if imms and imms[0][0].isupper():
imms = reversed(imms)
for imm in imms:
if imm[0].isupper():
immno = 1
else:
immno = 0
imm_type = imm[0]
imm_width = int(imm[1])
imm_shift = imm[2]
if imm_shift:
imm_shift = int(imm_shift)
else:
imm_shift = 0
if imm_type.islower():
imm_letter = 'i'
else:
imm_letter = 'I'
remainder = imm_width
for m in reversed(list(re.finditer(imm_letter + '+', enc))):
remainder -= m.end() - m.start()
print(' DECODE_IMM({},{},{},{})'.\
format(immno, m.end() - m.start(), m.start(), remainder),
file=f)
if remainder != 0:
if imm[2]:
imm[2] = ':' + imm[2]
raise Exception('Tag "{}" has an incorrect number of ' + \
'encoding bits for immediate "{}"'.\
format(tag, ''.join(imm)))
if imm_type.lower() in 'sr':
print(' DECODE_IMM_SXT({},{})'.\
format(immno, imm_width), file=f)
if imm_type.lower() == 'n':
print(' DECODE_IMM_NEG({},{})'.\
format(immno, imm_width), file=f)
if imm_shift:
print(' DECODE_IMM_SHIFT({},{})'.\
format(immno, imm_shift), file=f)
print(')', file=f)
if __name__ == '__main__':
with open(sys.argv[1], 'w') as f:
print_tree(f, dectree_normal)
print_tree(f, dectree_16bit)
if subinsn_groupings:
print_tree(f, dectree_subinsn_groupings)
for (name, dectree_subinsn) in sorted(dectree_subinsns.items()):
print_tree(f, dectree_subinsn)
for (name, dectree_ext) in sorted(dectree_extensions.items()):
print_tree(f, dectree_ext)
print_match_info(f)
print_op_info(f)

702
target/hexagon/fma_emu.c Normal file
View File

@ -0,0 +1,702 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/int128.h"
#include "fpu/softfloat.h"
#include "macros.h"
#include "conv_emu.h"
#include "fma_emu.h"
#define DF_INF_EXP 0x7ff
#define DF_BIAS 1023
#define DF_MANTBITS 52
#define DF_NAN 0xffffffffffffffffULL
#define DF_INF 0x7ff0000000000000ULL
#define DF_MINUS_INF 0xfff0000000000000ULL
#define DF_MAXF 0x7fefffffffffffffULL
#define DF_MINUS_MAXF 0xffefffffffffffffULL
#define SF_INF_EXP 0xff
#define SF_BIAS 127
#define SF_MANTBITS 23
#define SF_INF 0x7f800000
#define SF_MINUS_INF 0xff800000
#define SF_MAXF 0x7f7fffff
#define SF_MINUS_MAXF 0xff7fffff
#define HF_INF_EXP 0x1f
#define HF_BIAS 15
#define WAY_BIG_EXP 4096
typedef union {
double f;
uint64_t i;
struct {
uint64_t mant:52;
uint64_t exp:11;
uint64_t sign:1;
};
} Double;
typedef union {
float f;
uint32_t i;
struct {
uint32_t mant:23;
uint32_t exp:8;
uint32_t sign:1;
};
} Float;
static inline uint64_t float64_getmant(float64 f64)
{
Double a = { .i = f64 };
if (float64_is_normal(f64)) {
return a.mant | 1ULL << 52;
}
if (float64_is_zero(f64)) {
return 0;
}
if (float64_is_denormal(f64)) {
return a.mant;
}
return ~0ULL;
}
int32_t float64_getexp(float64 f64)
{
Double a = { .i = f64 };
if (float64_is_normal(f64)) {
return a.exp;
}
if (float64_is_denormal(f64)) {
return a.exp + 1;
}
return -1;
}
static inline uint64_t float32_getmant(float32 f32)
{
Float a = { .i = f32 };
if (float32_is_normal(f32)) {
return a.mant | 1ULL << 23;
}
if (float32_is_zero(f32)) {
return 0;
}
if (float32_is_denormal(f32)) {
return a.mant;
}
return ~0ULL;
}
int32_t float32_getexp(float32 f32)
{
Float a = { .i = f32 };
if (float32_is_normal(f32)) {
return a.exp;
}
if (float32_is_denormal(f32)) {
return a.exp + 1;
}
return -1;
}
static inline uint32_t int128_getw0(Int128 x)
{
return int128_getlo(x);
}
static inline uint32_t int128_getw1(Int128 x)
{
return int128_getlo(x) >> 32;
}
static inline Int128 int128_mul_6464(uint64_t ai, uint64_t bi)
{
Int128 a, b;
uint64_t pp0, pp1a, pp1b, pp1s, pp2;
a = int128_make64(ai);
b = int128_make64(bi);
pp0 = (uint64_t)int128_getw0(a) * (uint64_t)int128_getw0(b);
pp1a = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw0(b);
pp1b = (uint64_t)int128_getw1(b) * (uint64_t)int128_getw0(a);
pp2 = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw1(b);
pp1s = pp1a + pp1b;
if ((pp1s < pp1a) || (pp1s < pp1b)) {
pp2 += (1ULL << 32);
}
uint64_t ret_low = pp0 + (pp1s << 32);
if ((ret_low < pp0) || (ret_low < (pp1s << 32))) {
pp2 += 1;
}
return int128_make128(ret_low, pp2 + (pp1s >> 32));
}
static inline Int128 int128_sub_borrow(Int128 a, Int128 b, int borrow)
{
Int128 ret = int128_sub(a, b);
if (borrow != 0) {
ret = int128_sub(ret, int128_one());
}
return ret;
}
typedef struct {
Int128 mant;
int32_t exp;
uint8_t sign;
uint8_t guard;
uint8_t round;
uint8_t sticky;
} Accum;
static inline void accum_init(Accum *p)
{
p->mant = int128_zero();
p->exp = 0;
p->sign = 0;
p->guard = 0;
p->round = 0;
p->sticky = 0;
}
static inline Accum accum_norm_left(Accum a)
{
a.exp--;
a.mant = int128_lshift(a.mant, 1);
a.mant = int128_or(a.mant, int128_make64(a.guard));
a.guard = a.round;
a.round = a.sticky;
return a;
}
static inline Accum accum_norm_right(Accum a, int amt)
{
if (amt > 130) {
a.sticky |=
a.round | a.guard | int128_nz(a.mant);
a.guard = a.round = 0;
a.mant = int128_zero();
a.exp += amt;
return a;
}
while (amt >= 64) {
a.sticky |= a.round | a.guard | (int128_getlo(a.mant) != 0);
a.guard = (int128_getlo(a.mant) >> 63) & 1;
a.round = (int128_getlo(a.mant) >> 62) & 1;
a.mant = int128_make64(int128_gethi(a.mant));
a.exp += 64;
amt -= 64;
}
while (amt > 0) {
a.exp++;
a.sticky |= a.round;
a.round = a.guard;
a.guard = int128_getlo(a.mant) & 1;
a.mant = int128_rshift(a.mant, 1);
amt--;
}
return a;
}
/*
* On the add/sub, we need to be able to shift out lots of bits, but need a
* sticky bit for what was shifted out, I think.
*/
static Accum accum_add(Accum a, Accum b);
static inline Accum accum_sub(Accum a, Accum b, int negate)
{
Accum ret;
accum_init(&ret);
int borrow;
if (a.sign != b.sign) {
b.sign = !b.sign;
return accum_add(a, b);
}
if (b.exp > a.exp) {
/* small - big == - (big - small) */
return accum_sub(b, a, !negate);
}
if ((b.exp == a.exp) && (int128_gt(b.mant, a.mant))) {
/* small - big == - (big - small) */
return accum_sub(b, a, !negate);
}
while (a.exp > b.exp) {
/* Try to normalize exponents: shrink a exponent and grow mantissa */
if (int128_gethi(a.mant) & (1ULL << 62)) {
/* Can't grow a any more */
break;
} else {
a = accum_norm_left(a);
}
}
while (a.exp > b.exp) {
/* Try to normalize exponents: grow b exponent and shrink mantissa */
/* Keep around shifted out bits... we might need those later */
b = accum_norm_right(b, a.exp - b.exp);
}
if ((int128_gt(b.mant, a.mant))) {
return accum_sub(b, a, !negate);
}
/* OK, now things should be normalized! */
ret.sign = a.sign;
ret.exp = a.exp;
assert(!int128_gt(b.mant, a.mant));
borrow = (b.round << 2) | (b.guard << 1) | b.sticky;
ret.mant = int128_sub_borrow(a.mant, b.mant, (borrow != 0));
borrow = 0 - borrow;
ret.guard = (borrow >> 2) & 1;
ret.round = (borrow >> 1) & 1;
ret.sticky = (borrow >> 0) & 1;
if (negate) {
ret.sign = !ret.sign;
}
return ret;
}
static Accum accum_add(Accum a, Accum b)
{
Accum ret;
accum_init(&ret);
if (a.sign != b.sign) {
b.sign = !b.sign;
return accum_sub(a, b, 0);
}
if (b.exp > a.exp) {
/* small + big == (big + small) */
return accum_add(b, a);
}
if ((b.exp == a.exp) && int128_gt(b.mant, a.mant)) {
/* small + big == (big + small) */
return accum_add(b, a);
}
while (a.exp > b.exp) {
/* Try to normalize exponents: shrink a exponent and grow mantissa */
if (int128_gethi(a.mant) & (1ULL << 62)) {
/* Can't grow a any more */
break;
} else {
a = accum_norm_left(a);
}
}
while (a.exp > b.exp) {
/* Try to normalize exponents: grow b exponent and shrink mantissa */
/* Keep around shifted out bits... we might need those later */
b = accum_norm_right(b, a.exp - b.exp);
}
/* OK, now things should be normalized! */
if (int128_gt(b.mant, a.mant)) {
return accum_add(b, a);
};
ret.sign = a.sign;
ret.exp = a.exp;
assert(!int128_gt(b.mant, a.mant));
ret.mant = int128_add(a.mant, b.mant);
ret.guard = b.guard;
ret.round = b.round;
ret.sticky = b.sticky;
return ret;
}
/* Return an infinity with requested sign */
static inline float64 infinite_float64(uint8_t sign)
{
if (sign) {
return make_float64(DF_MINUS_INF);
} else {
return make_float64(DF_INF);
}
}
/* Return a maximum finite value with requested sign */
static inline float64 maxfinite_float64(uint8_t sign)
{
if (sign) {
return make_float64(DF_MINUS_MAXF);
} else {
return make_float64(DF_MAXF);
}
}
/* Return a zero value with requested sign */
static inline float64 zero_float64(uint8_t sign)
{
if (sign) {
return make_float64(0x8000000000000000);
} else {
return float64_zero;
}
}
/* Return an infinity with the requested sign */
float32 infinite_float32(uint8_t sign)
{
if (sign) {
return make_float32(SF_MINUS_INF);
} else {
return make_float32(SF_INF);
}
}
/* Return a maximum finite value with the requested sign */
static inline float32 maxfinite_float32(uint8_t sign)
{
if (sign) {
return make_float32(SF_MINUS_MAXF);
} else {
return make_float32(SF_MAXF);
}
}
/* Return a zero value with requested sign */
static inline float32 zero_float32(uint8_t sign)
{
if (sign) {
return make_float32(0x80000000);
} else {
return float32_zero;
}
}
#define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \
static inline SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \
{ \
if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \
&& ((a.guard | a.round | a.sticky) == 0)) { \
/* result zero */ \
switch (fp_status->float_rounding_mode) { \
case float_round_down: \
return zero_##SUFFIX(1); \
default: \
return zero_##SUFFIX(0); \
} \
} \
/* Normalize right */ \
/* We want MANTBITS bits of mantissa plus the leading one. */ \
/* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \
/* So we need to normalize right while the high word is non-zero and \
* while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \
while ((int128_gethi(a.mant) != 0) || \
((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \
a = accum_norm_right(a, 1); \
} \
/* \
* OK, now normalize left \
* We want to normalize left until we have a leading one in bit 24 \
* Theoretically, we only need to shift a maximum of one to the left if we \
* shifted out lots of bits from B, or if we had no shift / 1 shift sticky \
* shoudl be 0 \
*/ \
while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \
a = accum_norm_left(a); \
} \
/* \
* OK, now we might need to denormalize because of potential underflow. \
* We need to do this before rounding, and rounding might make us normal \
* again \
*/ \
while (a.exp <= 0) { \
a = accum_norm_right(a, 1 - a.exp); \
/* \
* Do we have underflow? \
* That's when we get an inexact answer because we ran out of bits \
* in a denormal. \
*/ \
if (a.guard || a.round || a.sticky) { \
float_raise(float_flag_underflow, fp_status); \
} \
} \
/* OK, we're relatively canonical... now we need to round */ \
if (a.guard || a.round || a.sticky) { \
float_raise(float_flag_inexact, fp_status); \
switch (fp_status->float_rounding_mode) { \
case float_round_to_zero: \
/* Chop and we're done */ \
break; \
case float_round_up: \
if (a.sign == 0) { \
a.mant = int128_add(a.mant, int128_one()); \
} \
break; \
case float_round_down: \
if (a.sign != 0) { \
a.mant = int128_add(a.mant, int128_one()); \
} \
break; \
default: \
if (a.round || a.sticky) { \
/* round up if guard is 1, down if guard is zero */ \
a.mant = int128_add(a.mant, int128_make64(a.guard)); \
} else if (a.guard) { \
/* exactly .5, round up if odd */ \
a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \
} \
break; \
} \
} \
/* \
* OK, now we might have carried all the way up. \
* So we might need to shr once \
* at least we know that the lsb should be zero if we rounded and \
* got a carry out... \
*/ \
if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \
a = accum_norm_right(a, 1); \
} \
/* Overflow? */ \
if (a.exp >= INF_EXP) { \
/* Yep, inf result */ \
float_raise(float_flag_overflow, fp_status); \
float_raise(float_flag_inexact, fp_status); \
switch (fp_status->float_rounding_mode) { \
case float_round_to_zero: \
return maxfinite_##SUFFIX(a.sign); \
case float_round_up: \
if (a.sign == 0) { \
return infinite_##SUFFIX(a.sign); \
} else { \
return maxfinite_##SUFFIX(a.sign); \
} \
case float_round_down: \
if (a.sign != 0) { \
return infinite_##SUFFIX(a.sign); \
} else { \
return maxfinite_##SUFFIX(a.sign); \
} \
default: \
return infinite_##SUFFIX(a.sign); \
} \
} \
/* Underflow? */ \
if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \
/* Leading one means: No, we're normal. So, we should be done... */ \
INTERNAL_TYPE ret; \
ret.i = 0; \
ret.sign = a.sign; \
ret.exp = a.exp; \
ret.mant = int128_getlo(a.mant); \
return ret.i; \
} \
assert(a.exp == 1); \
INTERNAL_TYPE ret; \
ret.i = 0; \
ret.sign = a.sign; \
ret.exp = 0; \
ret.mant = int128_getlo(a.mant); \
return ret.i; \
}
GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double)
GEN_XF_ROUND(float32, SF_MANTBITS, SF_INF_EXP, Float)
static bool is_inf_prod(float64 a, float64 b)
{
return ((float64_is_infinity(a) && float64_is_infinity(b)) ||
(float64_is_infinity(a) && is_finite(b) && (!float64_is_zero(b))) ||
(float64_is_infinity(b) && is_finite(a) && (!float64_is_zero(a))));
}
static inline float64 special_fma(float64 a, float64 b, float64 c,
float_status *fp_status)
{
float64 ret = make_float64(0);
/*
* If A multiplied by B is an exact infinity and C is also an infinity
* but with the opposite sign, FMA returns NaN and raises invalid.
*/
uint8_t a_sign = float64_is_neg(a);
uint8_t b_sign = float64_is_neg(b);
uint8_t c_sign = float64_is_neg(c);
if (is_inf_prod(a, b) && float64_is_infinity(c)) {
if ((a_sign ^ b_sign) != c_sign) {
ret = make_float64(DF_NAN);
float_raise(float_flag_invalid, fp_status);
return ret;
}
}
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_zero(a) && float64_is_infinity(b))) {
ret = make_float64(DF_NAN);
float_raise(float_flag_invalid, fp_status);
return ret;
}
/*
* If none of the above checks are true and C is a NaN,
* a NaN shall be returned
* If A or B are NaN, a NAN shall be returned.
*/
if (float64_is_any_nan(a) ||
float64_is_any_nan(b) ||
float64_is_any_nan(c)) {
if (float64_is_any_nan(a) && (fGETBIT(51, a) == 0)) {
float_raise(float_flag_invalid, fp_status);
}
if (float64_is_any_nan(b) && (fGETBIT(51, b) == 0)) {
float_raise(float_flag_invalid, fp_status);
}
if (float64_is_any_nan(c) && (fGETBIT(51, c) == 0)) {
float_raise(float_flag_invalid, fp_status);
}
ret = make_float64(DF_NAN);
return ret;
}
/*
* We have checked for adding opposite-signed infinities.
* Other infinities return infinity with the correct sign
*/
if (float64_is_infinity(c)) {
ret = infinite_float64(c_sign);
return ret;
}
if (float64_is_infinity(a) || float64_is_infinity(b)) {
ret = infinite_float64(a_sign ^ b_sign);
return ret;
}
g_assert_not_reached();
}
static inline float32 special_fmaf(float32 a, float32 b, float32 c,
float_status *fp_status)
{
float64 aa, bb, cc;
aa = float32_to_float64(a, fp_status);
bb = float32_to_float64(b, fp_status);
cc = float32_to_float64(c, fp_status);
return float64_to_float32(special_fma(aa, bb, cc, fp_status), fp_status);
}
float32 internal_fmafx(float32 a, float32 b, float32 c, int scale,
float_status *fp_status)
{
Accum prod;
Accum acc;
Accum result;
accum_init(&prod);
accum_init(&acc);
accum_init(&result);
uint8_t a_sign = float32_is_neg(a);
uint8_t b_sign = float32_is_neg(b);
uint8_t c_sign = float32_is_neg(c);
if (float32_is_infinity(a) ||
float32_is_infinity(b) ||
float32_is_infinity(c)) {
return special_fmaf(a, b, c, fp_status);
}
if (float32_is_any_nan(a) ||
float32_is_any_nan(b) ||
float32_is_any_nan(c)) {
return special_fmaf(a, b, c, fp_status);
}
if ((scale == 0) && (float32_is_zero(a) || float32_is_zero(b))) {
float32 tmp = float32_mul(a, b, fp_status);
tmp = float32_add(tmp, c, fp_status);
return tmp;
}
/* (a * 2**b) * (c * 2**d) == a*c * 2**(b+d) */
prod.mant = int128_mul_6464(float32_getmant(a), float32_getmant(b));
/*
* Note: extracting the mantissa into an int is multiplying by
* 2**23, so adjust here
*/
prod.exp = float32_getexp(a) + float32_getexp(b) - SF_BIAS - 23;
prod.sign = a_sign ^ b_sign;
if (float32_is_zero(a) || float32_is_zero(b)) {
prod.exp = -2 * WAY_BIG_EXP;
}
if ((scale > 0) && float32_is_denormal(c)) {
acc.mant = int128_mul_6464(0, 0);
acc.exp = -WAY_BIG_EXP;
acc.sign = c_sign;
acc.sticky = 1;
result = accum_add(prod, acc);
} else if (!float32_is_zero(c)) {
acc.mant = int128_mul_6464(float32_getmant(c), 1);
acc.exp = float32_getexp(c);
acc.sign = c_sign;
result = accum_add(prod, acc);
} else {
result = prod;
}
result.exp += scale;
return accum_round_float32(result, fp_status);
}
float32 internal_mpyf(float32 a, float32 b, float_status *fp_status)
{
if (float32_is_zero(a) || float32_is_zero(b)) {
return float32_mul(a, b, fp_status);
}
return internal_fmafx(a, b, float32_zero, 0, fp_status);
}
float64 internal_mpyhh(float64 a, float64 b,
unsigned long long int accumulated,
float_status *fp_status)
{
Accum x;
unsigned long long int prod;
unsigned int sticky;
uint8_t a_sign, b_sign;
sticky = accumulated & 1;
accumulated >>= 1;
accum_init(&x);
if (float64_is_zero(a) ||
float64_is_any_nan(a) ||
float64_is_infinity(a)) {
return float64_mul(a, b, fp_status);
}
if (float64_is_zero(b) ||
float64_is_any_nan(b) ||
float64_is_infinity(b)) {
return float64_mul(a, b, fp_status);
}
x.mant = int128_mul_6464(accumulated, 1);
x.sticky = sticky;
prod = fGETUWORD(1, float64_getmant(a)) * fGETUWORD(1, float64_getmant(b));
x.mant = int128_add(x.mant, int128_mul_6464(prod, 0x100000000ULL));
x.exp = float64_getexp(a) + float64_getexp(b) - DF_BIAS - 20;
if (!float64_is_normal(a) || !float64_is_normal(b)) {
/* crush to inexact zero */
x.sticky = 1;
x.exp = -4096;
}
a_sign = float64_is_neg(a);
b_sign = float64_is_neg(b);
x.sign = a_sign ^ b_sign;
return accum_round_float64(x, fp_status);
}

36
target/hexagon/fma_emu.h Normal file
View File

@ -0,0 +1,36 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_FMA_EMU_H
#define HEXAGON_FMA_EMU_H
static inline bool is_finite(float64 x)
{
return !float64_is_any_nan(x) && !float64_is_infinity(x);
}
int32_t float64_getexp(float64 f64);
int32_t float32_getexp(float32 f32);
float32 infinite_float32(uint8_t sign);
float32 internal_fmafx(float32 a, float32 b, float32 c,
int scale, float_status *fp_status);
float32 internal_mpyf(float32 a, float32 b, float_status *fp_status);
float64 internal_mpyhh(float64 a, float64 b,
unsigned long long int accumulated,
float_status *fp_status);
#endif

47
target/hexagon/gdbstub.c Normal file
View File

@ -0,0 +1,47 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "exec/gdbstub.h"
#include "cpu.h"
#include "internal.h"
int hexagon_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
HexagonCPU *cpu = HEXAGON_CPU(cs);
CPUHexagonState *env = &cpu->env;
if (n < TOTAL_PER_THREAD_REGS) {
return gdb_get_regl(mem_buf, env->gpr[n]);
}
g_assert_not_reached();
}
int hexagon_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
HexagonCPU *cpu = HEXAGON_CPU(cs);
CPUHexagonState *env = &cpu->env;
if (n < TOTAL_PER_THREAD_REGS) {
env->gpr[n] = ldtul_p(mem_buf);
return sizeof(target_ulong);
}
g_assert_not_reached();
}

View File

@ -0,0 +1,188 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This program generates the encodings file that is processed by
* the dectree.py script to produce the decoding tree. We use the C
* preprocessor to manipulate the files imported from the Hexagon
* architecture library.
*/
#include <stdio.h>
#include <string.h>
#include "opcodes.h"
#define STRINGIZE(X) #X
const char * const opcode_names[] = {
#define OPCODE(IID) STRINGIZE(IID)
#include "opcodes_def_generated.h.inc"
NULL
#undef OPCODE
};
/*
* Process the instruction definitions
* Scalar core instructions have the following form
* Q6INSN(A2_add,"Rd32=add(Rs32,Rt32)",ATTRIBS(),
* "Add 32-bit registers",
* { RdV=RsV+RtV;})
*/
const char * const opcode_syntax[XX_LAST_OPCODE] = {
#define Q6INSN(TAG, BEH, ATTRIBS, DESCR, SEM) \
[TAG] = BEH,
#define EXTINSN(TAG, BEH, ATTRIBS, DESCR, SEM) \
[TAG] = BEH,
#include "imported/allidefs.def"
#undef Q6INSN
#undef EXTINSN
};
const char * const opcode_rregs[] = {
#define REGINFO(TAG, REGINFO, RREGS, WREGS) RREGS,
#define IMMINFO(TAG, SIGN, SIZE, SHAMT, SIGN2, SIZE2, SHAMT2) /* nothing */
#include "op_regs_generated.h.inc"
NULL
#undef REGINFO
#undef IMMINFO
};
const char * const opcode_wregs[] = {
#define REGINFO(TAG, REGINFO, RREGS, WREGS) WREGS,
#define IMMINFO(TAG, SIGN, SIZE, SHAMT, SIGN2, SIZE2, SHAMT2) /* nothing */
#include "op_regs_generated.h.inc"
NULL
#undef REGINFO
#undef IMMINFO
};
const OpcodeEncoding opcode_encodings[] = {
#define DEF_ENC32(TAG, ENCSTR) \
[TAG] = { .encoding = ENCSTR },
#define DEF_ENC_SUBINSN(TAG, CLASS, ENCSTR) \
[TAG] = { .encoding = ENCSTR, .enc_class = CLASS },
#define DEF_EXT_ENC(TAG, CLASS, ENCSTR) \
[TAG] = { .encoding = ENCSTR, .enc_class = CLASS },
#include "imported/encode.def"
#undef DEF_ENC32
#undef DEF_ENC_SUBINSN
#undef DEF_EXT_ENC
};
static const char * const opcode_enc_class_names[XX_LAST_ENC_CLASS] = {
"NORMAL",
"16BIT",
"SUBINSN_A",
"SUBINSN_L1",
"SUBINSN_L2",
"SUBINSN_S1",
"SUBINSN_S2",
"EXT_noext",
"EXT_mmvec",
};
static const char *get_opcode_enc(int opcode)
{
const char *tmp = opcode_encodings[opcode].encoding;
if (tmp == NULL) {
tmp = "MISSING ENCODING";
}
return tmp;
}
static const char *get_opcode_enc_class(int opcode)
{
return opcode_enc_class_names[opcode_encodings[opcode].enc_class];
}
static void gen_iset_table(FILE *out)
{
int i;
fprintf(out, "iset = {\n");
for (i = 0; i < XX_LAST_OPCODE; i++) {
fprintf(out, "\t\'%s\' : {\n", opcode_names[i]);
fprintf(out, "\t\t\'tag\' : \'%s\',\n", opcode_names[i]);
fprintf(out, "\t\t\'syntax\' : \'%s\',\n", opcode_syntax[i]);
fprintf(out, "\t\t\'rregs\' : \'%s\',\n", opcode_rregs[i]);
fprintf(out, "\t\t\'wregs\' : \'%s\',\n", opcode_wregs[i]);
fprintf(out, "\t\t\'enc\' : \'%s\',\n", get_opcode_enc(i));
fprintf(out, "\t\t\'enc_class\' : \'%s\',\n", get_opcode_enc_class(i));
fprintf(out, "\t},\n");
}
fprintf(out, "};\n\n");
}
static void gen_tags_list(FILE *out)
{
int i;
fprintf(out, "tags = [\n");
for (i = 0; i < XX_LAST_OPCODE; i++) {
fprintf(out, "\t\'%s\',\n", opcode_names[i]);
}
fprintf(out, "];\n\n");
}
static void gen_enc_ext_spaces_table(FILE *out)
{
fprintf(out, "enc_ext_spaces = {\n");
#define DEF_EXT_SPACE(SPACEID, ENCSTR) \
fprintf(out, "\t\'%s\' : \'%s\',\n", #SPACEID, ENCSTR);
#include "imported/encode.def"
#undef DEF_EXT_SPACE
fprintf(out, "};\n\n");
}
static void gen_subinsn_groupings_table(FILE *out)
{
fprintf(out, "subinsn_groupings = {\n");
#define DEF_PACKED32(TAG, TYPEA, TYPEB, ENCSTR) \
do { \
fprintf(out, "\t\'%s\' : {\n", #TAG); \
fprintf(out, "\t\t\'name\' : \'%s\',\n", #TAG); \
fprintf(out, "\t\t\'class_a\' : \'%s\',\n", #TYPEA); \
fprintf(out, "\t\t\'class_b\' : \'%s\',\n", #TYPEB); \
fprintf(out, "\t\t\'enc\' : \'%s\',\n", ENCSTR); \
fprintf(out, "\t},\n"); \
} while (0);
#include "imported/encode.def"
#undef DEF_PACKED32
fprintf(out, "};\n\n");
}
int main(int argc, char *argv[])
{
FILE *outfile;
if (argc != 2) {
fprintf(stderr, "Usage: gen_dectree_import ouptputfile\n");
return 1;
}
outfile = fopen(argv[1], "w");
if (outfile == NULL) {
fprintf(stderr, "Cannot open %s for writing\n", argv[1]);
return 1;
}
gen_iset_table(outfile);
gen_tags_list(outfile);
gen_enc_ext_spaces_table(outfile);
gen_subinsn_groupings_table(outfile);
fclose(outfile);
return 0;
}

View File

@ -0,0 +1,220 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
##
## Helpers for gen_helper_function
##
def gen_decl_ea(f):
f.write(" uint32_t EA;\n")
def gen_helper_return_type(f,regtype,regid,regno):
if regno > 1 : f.write(", ")
f.write("int32_t")
def gen_helper_return_type_pair(f,regtype,regid,regno):
if regno > 1 : f.write(", ")
f.write("int64_t")
def gen_helper_arg(f,regtype,regid,regno):
if regno > 0 : f.write(", " )
f.write("int32_t %s%sV" % (regtype,regid))
def gen_helper_arg_new(f,regtype,regid,regno):
if regno >= 0 : f.write(", " )
f.write("int32_t %s%sN" % (regtype,regid))
def gen_helper_arg_pair(f,regtype,regid,regno):
if regno >= 0 : f.write(", ")
f.write("int64_t %s%sV" % (regtype,regid))
def gen_helper_arg_opn(f,regtype,regid,i,tag):
if (hex_common.is_pair(regid)):
gen_helper_arg_pair(f,regtype,regid,i)
elif (hex_common.is_single(regid)):
if hex_common.is_old_val(regtype, regid, tag):
gen_helper_arg(f,regtype,regid,i)
elif hex_common.is_new_val(regtype, regid, tag):
gen_helper_arg_new(f,regtype,regid,i)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
def gen_helper_arg_imm(f,immlett):
f.write(", int32_t %s" % (hex_common.imm_name(immlett)))
def gen_helper_dest_decl(f,regtype,regid,regno,subfield=""):
f.write(" int32_t %s%sV%s = 0;\n" % \
(regtype,regid,subfield))
def gen_helper_dest_decl_pair(f,regtype,regid,regno,subfield=""):
f.write(" int64_t %s%sV%s = 0;\n" % \
(regtype,regid,subfield))
def gen_helper_dest_decl_opn(f,regtype,regid,i):
if (hex_common.is_pair(regid)):
gen_helper_dest_decl_pair(f,regtype,regid,i)
elif (hex_common.is_single(regid)):
gen_helper_dest_decl(f,regtype,regid,i)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
def gen_helper_return(f,regtype,regid,regno):
f.write(" return %s%sV;\n" % (regtype,regid))
def gen_helper_return_pair(f,regtype,regid,regno):
f.write(" return %s%sV;\n" % (regtype,regid))
def gen_helper_return_opn(f, regtype, regid, i):
if (hex_common.is_pair(regid)):
gen_helper_return_pair(f,regtype,regid,i)
elif (hex_common.is_single(regid)):
gen_helper_return(f,regtype,regid,i)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
##
## Generate the TCG code to call the helper
## For A2_add: Rd32=add(Rs32,Rt32), { RdV=RsV+RtV;}
## We produce:
## int32_t HELPER(A2_add)(CPUHexagonState *env, int32_t RsV, int32_t RtV)
## {
## uint32_t slot __attribute__(unused)) = 4;
## int32_t RdV = 0;
## { RdV=RsV+RtV;}
## COUNT_HELPER(A2_add);
## return RdV;
## }
##
def gen_helper_function(f, tag, tagregs, tagimms):
regs = tagregs[tag]
imms = tagimms[tag]
numresults = 0
numscalarresults = 0
numscalarreadwrite = 0
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
numresults += 1
if (hex_common.is_scalar_reg(regtype)):
numscalarresults += 1
if (hex_common.is_readwrite(regid)):
if (hex_common.is_scalar_reg(regtype)):
numscalarreadwrite += 1
if (numscalarresults > 1):
## The helper is bogus when there is more than one result
f.write("void HELPER(%s)(CPUHexagonState *env) { BOGUS_HELPER(%s); }\n"
% (tag, tag))
else:
## The return type of the function is the type of the destination
## register
i=0
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
if (hex_common.is_pair(regid)):
gen_helper_return_type_pair(f,regtype,regid,i)
elif (hex_common.is_single(regid)):
gen_helper_return_type(f,regtype,regid,i)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
i += 1
if (numscalarresults == 0):
f.write("void")
f.write(" HELPER(%s)(CPUHexagonState *env" % tag)
i = 1
## Arguments to the helper function are the source regs and immediates
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):
gen_helper_arg_opn(f,regtype,regid,i,tag)
i += 1
for immlett,bits,immshift in imms:
gen_helper_arg_imm(f,immlett)
i += 1
if hex_common.need_slot(tag):
if i > 0: f.write(", ")
f.write("uint32_t slot")
i += 1
if hex_common.need_part1(tag):
if i > 0: f.write(", ")
f.write("uint32_t part1")
f.write(")\n{\n")
if (not hex_common.need_slot(tag)):
f.write(" uint32_t slot __attribute__((unused)) = 4;\n" )
if hex_common.need_ea(tag): gen_decl_ea(f)
## Declare the return variable
i=0
for regtype,regid,toss,numregs in regs:
if (hex_common.is_writeonly(regid)):
gen_helper_dest_decl_opn(f,regtype,regid,i)
i += 1
if 'A_FPOP' in hex_common.attribdict[tag]:
f.write(' arch_fpop_start(env);\n');
f.write(" %s\n" % hex_common.semdict[tag])
if 'A_FPOP' in hex_common.attribdict[tag]:
f.write(' arch_fpop_end(env);\n');
## Save/return the return variable
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
gen_helper_return_opn(f, regtype, regid, i)
f.write("}\n\n")
## End of the helper definition
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.read_overrides_file(sys.argv[3])
hex_common.calculate_attribs()
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[4], 'w') as f:
for tag in hex_common.tags:
## Skip the priv instructions
if ( "A_PRIV" in hex_common.attribdict[tag] ) :
continue
## Skip the guest instructions
if ( "A_GUEST" in hex_common.attribdict[tag] ) :
continue
## Skip the diag instructions
if ( tag == "Y6_diag" ) :
continue
if ( tag == "Y6_diag0" ) :
continue
if ( tag == "Y6_diag1" ) :
continue
if ( hex_common.skip_qemu_helper(tag) ):
continue
gen_helper_function(f, tag, tagregs, tagimms)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,150 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
##
## Helpers for gen_helper_prototype
##
def_helper_types = {
'N' : 's32',
'O' : 's32',
'P' : 's32',
'M' : 's32',
'C' : 's32',
'R' : 's32',
'V' : 'ptr',
'Q' : 'ptr'
}
def_helper_types_pair = {
'R' : 's64',
'C' : 's64',
'S' : 's64',
'G' : 's64',
'V' : 'ptr',
'Q' : 'ptr'
}
def gen_def_helper_opn(f, tag, regtype, regid, toss, numregs, i):
if (hex_common.is_pair(regid)):
f.write(", %s" % (def_helper_types_pair[regtype]))
elif (hex_common.is_single(regid)):
f.write(", %s" % (def_helper_types[regtype]))
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
##
## Generate the DEF_HELPER prototype for an instruction
## For A2_add: Rd32=add(Rs32,Rt32)
## We produce:
## DEF_HELPER_3(A2_add, s32, env, s32, s32)
##
def gen_helper_prototype(f, tag, tagregs, tagimms):
regs = tagregs[tag]
imms = tagimms[tag]
numresults = 0
numscalarresults = 0
numscalarreadwrite = 0
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
numresults += 1
if (hex_common.is_scalar_reg(regtype)):
numscalarresults += 1
if (hex_common.is_readwrite(regid)):
if (hex_common.is_scalar_reg(regtype)):
numscalarreadwrite += 1
if (numscalarresults > 1):
## The helper is bogus when there is more than one result
f.write('DEF_HELPER_1(%s, void, env)\n' % tag)
else:
## Figure out how many arguments the helper will take
if (numscalarresults == 0):
def_helper_size = len(regs)+len(imms)+numscalarreadwrite+1
if hex_common.need_part1(tag): def_helper_size += 1
if hex_common.need_slot(tag): def_helper_size += 1
f.write('DEF_HELPER_%s(%s' % (def_helper_size, tag))
## The return type is void
f.write(', void' )
else:
def_helper_size = len(regs)+len(imms)+numscalarreadwrite
if hex_common.need_part1(tag): def_helper_size += 1
if hex_common.need_slot(tag): def_helper_size += 1
f.write('DEF_HELPER_%s(%s' % (def_helper_size, tag))
## Generate the qemu DEF_HELPER type for each result
i=0
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
gen_def_helper_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
## Put the env between the outputs and inputs
f.write(', env' )
i += 1
## Generate the qemu type for each input operand (regs and immediates)
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):
gen_def_helper_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
for immlett,bits,immshift in imms:
f.write(", s32")
## Add the arguments for the instruction slot and part1 (if needed)
if hex_common.need_slot(tag): f.write(', i32' )
if hex_common.need_part1(tag): f.write(' , i32' )
f.write(')\n')
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.read_overrides_file(sys.argv[3])
hex_common.calculate_attribs()
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[4], 'w') as f:
for tag in hex_common.tags:
## Skip the priv instructions
if ( "A_PRIV" in hex_common.attribdict[tag] ) :
continue
## Skip the guest instructions
if ( "A_GUEST" in hex_common.attribdict[tag] ) :
continue
## Skip the diag instructions
if ( tag == "Y6_diag" ) :
continue
if ( tag == "Y6_diag0" ) :
continue
if ( tag == "Y6_diag1" ) :
continue
if ( hex_common.skip_qemu_helper(tag) ):
continue
gen_helper_prototype(f, tag, tagregs, tagimms)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,39 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.calculate_attribs()
##
## Generate all the attributes associated with each instruction
##
with open(sys.argv[3], 'w') as f:
for tag in hex_common.tags:
f.write('OP_ATTRIB(%s,ATTRIBS(%s))\n' % \
(tag, ','.join(sorted(hex_common.attribdict[tag]))))
if __name__ == "__main__":
main()

110
target/hexagon/gen_op_regs.py Executable file
View File

@ -0,0 +1,110 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
##
## Generate the register and immediate operands for each instruction
##
def calculate_regid_reg(tag):
def letter_inc(x): return chr(ord(x)+1)
ordered_implregs = [ 'SP','FP','LR' ]
srcdst_lett = 'X'
src_lett = 'S'
dst_lett = 'D'
retstr = ""
mapdict = {}
for reg in ordered_implregs:
reg_rd = 0
reg_wr = 0
if ('A_IMPLICIT_WRITES_'+reg) in hex_common.attribdict[tag]: reg_wr = 1
if reg_rd and reg_wr:
retstr += srcdst_lett
mapdict[srcdst_lett] = reg
srcdst_lett = letter_inc(srcdst_lett)
elif reg_rd:
retstr += src_lett
mapdict[src_lett] = reg
src_lett = letter_inc(src_lett)
elif reg_wr:
retstr += dst_lett
mapdict[dst_lett] = reg
dst_lett = letter_inc(dst_lett)
return retstr,mapdict
def calculate_regid_letters(tag):
retstr,mapdict = calculate_regid_reg(tag)
return retstr
def strip_reg_prefix(x):
y=x.replace('UREG.','')
y=y.replace('MREG.','')
return y.replace('GREG.','')
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[3], 'w') as f:
for tag in hex_common.tags:
regs = tagregs[tag]
rregs = []
wregs = []
regids = ""
for regtype,regid,toss,numregs in regs:
if hex_common.is_read(regid):
if regid[0] not in regids: regids += regid[0]
rregs.append(regtype+regid+numregs)
if hex_common.is_written(regid):
wregs.append(regtype+regid+numregs)
if regid[0] not in regids: regids += regid[0]
for attrib in hex_common.attribdict[tag]:
if hex_common.attribinfo[attrib]['rreg']:
rregs.append(strip_reg_prefix(attribinfo[attrib]['rreg']))
if hex_common.attribinfo[attrib]['wreg']:
wregs.append(strip_reg_prefix(attribinfo[attrib]['wreg']))
regids += calculate_regid_letters(tag)
f.write('REGINFO(%s,"%s",\t/*RD:*/\t"%s",\t/*WR:*/\t"%s")\n' % \
(tag,regids,",".join(rregs),",".join(wregs)))
for tag in hex_common.tags:
imms = tagimms[tag]
f.write( 'IMMINFO(%s' % tag)
if not imms:
f.write(''','u',0,0,'U',0,0''')
for sign,size,shamt in imms:
if sign == 'r': sign = 's'
if not shamt:
shamt = "0"
f.write(''','%s',%s,%s''' % (sign,size,shamt))
if len(imms) == 1:
if sign.isupper():
myu = 'u'
else:
myu = 'U'
f.write(''','%s',0,0''' % myu)
f.write(')\n')
if __name__ == "__main__":
main()

View File

@ -0,0 +1,36 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
def main():
hex_common.read_semantics_file(sys.argv[1])
##
## Generate a list of all the opcodes
##
with open(sys.argv[3], 'w') as f:
for tag in hex_common.tags:
f.write ( "OPCODE(%s),\n" % (tag) )
if __name__ == "__main__":
main()

173
target/hexagon/gen_printinsn.py Executable file
View File

@ -0,0 +1,173 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
##
## Generate data for printing each instruction (format string + operands)
##
def regprinter(m):
str = m.group(1)
str += ":".join(["%d"]*len(m.group(2)))
str += m.group(3)
if ('S' in m.group(1)) and (len(m.group(2)) == 1):
str += "/%s"
elif ('C' in m.group(1)) and (len(m.group(2)) == 1):
str += "/%s"
return str
def spacify(s):
# Regular expression that matches any operator that contains '=' character:
opswithequal_re = '[-+^&|!<>=]?='
# Regular expression that matches any assignment operator.
assignment_re = '[-+^&|]?='
# Out of the operators that contain the = sign, if the operator is also an
# assignment, spaces will be added around it, unless it's enclosed within
# parentheses, or spaces are already present.
equals = re.compile(opswithequal_re)
assign = re.compile(assignment_re)
slen = len(s)
paren_count = {}
i = 0
pc = 0
while i < slen:
c = s[i]
if c == '(':
pc += 1
elif c == ')':
pc -= 1
paren_count[i] = pc
i += 1
# Iterate over all operators that contain the equal sign. If any
# match is also an assignment operator, add spaces around it if
# the parenthesis count is 0.
pos = 0
out = []
for m in equals.finditer(s):
ms = m.start()
me = m.end()
# t is the string that matched opswithequal_re.
t = m.string[ms:me]
out += s[pos:ms]
pos = me
if paren_count[ms] == 0:
# Check if the entire string t is an assignment.
am = assign.match(t)
if am and len(am.group(0)) == me-ms:
# Don't add spaces if they are already there.
if ms > 0 and s[ms-1] != ' ':
out.append(' ')
out += t
if me < slen and s[me] != ' ':
out.append(' ')
continue
# If this is not an assignment, just append it to the output
# string.
out += t
# Append the remaining part of the string.
out += s[pos:len(s)]
return ''.join(out)
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
immext_casere = re.compile(r'IMMEXT\(([A-Za-z])')
with open(sys.argv[3], 'w') as f:
for tag in hex_common.tags:
if not hex_common.behdict[tag]: continue
extendable_upper_imm = False
extendable_lower_imm = False
m = immext_casere.search(hex_common.semdict[tag])
if m:
if m.group(1).isupper():
extendable_upper_imm = True
else:
extendable_lower_imm = True
beh = hex_common.behdict[tag]
beh = hex_common.regre.sub(regprinter,beh)
beh = hex_common.absimmre.sub(r"#%s0x%x",beh)
beh = hex_common.relimmre.sub(r"PC+%s%d",beh)
beh = spacify(beh)
# Print out a literal "%s" at the end, used to match empty string
# so C won't complain at us
if ("A_VECX" in hex_common.attribdict[tag]):
macname = "DEF_VECX_PRINTINFO"
else: macname = "DEF_PRINTINFO"
f.write('%s(%s,"%s%%s"' % (macname,tag,beh))
regs_or_imms = \
hex_common.reg_or_immre.findall(hex_common.behdict[tag])
ri = 0
seenregs = {}
for allregs,a,b,c,d,allimm,immlett,bits,immshift in regs_or_imms:
if a:
#register
if b in seenregs:
regno = seenregs[b]
else:
regno = ri
if len(b) == 1:
f.write(', insn->regno[%d]' % regno)
if 'S' in a:
f.write(', sreg2str(insn->regno[%d])' % regno)
elif 'C' in a:
f.write(', creg2str(insn->regno[%d])' % regno)
elif len(b) == 2:
f.write(', insn->regno[%d] + 1, insn->regno[%d]' % \
(regno,regno))
else:
print("Put some stuff to handle quads here")
if b not in seenregs:
seenregs[b] = ri
ri += 1
else:
#immediate
if (immlett.isupper()):
if extendable_upper_imm:
if immlett in 'rR':
f.write(',insn->extension_valid?"##":""')
else:
f.write(',insn->extension_valid?"#":""')
else:
f.write(',""')
ii = 1
else:
if extendable_lower_imm:
if immlett in 'rR':
f.write(',insn->extension_valid?"##":""')
else:
f.write(',insn->extension_valid?"#":""')
else:
f.write(',""')
ii = 0
f.write(', insn->immed[%d]' % ii)
# append empty string so there is at least one more arg
f.write(',"")\n')
if __name__ == "__main__":
main()

View File

@ -0,0 +1,88 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This program generates the semantics file that is processed by
* the do_qemu.py script. We use the C preporcessor to manipulate the
* files imported from the Hexagon architecture library.
*/
#include <stdio.h>
#define STRINGIZE(X) #X
int main(int argc, char *argv[])
{
FILE *outfile;
if (argc != 2) {
fprintf(stderr, "Usage: gen_semantics ouptputfile\n");
return 1;
}
outfile = fopen(argv[1], "w");
if (outfile == NULL) {
fprintf(stderr, "Cannot open %s for writing\n", argv[1]);
return 1;
}
/*
* Process the instruction definitions
* Scalar core instructions have the following form
* Q6INSN(A2_add,"Rd32=add(Rs32,Rt32)",ATTRIBS(),
* "Add 32-bit registers",
* { RdV=RsV+RtV;})
*/
#define Q6INSN(TAG, BEH, ATTRIBS, DESCR, SEM) \
do { \
fprintf(outfile, "SEMANTICS( \\\n" \
" \"%s\", \\\n" \
" %s, \\\n" \
" \"\"\"%s\"\"\" \\\n" \
")\n", \
#TAG, STRINGIZE(BEH), STRINGIZE(SEM)); \
fprintf(outfile, "ATTRIBUTES( \\\n" \
" \"%s\", \\\n" \
" \"%s\" \\\n" \
")\n", \
#TAG, STRINGIZE(ATTRIBS)); \
} while (0);
#include "imported/allidefs.def"
#undef Q6INSN
/*
* Process the macro definitions
* Macros definitions have the following form
* DEF_MACRO(
* fLSBNEW0,
* predlog_read(thread,0),
* ()
* )
* The important part here is the attributes. Whenever an instruction
* invokes a macro, we add the macro's attributes to the instruction.
*/
#define DEF_MACRO(MNAME, BEH, ATTRS) \
fprintf(outfile, "MACROATTRIB( \\\n" \
" \"%s\", \\\n" \
" \"\"\"%s\"\"\", \\\n" \
" \"%s\" \\\n" \
")\n", \
#MNAME, STRINGIZE(BEH), STRINGIZE(ATTRS));
#include "imported/macros.def"
#undef DEF_MACRO
fclose(outfile);
return 0;
}

60
target/hexagon/gen_shortcode.py Executable file
View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
def gen_shortcode(f, tag):
f.write('DEF_SHORTCODE(%s, %s)\n' % (tag, hex_common.semdict[tag]))
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.calculate_attribs()
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[3], 'w') as f:
f.write("#ifndef DEF_SHORTCODE\n")
f.write("#define DEF_SHORTCODE(TAG,SHORTCODE) /* Nothing */\n")
f.write("#endif\n")
for tag in hex_common.tags:
## Skip the priv instructions
if ( "A_PRIV" in hex_common.attribdict[tag] ) :
continue
## Skip the guest instructions
if ( "A_GUEST" in hex_common.attribdict[tag] ) :
continue
## Skip the diag instructions
if ( tag == "Y6_diag" ) :
continue
if ( tag == "Y6_diag0" ) :
continue
if ( tag == "Y6_diag1" ) :
continue
gen_shortcode(f, tag)
f.write("#undef DEF_SHORTCODE\n")
if __name__ == "__main__":
main()

319
target/hexagon/gen_tcg.h Normal file
View File

@ -0,0 +1,319 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_GEN_TCG_H
#define HEXAGON_GEN_TCG_H
/*
* Here is a primer to understand the tag names for load/store instructions
*
* Data types
* b signed byte r0 = memb(r2+#0)
* ub unsigned byte r0 = memub(r2+#0)
* h signed half word (16 bits) r0 = memh(r2+#0)
* uh unsigned half word r0 = memuh(r2+#0)
* i integer (32 bits) r0 = memw(r2+#0)
* d double word (64 bits) r1:0 = memd(r2+#0)
*
* Addressing modes
* _io indirect with offset r0 = memw(r1+#4)
* _ur absolute with register offset r0 = memw(r1<<#4+##variable)
* _rr indirect with register offset r0 = memw(r1+r4<<#2)
* gp global pointer relative r0 = memw(gp+#200)
* _sp stack pointer relative r0 = memw(r29+#12)
* _ap absolute set r0 = memw(r1=##variable)
* _pr post increment register r0 = memw(r1++m1)
* _pi post increment immediate r0 = memb(r1++#1)
*/
/* Macros for complex addressing modes */
#define GET_EA_ap \
do { \
fEA_IMM(UiV); \
tcg_gen_movi_tl(ReV, UiV); \
} while (0)
#define GET_EA_pr \
do { \
fEA_REG(RxV); \
fPM_M(RxV, MuV); \
} while (0)
#define GET_EA_pi \
do { \
fEA_REG(RxV); \
fPM_I(RxV, siV); \
} while (0)
/* Instructions with multiple definitions */
#define fGEN_TCG_LOAD_AP(RES, SIZE, SIGN) \
do { \
fMUST_IMMEXT(UiV); \
fEA_IMM(UiV); \
fLOAD(1, SIZE, SIGN, EA, RES); \
tcg_gen_movi_tl(ReV, UiV); \
} while (0)
#define fGEN_TCG_L4_loadrub_ap(SHORTCODE) \
fGEN_TCG_LOAD_AP(RdV, 1, u)
#define fGEN_TCG_L4_loadrb_ap(SHORTCODE) \
fGEN_TCG_LOAD_AP(RdV, 1, s)
#define fGEN_TCG_L4_loadruh_ap(SHORTCODE) \
fGEN_TCG_LOAD_AP(RdV, 2, u)
#define fGEN_TCG_L4_loadrh_ap(SHORTCODE) \
fGEN_TCG_LOAD_AP(RdV, 2, s)
#define fGEN_TCG_L4_loadri_ap(SHORTCODE) \
fGEN_TCG_LOAD_AP(RdV, 4, u)
#define fGEN_TCG_L4_loadrd_ap(SHORTCODE) \
fGEN_TCG_LOAD_AP(RddV, 8, u)
#define fGEN_TCG_L2_loadrub_pr(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadrub_pi(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadrb_pr(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadrb_pi(SHORTCODE) SHORTCODE;
#define fGEN_TCG_L2_loadruh_pr(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadruh_pi(SHORTCODE) SHORTCODE;
#define fGEN_TCG_L2_loadrh_pr(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadrh_pi(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadri_pr(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadri_pi(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadrd_pr(SHORTCODE) SHORTCODE
#define fGEN_TCG_L2_loadrd_pi(SHORTCODE) SHORTCODE
/*
* Predicated loads
* Here is a primer to understand the tag names
*
* Predicate used
* t true "old" value if (p0) r0 = memb(r2+#0)
* f false "old" value if (!p0) r0 = memb(r2+#0)
* tnew true "new" value if (p0.new) r0 = memb(r2+#0)
* fnew false "new" value if (!p0.new) r0 = memb(r2+#0)
*/
#define fGEN_TCG_PRED_LOAD(GET_EA, PRED, SIZE, SIGN) \
do { \
TCGv LSB = tcg_temp_local_new(); \
TCGLabel *label = gen_new_label(); \
GET_EA; \
PRED; \
PRED_LOAD_CANCEL(LSB, EA); \
tcg_gen_movi_tl(RdV, 0); \
tcg_gen_brcondi_tl(TCG_COND_EQ, LSB, 0, label); \
fLOAD(1, SIZE, SIGN, EA, RdV); \
gen_set_label(label); \
tcg_temp_free(LSB); \
} while (0)
#define fGEN_TCG_L2_ploadrubt_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLD(PtV), 1, u)
#define fGEN_TCG_L2_ploadrubf_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLDNOT(PtV), 1, u)
#define fGEN_TCG_L2_ploadrubtnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEW(PtN), 1, u)
#define fGEN_TCG_L2_ploadrubfnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEWNOT(PtN), 1, u)
#define fGEN_TCG_L2_ploadrbt_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLD(PtV), 1, s)
#define fGEN_TCG_L2_ploadrbf_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLDNOT(PtV), 1, s)
#define fGEN_TCG_L2_ploadrbtnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEW(PtN), 1, s)
#define fGEN_TCG_L2_ploadrbfnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD({ fEA_REG(RxV); fPM_I(RxV, siV); }, \
fLSBNEWNOT(PtN), 1, s)
#define fGEN_TCG_L2_ploadruht_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLD(PtV), 2, u)
#define fGEN_TCG_L2_ploadruhf_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLDNOT(PtV), 2, u)
#define fGEN_TCG_L2_ploadruhtnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEW(PtN), 2, u)
#define fGEN_TCG_L2_ploadruhfnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEWNOT(PtN), 2, u)
#define fGEN_TCG_L2_ploadrht_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLD(PtV), 2, s)
#define fGEN_TCG_L2_ploadrhf_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLDNOT(PtV), 2, s)
#define fGEN_TCG_L2_ploadrhtnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEW(PtN), 2, s)
#define fGEN_TCG_L2_ploadrhfnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEWNOT(PtN), 2, s)
#define fGEN_TCG_L2_ploadrit_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLD(PtV), 4, u)
#define fGEN_TCG_L2_ploadrif_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBOLDNOT(PtV), 4, u)
#define fGEN_TCG_L2_ploadritnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEW(PtN), 4, u)
#define fGEN_TCG_L2_ploadrifnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD(GET_EA_pi, fLSBNEWNOT(PtN), 4, u)
/* Predicated loads into a register pair */
#define fGEN_TCG_PRED_LOAD_PAIR(GET_EA, PRED) \
do { \
TCGv LSB = tcg_temp_local_new(); \
TCGLabel *label = gen_new_label(); \
GET_EA; \
PRED; \
PRED_LOAD_CANCEL(LSB, EA); \
tcg_gen_movi_i64(RddV, 0); \
tcg_gen_brcondi_tl(TCG_COND_EQ, LSB, 0, label); \
fLOAD(1, 8, u, EA, RddV); \
gen_set_label(label); \
tcg_temp_free(LSB); \
} while (0)
#define fGEN_TCG_L2_ploadrdt_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD_PAIR(GET_EA_pi, fLSBOLD(PtV))
#define fGEN_TCG_L2_ploadrdf_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD_PAIR(GET_EA_pi, fLSBOLDNOT(PtV))
#define fGEN_TCG_L2_ploadrdtnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD_PAIR(GET_EA_pi, fLSBNEW(PtN))
#define fGEN_TCG_L2_ploadrdfnew_pi(SHORTCODE) \
fGEN_TCG_PRED_LOAD_PAIR(GET_EA_pi, fLSBNEWNOT(PtN))
/* load-locked and store-locked */
#define fGEN_TCG_L2_loadw_locked(SHORTCODE) \
SHORTCODE
#define fGEN_TCG_L4_loadd_locked(SHORTCODE) \
SHORTCODE
#define fGEN_TCG_S2_storew_locked(SHORTCODE) \
do { SHORTCODE; READ_PREG(PdV, PdN); } while (0)
#define fGEN_TCG_S4_stored_locked(SHORTCODE) \
do { SHORTCODE; READ_PREG(PdV, PdN); } while (0)
/* Floating point */
#define fGEN_TCG_F2_conv_sf2df(SHORTCODE) \
gen_helper_conv_sf2df(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_df2sf(SHORTCODE) \
gen_helper_conv_df2sf(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_uw2sf(SHORTCODE) \
gen_helper_conv_uw2sf(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_uw2df(SHORTCODE) \
gen_helper_conv_uw2df(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_w2sf(SHORTCODE) \
gen_helper_conv_w2sf(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_w2df(SHORTCODE) \
gen_helper_conv_w2df(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_ud2sf(SHORTCODE) \
gen_helper_conv_ud2sf(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_ud2df(SHORTCODE) \
gen_helper_conv_ud2df(RddV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_d2sf(SHORTCODE) \
gen_helper_conv_d2sf(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_d2df(SHORTCODE) \
gen_helper_conv_d2df(RddV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_sf2uw(SHORTCODE) \
gen_helper_conv_sf2uw(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_sf2w(SHORTCODE) \
gen_helper_conv_sf2w(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_sf2ud(SHORTCODE) \
gen_helper_conv_sf2ud(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_sf2d(SHORTCODE) \
gen_helper_conv_sf2d(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_df2uw(SHORTCODE) \
gen_helper_conv_df2uw(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_df2w(SHORTCODE) \
gen_helper_conv_df2w(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_df2ud(SHORTCODE) \
gen_helper_conv_df2ud(RddV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_df2d(SHORTCODE) \
gen_helper_conv_df2d(RddV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_sf2uw_chop(SHORTCODE) \
gen_helper_conv_sf2uw_chop(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_sf2w_chop(SHORTCODE) \
gen_helper_conv_sf2w_chop(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_sf2ud_chop(SHORTCODE) \
gen_helper_conv_sf2ud_chop(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_sf2d_chop(SHORTCODE) \
gen_helper_conv_sf2d_chop(RddV, cpu_env, RsV)
#define fGEN_TCG_F2_conv_df2uw_chop(SHORTCODE) \
gen_helper_conv_df2uw_chop(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_df2w_chop(SHORTCODE) \
gen_helper_conv_df2w_chop(RdV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_df2ud_chop(SHORTCODE) \
gen_helper_conv_df2ud_chop(RddV, cpu_env, RssV)
#define fGEN_TCG_F2_conv_df2d_chop(SHORTCODE) \
gen_helper_conv_df2d_chop(RddV, cpu_env, RssV)
#define fGEN_TCG_F2_sfadd(SHORTCODE) \
gen_helper_sfadd(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfsub(SHORTCODE) \
gen_helper_sfsub(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfcmpeq(SHORTCODE) \
gen_helper_sfcmpeq(PdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfcmpgt(SHORTCODE) \
gen_helper_sfcmpgt(PdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfcmpge(SHORTCODE) \
gen_helper_sfcmpge(PdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfcmpuo(SHORTCODE) \
gen_helper_sfcmpuo(PdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfmax(SHORTCODE) \
gen_helper_sfmax(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfmin(SHORTCODE) \
gen_helper_sfmin(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sfclass(SHORTCODE) \
do { \
TCGv imm = tcg_const_tl(uiV); \
gen_helper_sfclass(PdV, cpu_env, RsV, imm); \
tcg_temp_free(imm); \
} while (0)
#define fGEN_TCG_F2_sffixupn(SHORTCODE) \
gen_helper_sffixupn(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sffixupd(SHORTCODE) \
gen_helper_sffixupd(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sffixupr(SHORTCODE) \
gen_helper_sffixupr(RdV, cpu_env, RsV)
#define fGEN_TCG_F2_dfadd(SHORTCODE) \
gen_helper_dfadd(RddV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfsub(SHORTCODE) \
gen_helper_dfsub(RddV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfmax(SHORTCODE) \
gen_helper_dfmax(RddV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfmin(SHORTCODE) \
gen_helper_dfmin(RddV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfcmpeq(SHORTCODE) \
gen_helper_dfcmpeq(PdV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfcmpgt(SHORTCODE) \
gen_helper_dfcmpgt(PdV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfcmpge(SHORTCODE) \
gen_helper_dfcmpge(PdV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfcmpuo(SHORTCODE) \
gen_helper_dfcmpuo(PdV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfclass(SHORTCODE) \
do { \
TCGv imm = tcg_const_tl(uiV); \
gen_helper_dfclass(PdV, cpu_env, RssV, imm); \
tcg_temp_free(imm); \
} while (0)
#define fGEN_TCG_F2_sfmpy(SHORTCODE) \
gen_helper_sfmpy(RdV, cpu_env, RsV, RtV)
#define fGEN_TCG_F2_sffma(SHORTCODE) \
gen_helper_sffma(RxV, cpu_env, RxV, RsV, RtV)
#define fGEN_TCG_F2_sffma_sc(SHORTCODE) \
gen_helper_sffma_sc(RxV, cpu_env, RxV, RsV, RtV, PuV)
#define fGEN_TCG_F2_sffms(SHORTCODE) \
gen_helper_sffms(RxV, cpu_env, RxV, RsV, RtV)
#define fGEN_TCG_F2_sffma_lib(SHORTCODE) \
gen_helper_sffma_lib(RxV, cpu_env, RxV, RsV, RtV)
#define fGEN_TCG_F2_sffms_lib(SHORTCODE) \
gen_helper_sffms_lib(RxV, cpu_env, RxV, RsV, RtV)
#define fGEN_TCG_F2_dfmpyfix(SHORTCODE) \
gen_helper_dfmpyfix(RddV, cpu_env, RssV, RttV)
#define fGEN_TCG_F2_dfmpyhh(SHORTCODE) \
gen_helper_dfmpyhh(RxxV, cpu_env, RxxV, RssV, RttV)
#endif

View File

@ -0,0 +1,58 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.calculate_attribs()
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[3], 'w') as f:
f.write("#ifndef HEXAGON_FUNC_TABLE_H\n")
f.write("#define HEXAGON_FUNC_TABLE_H\n\n")
f.write("const SemanticInsn opcode_genptr[XX_LAST_OPCODE] = {\n")
for tag in hex_common.tags:
## Skip the priv instructions
if ( "A_PRIV" in hex_common.attribdict[tag] ) :
continue
## Skip the guest instructions
if ( "A_GUEST" in hex_common.attribdict[tag] ) :
continue
## Skip the diag instructions
if ( tag == "Y6_diag" ) :
continue
if ( tag == "Y6_diag0" ) :
continue
if ( tag == "Y6_diag1" ) :
continue
f.write(" [%s] = generate_%s,\n" % (tag, tag))
f.write("};\n\n")
f.write("#endif /* HEXAGON_FUNC_TABLE_H */\n")
if __name__ == "__main__":
main()

485
target/hexagon/gen_tcg_funcs.py Executable file
View File

@ -0,0 +1,485 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
import hex_common
##
## Helpers for gen_tcg_func
##
def gen_decl_ea_tcg(f, tag):
if ('A_CONDEXEC' in hex_common.attribdict[tag] or
'A_LOAD' in hex_common.attribdict[tag]):
f.write(" TCGv EA = tcg_temp_local_new();\n")
else:
f.write(" TCGv EA = tcg_temp_new();\n")
def gen_free_ea_tcg(f):
f.write(" tcg_temp_free(EA);\n")
def genptr_decl_pair_writeble(f, tag, regtype, regid, regno):
regN="%s%sN" % (regtype,regid)
f.write(" TCGv_i64 %s%sV = tcg_temp_local_new_i64();\n" % \
(regtype, regid))
if (regtype == "C"):
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
else:
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" if (!is_preloaded(ctx, %s)) {\n" % regN)
f.write(" tcg_gen_mov_tl(hex_new_value[%s], hex_gpr[%s]);\n" % \
(regN, regN))
f.write(" }\n")
f.write(" if (!is_preloaded(ctx, %s + 1)) {\n" % regN)
f.write(" tcg_gen_mov_tl(hex_new_value[%s + 1], hex_gpr[%s + 1]);\n" % \
(regN, regN))
f.write(" }\n")
def genptr_decl_writeble(f, tag, regtype, regid, regno):
regN="%s%sN" % (regtype,regid)
f.write(" TCGv %s%sV = tcg_temp_local_new();\n" % \
(regtype, regid))
if (regtype == "C"):
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
else:
f.write(" const int %s = insn->regno[%d];\n" % (regN, regno))
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" if (!is_preloaded(ctx, %s)) {\n" % regN)
f.write(" tcg_gen_mov_tl(hex_new_value[%s], hex_gpr[%s]);\n" % \
(regN, regN))
f.write(" }\n")
def genptr_decl(f, tag, regtype, regid, regno):
regN="%s%sN" % (regtype,regid)
if (regtype == "R"):
if (regid in {"ss", "tt"}):
f.write(" TCGv_i64 %s%sV = tcg_temp_local_new_i64();\n" % \
(regtype, regid))
f.write(" const int %s = insn->regno[%d];\n" % \
(regN, regno))
elif (regid in {"dd", "ee", "xx", "yy"}):
genptr_decl_pair_writeble(f, tag, regtype, regid, regno)
elif (regid in {"s", "t", "u", "v"}):
f.write(" TCGv %s%sV = hex_gpr[insn->regno[%d]];\n" % \
(regtype, regid, regno))
elif (regid in {"d", "e", "x", "y"}):
genptr_decl_writeble(f, tag, regtype, regid, regno)
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid in {"s", "t", "u", "v"}):
f.write(" TCGv %s%sV = hex_pred[insn->regno[%d]];\n" % \
(regtype, regid, regno))
elif (regid in {"d", "e", "x"}):
genptr_decl_writeble(f, tag, regtype, regid, regno)
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "C"):
if (regid == "ss"):
f.write(" TCGv_i64 %s%sV = tcg_temp_local_new_i64();\n" % \
(regtype, regid))
f.write(" const int %s = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regN, regno))
elif (regid == "dd"):
genptr_decl_pair_writeble(f, tag, regtype, regid, regno)
elif (regid == "s"):
f.write(" TCGv %s%sV = tcg_temp_local_new();\n" % \
(regtype, regid))
f.write(" const int %s%sN = insn->regno[%d] + HEX_REG_SA0;\n" % \
(regtype, regid, regno))
elif (regid == "d"):
genptr_decl_writeble(f, tag, regtype, regid, regno)
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "M"):
if (regid == "u"):
f.write(" const int %s%sN = insn->regno[%d];\n"% \
(regtype, regid, regno))
f.write(" TCGv %s%sV = hex_gpr[%s%sN + HEX_REG_M0];\n" % \
(regtype, regid, regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_decl_new(f,regtype,regid,regno):
if (regtype == "N"):
if (regid in {"s", "t"}):
f.write(" TCGv %s%sN = hex_new_value[insn->regno[%d]];\n" % \
(regtype, regid, regno))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid in {"t", "u", "v"}):
f.write(" TCGv %s%sN = hex_new_pred_value[insn->regno[%d]];\n" % \
(regtype, regid, regno))
else:
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_decl_opn(f, tag, regtype, regid, toss, numregs, i):
if (hex_common.is_pair(regid)):
genptr_decl(f, tag, regtype, regid, i)
elif (hex_common.is_single(regid)):
if hex_common.is_old_val(regtype, regid, tag):
genptr_decl(f,tag, regtype, regid, i)
elif hex_common.is_new_val(regtype, regid, tag):
genptr_decl_new(f,regtype,regid,i)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
def genptr_decl_imm(f,immlett):
if (immlett.isupper()):
i = 1
else:
i = 0
f.write(" int %s = insn->immed[%d];\n" % \
(hex_common.imm_name(immlett), i))
def genptr_free(f,regtype,regid,regno):
if (regtype == "R"):
if (regid in {"dd", "ss", "tt", "xx", "yy"}):
f.write(" tcg_temp_free_i64(%s%sV);\n" % (regtype, regid))
elif (regid in {"d", "e", "x", "y"}):
f.write(" tcg_temp_free(%s%sV);\n" % (regtype, regid))
elif (regid not in {"s", "t", "u", "v"}):
print("Bad register parse: ",regtype,regid)
elif (regtype == "P"):
if (regid in {"d", "e", "x"}):
f.write(" tcg_temp_free(%s%sV);\n" % (regtype, regid))
elif (regid not in {"s", "t", "u", "v"}):
print("Bad register parse: ",regtype,regid)
elif (regtype == "C"):
if (regid in {"dd", "ss"}):
f.write(" tcg_temp_free_i64(%s%sV);\n" % (regtype, regid))
elif (regid in {"d", "s"}):
f.write(" tcg_temp_free(%s%sV);\n" % (regtype, regid))
else:
print("Bad register parse: ",regtype,regid)
elif (regtype == "M"):
if (regid != "u"):
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_free_new(f,regtype,regid,regno):
if (regtype == "N"):
if (regid not in {"s", "t"}):
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid not in {"t", "u", "v"}):
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_free_opn(f,regtype,regid,i,tag):
if (hex_common.is_pair(regid)):
genptr_free(f,regtype,regid,i)
elif (hex_common.is_single(regid)):
if hex_common.is_old_val(regtype, regid, tag):
genptr_free(f,regtype,regid,i)
elif hex_common.is_new_val(regtype, regid, tag):
genptr_free_new(f,regtype,regid,i)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
def genptr_src_read(f,regtype,regid):
if (regtype == "R"):
if (regid in {"ss", "tt", "xx", "yy"}):
f.write(" tcg_gen_concat_i32_i64(%s%sV, hex_gpr[%s%sN],\n" % \
(regtype, regid, regtype, regid))
f.write(" hex_gpr[%s%sN + 1]);\n" % \
(regtype, regid))
elif (regid in {"x", "y"}):
f.write(" tcg_gen_mov_tl(%s%sV, hex_gpr[%s%sN]);\n" % \
(regtype,regid,regtype,regid))
elif (regid not in {"s", "t", "u", "v"}):
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid == "x"):
f.write(" tcg_gen_mov_tl(%s%sV, hex_pred[%s%sN]);\n" % \
(regtype, regid, regtype, regid))
elif (regid not in {"s", "t", "u", "v"}):
print("Bad register parse: ", regtype, regid)
elif (regtype == "C"):
if (regid == "ss"):
f.write(" gen_read_ctrl_reg_pair(ctx, %s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
elif (regid == "s"):
f.write(" gen_read_ctrl_reg(ctx, %s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "M"):
if (regid != "u"):
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_src_read_new(f,regtype,regid):
if (regtype == "N"):
if (regid not in {"s", "t"}):
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid not in {"t", "u", "v"}):
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_src_read_opn(f,regtype,regid,tag):
if (hex_common.is_pair(regid)):
genptr_src_read(f,regtype,regid)
elif (hex_common.is_single(regid)):
if hex_common.is_old_val(regtype, regid, tag):
genptr_src_read(f,regtype,regid)
elif hex_common.is_new_val(regtype, regid, tag):
genptr_src_read_new(f,regtype,regid)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
def gen_helper_call_opn(f, tag, regtype, regid, toss, numregs, i):
if (i > 0): f.write(", ")
if (hex_common.is_pair(regid)):
f.write("%s%sV" % (regtype,regid))
elif (hex_common.is_single(regid)):
if hex_common.is_old_val(regtype, regid, tag):
f.write("%s%sV" % (regtype,regid))
elif hex_common.is_new_val(regtype, regid, tag):
f.write("%s%sN" % (regtype,regid))
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
def gen_helper_decl_imm(f,immlett):
f.write(" TCGv tcgv_%s = tcg_const_tl(%s);\n" % \
(hex_common.imm_name(immlett), hex_common.imm_name(immlett)))
def gen_helper_call_imm(f,immlett):
f.write(", tcgv_%s" % hex_common.imm_name(immlett))
def gen_helper_free_imm(f,immlett):
f.write(" tcg_temp_free(tcgv_%s);\n" % hex_common.imm_name(immlett))
def genptr_dst_write_pair(f, tag, regtype, regid):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" gen_log_predicated_reg_write_pair(%s%sN, %s%sV, insn->slot);\n" % \
(regtype, regid, regtype, regid))
else:
f.write(" gen_log_reg_write_pair(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
f.write(" ctx_log_reg_write_pair(ctx, %s%sN);\n" % \
(regtype, regid))
def genptr_dst_write(f, tag, regtype, regid):
if (regtype == "R"):
if (regid in {"dd", "xx", "yy"}):
genptr_dst_write_pair(f, tag, regtype, regid)
elif (regid in {"d", "e", "x", "y"}):
if ('A_CONDEXEC' in hex_common.attribdict[tag]):
f.write(" gen_log_predicated_reg_write(%s%sN, %s%sV,\n" % \
(regtype, regid, regtype, regid))
f.write(" insn->slot);\n")
else:
f.write(" gen_log_reg_write(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
f.write(" ctx_log_reg_write(ctx, %s%sN);\n" % \
(regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "P"):
if (regid in {"d", "e", "x"}):
f.write(" gen_log_pred_write(%s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
f.write(" ctx_log_pred_write(ctx, %s%sN);\n" % \
(regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
elif (regtype == "C"):
if (regid == "dd"):
f.write(" gen_write_ctrl_reg_pair(ctx, %s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
elif (regid == "d"):
f.write(" gen_write_ctrl_reg(ctx, %s%sN, %s%sV);\n" % \
(regtype, regid, regtype, regid))
else:
print("Bad register parse: ", regtype, regid)
else:
print("Bad register parse: ", regtype, regid)
def genptr_dst_write_opn(f,regtype, regid, tag):
if (hex_common.is_pair(regid)):
genptr_dst_write(f, tag, regtype, regid)
elif (hex_common.is_single(regid)):
genptr_dst_write(f, tag, regtype, regid)
else:
print("Bad register parse: ",regtype,regid,toss,numregs)
##
## Generate the TCG code to call the helper
## For A2_add: Rd32=add(Rs32,Rt32), { RdV=RsV+RtV;}
## We produce:
## static void generate_A2_add()
## CPUHexagonState *env
## DisasContext *ctx,
## Insn *insn,
## Packet *pkt)
## {
## TCGv RdV = tcg_temp_local_new();
## const int RdN = insn->regno[0];
## TCGv RsV = hex_gpr[insn->regno[1]];
## TCGv RtV = hex_gpr[insn->regno[2]];
## <GEN>
## gen_log_reg_write(RdN, RdV);
## ctx_log_reg_write(ctx, RdN);
## tcg_temp_free(RdV);
## }
##
## where <GEN> depends on hex_common.skip_qemu_helper(tag)
## if hex_common.skip_qemu_helper(tag) is True
## <GEN> is fGEN_TCG_A2_add({ RdV=RsV+RtV;});
## if hex_common.skip_qemu_helper(tag) is False
## <GEN> is gen_helper_A2_add(RdV, cpu_env, RsV, RtV);
##
def gen_tcg_func(f, tag, regs, imms):
f.write("static void generate_%s(\n" %tag)
f.write(" CPUHexagonState *env,\n")
f.write(" DisasContext *ctx,\n")
f.write(" Insn *insn,\n")
f.write(" Packet *pkt)\n")
f.write('{\n')
if hex_common.need_ea(tag): gen_decl_ea_tcg(f, tag)
i=0
## Declare all the operands (regs and immediates)
for regtype,regid,toss,numregs in regs:
genptr_decl_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
for immlett,bits,immshift in imms:
genptr_decl_imm(f,immlett)
if 'A_PRIV' in hex_common.attribdict[tag]:
f.write(' fCHECKFORPRIV();\n')
if 'A_GUEST' in hex_common.attribdict[tag]:
f.write(' fCHECKFORGUEST();\n')
## Read all the inputs
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):
genptr_src_read_opn(f,regtype,regid,tag)
if ( hex_common.skip_qemu_helper(tag) ):
f.write(" fGEN_TCG_%s(%s);\n" % (tag, hex_common.semdict[tag]))
else:
## Generate the call to the helper
for immlett,bits,immshift in imms:
gen_helper_decl_imm(f,immlett)
if hex_common.need_part1(tag):
f.write(" TCGv part1 = tcg_const_tl(insn->part1);\n")
if hex_common.need_slot(tag):
f.write(" TCGv slot = tcg_const_tl(insn->slot);\n")
f.write(" gen_helper_%s(" % (tag))
i=0
## If there is a scalar result, it is the return type
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
gen_helper_call_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
if (i > 0): f.write(", ")
f.write("cpu_env")
i=1
for regtype,regid,toss,numregs in regs:
if (hex_common.is_read(regid)):
gen_helper_call_opn(f, tag, regtype, regid, toss, numregs, i)
i += 1
for immlett,bits,immshift in imms:
gen_helper_call_imm(f,immlett)
if hex_common.need_slot(tag): f.write(", slot")
if hex_common.need_part1(tag): f.write(", part1" )
f.write(");\n")
if hex_common.need_slot(tag):
f.write(" tcg_temp_free(slot);\n")
if hex_common.need_part1(tag):
f.write(" tcg_temp_free(part1);\n")
for immlett,bits,immshift in imms:
gen_helper_free_imm(f,immlett)
## Write all the outputs
for regtype,regid,toss,numregs in regs:
if (hex_common.is_written(regid)):
genptr_dst_write_opn(f,regtype, regid, tag)
## Free all the operands (regs and immediates)
if hex_common.need_ea(tag): gen_free_ea_tcg(f)
for regtype,regid,toss,numregs in regs:
genptr_free_opn(f,regtype,regid,i,tag)
i += 1
f.write("}\n\n")
def gen_def_tcg_func(f, tag, tagregs, tagimms):
regs = tagregs[tag]
imms = tagimms[tag]
gen_tcg_func(f, tag, regs, imms)
def main():
hex_common.read_semantics_file(sys.argv[1])
hex_common.read_attribs_file(sys.argv[2])
hex_common.read_overrides_file(sys.argv[3])
hex_common.calculate_attribs()
tagregs = hex_common.get_tagregs()
tagimms = hex_common.get_tagimms()
with open(sys.argv[4], 'w') as f:
f.write("#ifndef HEXAGON_TCG_FUNCS_H\n")
f.write("#define HEXAGON_TCG_FUNCS_H\n\n")
for tag in hex_common.tags:
## Skip the priv instructions
if ( "A_PRIV" in hex_common.attribdict[tag] ) :
continue
## Skip the guest instructions
if ( "A_GUEST" in hex_common.attribdict[tag] ) :
continue
## Skip the diag instructions
if ( tag == "Y6_diag" ) :
continue
if ( tag == "Y6_diag0" ) :
continue
if ( tag == "Y6_diag1" ) :
continue
gen_def_tcg_func(f, tag, tagregs, tagimms)
f.write("#endif /* HEXAGON_TCG_FUNCS_H */\n")
if __name__ == "__main__":
main()

331
target/hexagon/genptr.c Normal file
View File

@ -0,0 +1,331 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define QEMU_GENERATE
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internal.h"
#include "tcg/tcg-op.h"
#include "insn.h"
#include "opcodes.h"
#include "translate.h"
#include "macros.h"
#include "gen_tcg.h"
static inline TCGv gen_read_preg(TCGv pred, uint8_t num)
{
tcg_gen_mov_tl(pred, hex_pred[num]);
return pred;
}
static inline void gen_log_predicated_reg_write(int rnum, TCGv val, int slot)
{
TCGv one = tcg_const_tl(1);
TCGv zero = tcg_const_tl(0);
TCGv slot_mask = tcg_temp_new();
tcg_gen_andi_tl(slot_mask, hex_slot_cancelled, 1 << slot);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_new_value[rnum], slot_mask, zero,
val, hex_new_value[rnum]);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_movcond_tl(TCG_COND_EQ, hex_reg_written[rnum], slot_mask, zero,
one, hex_reg_written[rnum]);
#endif
tcg_temp_free(one);
tcg_temp_free(zero);
tcg_temp_free(slot_mask);
}
static inline void gen_log_reg_write(int rnum, TCGv val)
{
tcg_gen_mov_tl(hex_new_value[rnum], val);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_movi_tl(hex_reg_written[rnum], 1);
#endif
}
static void gen_log_predicated_reg_write_pair(int rnum, TCGv_i64 val, int slot)
{
TCGv val32 = tcg_temp_new();
TCGv one = tcg_const_tl(1);
TCGv zero = tcg_const_tl(0);
TCGv slot_mask = tcg_temp_new();
tcg_gen_andi_tl(slot_mask, hex_slot_cancelled, 1 << slot);
/* Low word */
tcg_gen_extrl_i64_i32(val32, val);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_new_value[rnum], slot_mask, zero,
val32, hex_new_value[rnum]);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_movcond_tl(TCG_COND_EQ, hex_reg_written[rnum],
slot_mask, zero,
one, hex_reg_written[rnum]);
#endif
/* High word */
tcg_gen_extrh_i64_i32(val32, val);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_new_value[rnum + 1],
slot_mask, zero,
val32, hex_new_value[rnum + 1]);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_movcond_tl(TCG_COND_EQ, hex_reg_written[rnum + 1],
slot_mask, zero,
one, hex_reg_written[rnum + 1]);
#endif
tcg_temp_free(val32);
tcg_temp_free(one);
tcg_temp_free(zero);
tcg_temp_free(slot_mask);
}
static void gen_log_reg_write_pair(int rnum, TCGv_i64 val)
{
/* Low word */
tcg_gen_extrl_i64_i32(hex_new_value[rnum], val);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_movi_tl(hex_reg_written[rnum], 1);
#endif
/* High word */
tcg_gen_extrh_i64_i32(hex_new_value[rnum + 1], val);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_movi_tl(hex_reg_written[rnum + 1], 1);
#endif
}
static inline void gen_log_pred_write(int pnum, TCGv val)
{
TCGv zero = tcg_const_tl(0);
TCGv base_val = tcg_temp_new();
TCGv and_val = tcg_temp_new();
TCGv pred_written = tcg_temp_new();
/* Multiple writes to the same preg are and'ed together */
tcg_gen_andi_tl(base_val, val, 0xff);
tcg_gen_and_tl(and_val, base_val, hex_new_pred_value[pnum]);
tcg_gen_andi_tl(pred_written, hex_pred_written, 1 << pnum);
tcg_gen_movcond_tl(TCG_COND_NE, hex_new_pred_value[pnum],
pred_written, zero,
and_val, base_val);
tcg_gen_ori_tl(hex_pred_written, hex_pred_written, 1 << pnum);
tcg_temp_free(zero);
tcg_temp_free(base_val);
tcg_temp_free(and_val);
tcg_temp_free(pred_written);
}
static inline void gen_read_p3_0(TCGv control_reg)
{
tcg_gen_movi_tl(control_reg, 0);
for (int i = 0; i < NUM_PREGS; i++) {
tcg_gen_deposit_tl(control_reg, control_reg, hex_pred[i], i * 8, 8);
}
}
/*
* Certain control registers require special handling on read
* HEX_REG_P3_0 aliased to the predicate registers
* -> concat the 4 predicate registers together
* HEX_REG_PC actual value stored in DisasContext
* -> assign from ctx->base.pc_next
* HEX_REG_QEMU_*_CNT changes in current TB in DisasContext
* -> add current TB changes to existing reg value
*/
static inline void gen_read_ctrl_reg(DisasContext *ctx, const int reg_num,
TCGv dest)
{
if (reg_num == HEX_REG_P3_0) {
gen_read_p3_0(dest);
} else if (reg_num == HEX_REG_PC) {
tcg_gen_movi_tl(dest, ctx->base.pc_next);
} else if (reg_num == HEX_REG_QEMU_PKT_CNT) {
tcg_gen_addi_tl(dest, hex_gpr[HEX_REG_QEMU_PKT_CNT],
ctx->num_packets);
} else if (reg_num == HEX_REG_QEMU_INSN_CNT) {
tcg_gen_addi_tl(dest, hex_gpr[HEX_REG_QEMU_INSN_CNT],
ctx->num_insns);
} else {
tcg_gen_mov_tl(dest, hex_gpr[reg_num]);
}
}
static inline void gen_read_ctrl_reg_pair(DisasContext *ctx, const int reg_num,
TCGv_i64 dest)
{
if (reg_num == HEX_REG_P3_0) {
TCGv p3_0 = tcg_temp_new();
gen_read_p3_0(p3_0);
tcg_gen_concat_i32_i64(dest, p3_0, hex_gpr[reg_num + 1]);
tcg_temp_free(p3_0);
} else if (reg_num == HEX_REG_PC - 1) {
TCGv pc = tcg_const_tl(ctx->base.pc_next);
tcg_gen_concat_i32_i64(dest, hex_gpr[reg_num], pc);
tcg_temp_free(pc);
} else if (reg_num == HEX_REG_QEMU_PKT_CNT) {
TCGv pkt_cnt = tcg_temp_new();
TCGv insn_cnt = tcg_temp_new();
tcg_gen_addi_tl(pkt_cnt, hex_gpr[HEX_REG_QEMU_PKT_CNT],
ctx->num_packets);
tcg_gen_addi_tl(insn_cnt, hex_gpr[HEX_REG_QEMU_INSN_CNT],
ctx->num_insns);
tcg_gen_concat_i32_i64(dest, pkt_cnt, insn_cnt);
tcg_temp_free(pkt_cnt);
tcg_temp_free(insn_cnt);
} else {
tcg_gen_concat_i32_i64(dest,
hex_gpr[reg_num],
hex_gpr[reg_num + 1]);
}
}
static inline void gen_write_p3_0(TCGv control_reg)
{
for (int i = 0; i < NUM_PREGS; i++) {
tcg_gen_extract_tl(hex_pred[i], control_reg, i * 8, 8);
}
}
/*
* Certain control registers require special handling on write
* HEX_REG_P3_0 aliased to the predicate registers
* -> break the value across 4 predicate registers
* HEX_REG_QEMU_*_CNT changes in current TB in DisasContext
* -> clear the changes
*/
static inline void gen_write_ctrl_reg(DisasContext *ctx, int reg_num,
TCGv val)
{
if (reg_num == HEX_REG_P3_0) {
gen_write_p3_0(val);
} else {
gen_log_reg_write(reg_num, val);
ctx_log_reg_write(ctx, reg_num);
if (reg_num == HEX_REG_QEMU_PKT_CNT) {
ctx->num_packets = 0;
}
if (reg_num == HEX_REG_QEMU_INSN_CNT) {
ctx->num_insns = 0;
}
}
}
static inline void gen_write_ctrl_reg_pair(DisasContext *ctx, int reg_num,
TCGv_i64 val)
{
if (reg_num == HEX_REG_P3_0) {
TCGv val32 = tcg_temp_new();
tcg_gen_extrl_i64_i32(val32, val);
gen_write_p3_0(val32);
tcg_gen_extrh_i64_i32(val32, val);
gen_log_reg_write(reg_num + 1, val32);
tcg_temp_free(val32);
ctx_log_reg_write(ctx, reg_num + 1);
} else {
gen_log_reg_write_pair(reg_num, val);
ctx_log_reg_write_pair(ctx, reg_num);
if (reg_num == HEX_REG_QEMU_PKT_CNT) {
ctx->num_packets = 0;
ctx->num_insns = 0;
}
}
}
static inline void gen_load_locked4u(TCGv dest, TCGv vaddr, int mem_index)
{
tcg_gen_qemu_ld32u(dest, vaddr, mem_index);
tcg_gen_mov_tl(hex_llsc_addr, vaddr);
tcg_gen_mov_tl(hex_llsc_val, dest);
}
static inline void gen_load_locked8u(TCGv_i64 dest, TCGv vaddr, int mem_index)
{
tcg_gen_qemu_ld64(dest, vaddr, mem_index);
tcg_gen_mov_tl(hex_llsc_addr, vaddr);
tcg_gen_mov_i64(hex_llsc_val_i64, dest);
}
static inline void gen_store_conditional4(CPUHexagonState *env,
DisasContext *ctx, int prednum,
TCGv pred, TCGv vaddr, TCGv src)
{
TCGLabel *fail = gen_new_label();
TCGLabel *done = gen_new_label();
TCGv one, zero, tmp;
tcg_gen_brcond_tl(TCG_COND_NE, vaddr, hex_llsc_addr, fail);
one = tcg_const_tl(0xff);
zero = tcg_const_tl(0);
tmp = tcg_temp_new();
tcg_gen_atomic_cmpxchg_tl(tmp, hex_llsc_addr, hex_llsc_val, src,
ctx->mem_idx, MO_32);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_pred[prednum], tmp, hex_llsc_val,
one, zero);
tcg_temp_free(one);
tcg_temp_free(zero);
tcg_temp_free(tmp);
tcg_gen_br(done);
gen_set_label(fail);
tcg_gen_movi_tl(pred, 0);
gen_set_label(done);
tcg_gen_movi_tl(hex_llsc_addr, ~0);
}
static inline void gen_store_conditional8(CPUHexagonState *env,
DisasContext *ctx, int prednum,
TCGv pred, TCGv vaddr, TCGv_i64 src)
{
TCGLabel *fail = gen_new_label();
TCGLabel *done = gen_new_label();
TCGv_i64 one, zero, tmp;
tcg_gen_brcond_tl(TCG_COND_NE, vaddr, hex_llsc_addr, fail);
one = tcg_const_i64(0xff);
zero = tcg_const_i64(0);
tmp = tcg_temp_new_i64();
tcg_gen_atomic_cmpxchg_i64(tmp, hex_llsc_addr, hex_llsc_val_i64, src,
ctx->mem_idx, MO_64);
tcg_gen_movcond_i64(TCG_COND_EQ, tmp, tmp, hex_llsc_val_i64,
one, zero);
tcg_gen_extrl_i64_i32(hex_pred[prednum], tmp);
tcg_temp_free_i64(one);
tcg_temp_free_i64(zero);
tcg_temp_free_i64(tmp);
tcg_gen_br(done);
gen_set_label(fail);
tcg_gen_movi_tl(pred, 0);
gen_set_label(done);
tcg_gen_movi_tl(hex_llsc_addr, ~0);
}
#include "tcg_funcs_generated.c.inc"
#include "tcg_func_table_generated.c.inc"

25
target/hexagon/genptr.h Normal file
View File

@ -0,0 +1,25 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_GENPTR_H
#define HEXAGON_GENPTR_H
#include "insn.h"
extern const SemanticInsn opcode_genptr[];
#endif

88
target/hexagon/helper.h Normal file
View File

@ -0,0 +1,88 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "internal.h"
#include "helper_protos_generated.h.inc"
DEF_HELPER_FLAGS_2(raise_exception, TCG_CALL_NO_RETURN, noreturn, env, i32)
#if HEX_DEBUG
DEF_HELPER_1(debug_start_packet, void, env)
DEF_HELPER_FLAGS_3(debug_check_store_width, TCG_CALL_NO_WG, void, env, int, int)
DEF_HELPER_FLAGS_3(debug_commit_end, TCG_CALL_NO_WG, void, env, int, int)
#endif
DEF_HELPER_2(commit_store, void, env, int)
DEF_HELPER_FLAGS_4(fcircadd, TCG_CALL_NO_RWG_SE, s32, s32, s32, s32, s32)
/* Floating point */
DEF_HELPER_2(conv_sf2df, f64, env, f32)
DEF_HELPER_2(conv_df2sf, f32, env, f64)
DEF_HELPER_2(conv_uw2sf, f32, env, s32)
DEF_HELPER_2(conv_uw2df, f64, env, s32)
DEF_HELPER_2(conv_w2sf, f32, env, s32)
DEF_HELPER_2(conv_w2df, f64, env, s32)
DEF_HELPER_2(conv_ud2sf, f32, env, s64)
DEF_HELPER_2(conv_ud2df, f64, env, s64)
DEF_HELPER_2(conv_d2sf, f32, env, s64)
DEF_HELPER_2(conv_d2df, f64, env, s64)
DEF_HELPER_2(conv_sf2uw, s32, env, f32)
DEF_HELPER_2(conv_sf2w, s32, env, f32)
DEF_HELPER_2(conv_sf2ud, s64, env, f32)
DEF_HELPER_2(conv_sf2d, s64, env, f32)
DEF_HELPER_2(conv_df2uw, s32, env, f64)
DEF_HELPER_2(conv_df2w, s32, env, f64)
DEF_HELPER_2(conv_df2ud, s64, env, f64)
DEF_HELPER_2(conv_df2d, s64, env, f64)
DEF_HELPER_2(conv_sf2uw_chop, s32, env, f32)
DEF_HELPER_2(conv_sf2w_chop, s32, env, f32)
DEF_HELPER_2(conv_sf2ud_chop, s64, env, f32)
DEF_HELPER_2(conv_sf2d_chop, s64, env, f32)
DEF_HELPER_2(conv_df2uw_chop, s32, env, f64)
DEF_HELPER_2(conv_df2w_chop, s32, env, f64)
DEF_HELPER_2(conv_df2ud_chop, s64, env, f64)
DEF_HELPER_2(conv_df2d_chop, s64, env, f64)
DEF_HELPER_3(sfadd, f32, env, f32, f32)
DEF_HELPER_3(sfsub, f32, env, f32, f32)
DEF_HELPER_3(sfcmpeq, s32, env, f32, f32)
DEF_HELPER_3(sfcmpgt, s32, env, f32, f32)
DEF_HELPER_3(sfcmpge, s32, env, f32, f32)
DEF_HELPER_3(sfcmpuo, s32, env, f32, f32)
DEF_HELPER_3(sfmax, f32, env, f32, f32)
DEF_HELPER_3(sfmin, f32, env, f32, f32)
DEF_HELPER_3(sfclass, s32, env, f32, s32)
DEF_HELPER_3(sffixupn, f32, env, f32, f32)
DEF_HELPER_3(sffixupd, f32, env, f32, f32)
DEF_HELPER_2(sffixupr, f32, env, f32)
DEF_HELPER_3(dfadd, f64, env, f64, f64)
DEF_HELPER_3(dfsub, f64, env, f64, f64)
DEF_HELPER_3(dfmax, f64, env, f64, f64)
DEF_HELPER_3(dfmin, f64, env, f64, f64)
DEF_HELPER_3(dfcmpeq, s32, env, f64, f64)
DEF_HELPER_3(dfcmpgt, s32, env, f64, f64)
DEF_HELPER_3(dfcmpge, s32, env, f64, f64)
DEF_HELPER_3(dfcmpuo, s32, env, f64, f64)
DEF_HELPER_3(dfclass, s32, env, f64, s32)
DEF_HELPER_3(sfmpy, f32, env, f32, f32)
DEF_HELPER_4(sffma, f32, env, f32, f32, f32)
DEF_HELPER_5(sffma_sc, f32, env, f32, f32, f32, f32)
DEF_HELPER_4(sffms, f32, env, f32, f32, f32)
DEF_HELPER_4(sffma_lib, f32, env, f32, f32, f32)
DEF_HELPER_4(sffms_lib, f32, env, f32, f32, f32)
DEF_HELPER_3(dfmpyfix, f64, env, f64, f64)
DEF_HELPER_4(dfmpyhh, f64, env, f64, f64, f64)

View File

@ -0,0 +1,38 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_ARCH_TYPES_H
#define HEXAGON_ARCH_TYPES_H
#include "qemu/osdep.h"
#include "qemu/int128.h"
/*
* These types are used by the code imported from the Hexagon
* architecture library.
*/
typedef uint8_t size1u_t;
typedef int8_t size1s_t;
typedef uint16_t size2u_t;
typedef int16_t size2s_t;
typedef uint32_t size4u_t;
typedef int32_t size4s_t;
typedef uint64_t size8u_t;
typedef int64_t size8s_t;
typedef Int128 size16s_t;
#endif

234
target/hexagon/hex_common.py Executable file
View File

@ -0,0 +1,234 @@
#!/usr/bin/env python3
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sys
import re
import string
behdict = {} # tag ->behavior
semdict = {} # tag -> semantics
attribdict = {} # tag -> attributes
macros = {} # macro -> macro information...
attribinfo = {} # Register information and misc
tags = [] # list of all tags
overrides = {} # tags with helper overrides
# We should do this as a hash for performance,
# but to keep order let's keep it as a list.
def uniquify(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if x not in seen and not seen_add(x)]
regre = re.compile(
r"((?<!DUP)[MNORCPQXSGVZA])([stuvwxyzdefg]+)([.]?[LlHh]?)(\d+S?)")
immre = re.compile(r"[#]([rRsSuUm])(\d+)(?:[:](\d+))?")
reg_or_immre = \
re.compile(r"(((?<!DUP)[MNRCOPQXSGVZA])([stuvwxyzdefg]+)" + \
"([.]?[LlHh]?)(\d+S?))|([#]([rRsSuUm])(\d+)[:]?(\d+)?)")
relimmre = re.compile(r"[#]([rR])(\d+)(?:[:](\d+))?")
absimmre = re.compile(r"[#]([sSuUm])(\d+)(?:[:](\d+))?")
finished_macros = set()
def expand_macro_attribs(macro,allmac_re):
if macro.key not in finished_macros:
# Get a list of all things that might be macros
l = allmac_re.findall(macro.beh)
for submacro in l:
if not submacro: continue
if not macros[submacro]:
raise Exception("Couldn't find macro: <%s>" % l)
macro.attribs |= expand_macro_attribs(
macros[submacro], allmac_re)
finished_macros.add(macro.key)
return macro.attribs
# When qemu needs an attribute that isn't in the imported files,
# we'll add it here.
def add_qemu_macro_attrib(name, attrib):
macros[name].attribs.add(attrib)
immextre = re.compile(r'f(MUST_)?IMMEXT[(]([UuSsRr])')
def calculate_attribs():
add_qemu_macro_attrib('fREAD_PC', 'A_IMPLICIT_READS_PC')
add_qemu_macro_attrib('fTRAP', 'A_IMPLICIT_READS_PC')
add_qemu_macro_attrib('fWRITE_P0', 'A_WRITES_PRED_REG')
add_qemu_macro_attrib('fWRITE_P1', 'A_WRITES_PRED_REG')
add_qemu_macro_attrib('fWRITE_P2', 'A_WRITES_PRED_REG')
add_qemu_macro_attrib('fWRITE_P3', 'A_WRITES_PRED_REG')
# Recurse down macros, find attributes from sub-macros
macroValues = list(macros.values())
allmacros_restr = "|".join(set([ m.re.pattern for m in macroValues ]))
allmacros_re = re.compile(allmacros_restr)
for macro in macroValues:
expand_macro_attribs(macro,allmacros_re)
# Append attributes to all instructions
for tag in tags:
for macname in allmacros_re.findall(semdict[tag]):
if not macname: continue
macro = macros[macname]
attribdict[tag] |= set(macro.attribs)
# Figure out which instructions write predicate registers
tagregs = get_tagregs()
for tag in tags:
regs = tagregs[tag]
for regtype, regid, toss, numregs in regs:
if regtype == "P" and is_written(regid):
attribdict[tag].add('A_WRITES_PRED_REG')
def SEMANTICS(tag, beh, sem):
#print tag,beh,sem
behdict[tag] = beh
semdict[tag] = sem
attribdict[tag] = set()
tags.append(tag) # dicts have no order, this is for order
def ATTRIBUTES(tag, attribstring):
attribstring = \
attribstring.replace("ATTRIBS","").replace("(","").replace(")","")
if not attribstring:
return
attribs = attribstring.split(",")
for attrib in attribs:
attribdict[tag].add(attrib.strip())
class Macro(object):
__slots__ = ['key','name', 'beh', 'attribs', 're']
def __init__(self, name, beh, attribs):
self.key = name
self.name = name
self.beh = beh
self.attribs = set(attribs)
self.re = re.compile("\\b" + name + "\\b")
def MACROATTRIB(macname,beh,attribstring):
attribstring = attribstring.replace("(","").replace(")","")
if attribstring:
attribs = attribstring.split(",")
else:
attribs = []
macros[macname] = Macro(macname,beh,attribs)
def compute_tag_regs(tag):
return uniquify(regre.findall(behdict[tag]))
def compute_tag_immediates(tag):
return uniquify(immre.findall(behdict[tag]))
##
## tagregs is the main data structure we'll use
## tagregs[tag] will contain the registers used by an instruction
## Within each entry, we'll use the regtype and regid fields
## regtype can be one of the following
## C control register
## N new register value
## P predicate register
## R GPR register
## M modifier register
## regid can be one of the following
## d, e destination register
## dd destination register pair
## s, t, u, v, w source register
## ss, tt, uu, vv source register pair
## x, y read-write register
## xx, yy read-write register pair
##
def get_tagregs():
return dict(zip(tags, list(map(compute_tag_regs, tags))))
def get_tagimms():
return dict(zip(tags, list(map(compute_tag_immediates, tags))))
def is_pair(regid):
return len(regid) == 2
def is_single(regid):
return len(regid) == 1
def is_written(regid):
return regid[0] in "dexy"
def is_writeonly(regid):
return regid[0] in "de"
def is_read(regid):
return regid[0] in "stuvwxy"
def is_readwrite(regid):
return regid[0] in "xy"
def is_scalar_reg(regtype):
return regtype in "RPC"
def is_old_val(regtype, regid, tag):
return regtype+regid+'V' in semdict[tag]
def is_new_val(regtype, regid, tag):
return regtype+regid+'N' in semdict[tag]
def need_slot(tag):
if ('A_CONDEXEC' in attribdict[tag] or
'A_STORE' in attribdict[tag] or
'A_LOAD' in attribdict[tag]):
return 1
else:
return 0
def need_part1(tag):
return re.compile(r"fPART1").search(semdict[tag])
def need_ea(tag):
return re.compile(r"\bEA\b").search(semdict[tag])
def skip_qemu_helper(tag):
return tag in overrides.keys()
def imm_name(immlett):
return "%siV" % immlett
def read_semantics_file(name):
eval_line = ""
for line in open(name, 'rt').readlines():
if not line.startswith("#"):
eval_line += line
if line.endswith("\\\n"):
eval_line.rstrip("\\\n")
else:
eval(eval_line.strip())
eval_line = ""
def read_attribs_file(name):
attribre = re.compile(r'DEF_ATTRIB\(([A-Za-z0-9_]+), ([^,]*), ' +
r'"([A-Za-z0-9_\.]*)", "([A-Za-z0-9_\.]*)"\)')
for line in open(name, 'rt').readlines():
if not attribre.match(line):
continue
(attrib_base,descr,rreg,wreg) = attribre.findall(line)[0]
attrib_base = 'A_' + attrib_base
attribinfo[attrib_base] = {'rreg':rreg, 'wreg':wreg, 'descr':descr}
def read_overrides_file(name):
overridere = re.compile("#define fGEN_TCG_([A-Za-z0-9_]+)\(.*")
for line in open(name, 'rt').readlines():
if not overridere.match(line):
continue
tag = overridere.findall(line)[0]
overrides[tag] = True

83
target/hexagon/hex_regs.h Normal file
View File

@ -0,0 +1,83 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_REGS_H
#define HEXAGON_REGS_H
enum {
HEX_REG_R00 = 0,
HEX_REG_R01 = 1,
HEX_REG_R02 = 2,
HEX_REG_R03 = 3,
HEX_REG_R04 = 4,
HEX_REG_R05 = 5,
HEX_REG_R06 = 6,
HEX_REG_R07 = 7,
HEX_REG_R08 = 8,
HEX_REG_R09 = 9,
HEX_REG_R10 = 10,
HEX_REG_R11 = 11,
HEX_REG_R12 = 12,
HEX_REG_R13 = 13,
HEX_REG_R14 = 14,
HEX_REG_R15 = 15,
HEX_REG_R16 = 16,
HEX_REG_R17 = 17,
HEX_REG_R18 = 18,
HEX_REG_R19 = 19,
HEX_REG_R20 = 20,
HEX_REG_R21 = 21,
HEX_REG_R22 = 22,
HEX_REG_R23 = 23,
HEX_REG_R24 = 24,
HEX_REG_R25 = 25,
HEX_REG_R26 = 26,
HEX_REG_R27 = 27,
HEX_REG_R28 = 28,
HEX_REG_R29 = 29,
HEX_REG_SP = 29,
HEX_REG_FP = 30,
HEX_REG_R30 = 30,
HEX_REG_LR = 31,
HEX_REG_R31 = 31,
HEX_REG_SA0 = 32,
HEX_REG_LC0 = 33,
HEX_REG_SA1 = 34,
HEX_REG_LC1 = 35,
HEX_REG_P3_0 = 36,
HEX_REG_M0 = 38,
HEX_REG_M1 = 39,
HEX_REG_USR = 40,
HEX_REG_PC = 41,
HEX_REG_UGP = 42,
HEX_REG_GP = 43,
HEX_REG_CS0 = 44,
HEX_REG_CS1 = 45,
HEX_REG_UPCYCLELO = 46,
HEX_REG_UPCYCLEHI = 47,
HEX_REG_FRAMELIMIT = 48,
HEX_REG_FRAMEKEY = 49,
HEX_REG_PKTCNTLO = 50,
HEX_REG_PKTCNTHI = 51,
/* Use reserved control registers for qemu execution counts */
HEX_REG_QEMU_PKT_CNT = 52,
HEX_REG_QEMU_INSN_CNT = 53,
HEX_REG_UTIMERLO = 62,
HEX_REG_UTIMERHI = 63,
};
#endif

73
target/hexagon/iclass.c Normal file
View File

@ -0,0 +1,73 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "iclass.h"
static const SlotMask iclass_info[] = {
#define DEF_PP_ICLASS32(TYPE, SLOTS, UNITS) \
[ICLASS_FROM_TYPE(TYPE)] = SLOTS_##SLOTS,
#define DEF_EE_ICLASS32(TYPE, SLOTS, UNITS) \
[ICLASS_FROM_TYPE(TYPE)] = SLOTS_##SLOTS,
#include "imported/iclass.def"
#undef DEF_PP_ICLASS32
#undef DEF_EE_ICLASS32
};
SlotMask find_iclass_slots(Opcode opcode, int itype)
{
/* There are some exceptions to what the iclass dictates */
if (GET_ATTRIB(opcode, A_ICOP)) {
return SLOTS_2;
} else if (GET_ATTRIB(opcode, A_RESTRICT_SLOT0ONLY)) {
return SLOTS_0;
} else if (GET_ATTRIB(opcode, A_RESTRICT_SLOT1ONLY)) {
return SLOTS_1;
} else if (GET_ATTRIB(opcode, A_RESTRICT_SLOT2ONLY)) {
return SLOTS_2;
} else if (GET_ATTRIB(opcode, A_RESTRICT_SLOT3ONLY)) {
return SLOTS_3;
} else if (GET_ATTRIB(opcode, A_COF) &&
GET_ATTRIB(opcode, A_INDIRECT) &&
!GET_ATTRIB(opcode, A_MEMLIKE) &&
!GET_ATTRIB(opcode, A_MEMLIKE_PACKET_RULES)) {
return SLOTS_2;
} else if (GET_ATTRIB(opcode, A_RESTRICT_NOSLOT1)) {
return SLOTS_0;
} else if ((opcode == J2_trap0) ||
(opcode == Y2_isync) ||
(opcode == J2_pause) || (opcode == J4_hintjumpr)) {
return SLOTS_2;
} else if ((itype == ICLASS_V2LDST) && (GET_ATTRIB(opcode, A_STORE))) {
return SLOTS_01;
} else if ((itype == ICLASS_V2LDST) && (!GET_ATTRIB(opcode, A_STORE))) {
return SLOTS_01;
} else if (GET_ATTRIB(opcode, A_CRSLOT23)) {
return SLOTS_23;
} else if (GET_ATTRIB(opcode, A_RESTRICT_PREFERSLOT0)) {
return SLOTS_0;
} else if (GET_ATTRIB(opcode, A_SUBINSN)) {
return SLOTS_01;
} else if (GET_ATTRIB(opcode, A_CALL)) {
return SLOTS_23;
} else if ((opcode == J4_jumpseti) || (opcode == J4_jumpsetr)) {
return SLOTS_23;
} else {
return iclass_info[itype];
}
}

50
target/hexagon/iclass.h Normal file
View File

@ -0,0 +1,50 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_ICLASS_H
#define HEXAGON_ICLASS_H
#include "attribs.h"
#define ICLASS_FROM_TYPE(TYPE) ICLASS_##TYPE
enum {
#define DEF_PP_ICLASS32(TYPE, SLOTS, UNITS) ICLASS_FROM_TYPE(TYPE),
#define DEF_EE_ICLASS32(TYPE, SLOTS, UNITS) ICLASS_FROM_TYPE(TYPE),
#include "imported/iclass.def"
#undef DEF_PP_ICLASS32
#undef DEF_EE_ICLASS32
ICLASS_FROM_TYPE(COPROC_VX),
ICLASS_FROM_TYPE(COPROC_VMEM),
NUM_ICLASSES
};
typedef enum {
SLOTS_0 = (1 << 0),
SLOTS_1 = (1 << 1),
SLOTS_2 = (1 << 2),
SLOTS_3 = (1 << 3),
SLOTS_01 = SLOTS_0 | SLOTS_1,
SLOTS_23 = SLOTS_2 | SLOTS_3,
SLOTS_0123 = SLOTS_0 | SLOTS_1 | SLOTS_2 | SLOTS_3,
} SlotMask;
SlotMask find_iclass_slots(Opcode opcode, int itype);
#endif

View File

@ -0,0 +1,30 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Top level instruction definition file
*/
#include "branch.idef"
#include "ldst.idef"
#include "compare.idef"
#include "mpy.idef"
#include "alu.idef"
#include "float.idef"
#include "shift.idef"
#include "system.idef"
#include "subinsns.idef"

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,326 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************/
/* Jump instructions */
/*********************************************/
#define A_JDIR A_JUMP
#define A_CJNEWDIR A_JUMP
#define A_CJOLDDIR A_JUMP
#define A_NEWVALUEJ A_JUMP,A_DOTNEWVALUE,A_MEMLIKE_PACKET_RULES
#define A_JINDIR A_JUMP,A_INDIRECT
#define A_JINDIRNEW A_JUMP,A_INDIRECT
#define A_JINDIROLD A_JUMP,A_INDIRECT
Q6INSN(J2_jump,"jump #r22:2",ATTRIBS(A_JDIR), "direct unconditional jump",
{fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);})
Q6INSN(J2_jumpr,"jumpr Rs32",ATTRIBS(A_JINDIR), "indirect unconditional jump",
{fJUMPR(RsN,RsV,COF_TYPE_JUMPR);})
#define OLDCOND_JUMP(TAG,OPER,OPER2,ATTRIB,DESCR,SEMANTICS) \
Q6INSN(TAG##t,"if (Pu4) "OPER":nt "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBOLD(PuV),,SPECULATE_NOT_TAKEN,12,0); if (fLSBOLD(PuV)) { SEMANTICS; }}) \
Q6INSN(TAG##f,"if (!Pu4) "OPER":nt "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBOLDNOT(PuV),,SPECULATE_NOT_TAKEN,12,0); if (fLSBOLDNOT(PuV)) { SEMANTICS; }}) \
Q6INSN(TAG##tpt,"if (Pu4) "OPER":t "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBOLD(PuV),,SPECULATE_TAKEN,12,0); if (fLSBOLD(PuV)) { SEMANTICS; }}) \
Q6INSN(TAG##fpt,"if (!Pu4) "OPER":t "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBOLDNOT(PuV),,SPECULATE_TAKEN,12,0); if (fLSBOLDNOT(PuV)) { SEMANTICS; }})
OLDCOND_JUMP(J2_jump,"jump","#r15:2",ATTRIBS(A_CJOLDDIR),"direct conditional jump",
fIMMEXT(riV);fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);)
OLDCOND_JUMP(J2_jumpr,"jumpr","Rs32",ATTRIBS(A_JINDIROLD),"indirect conditional jump",
fJUMPR(RsN,RsV,COF_TYPE_JUMPR);)
#define NEWCOND_JUMP(TAG,OPER,OPER2,ATTRIB,DESCR,SEMANTICS)\
Q6INSN(TAG##tnew,"if (Pu4.new) "OPER":nt "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBNEW(PuN),, SPECULATE_NOT_TAKEN , 12,0)} {if(fLSBNEW(PuN)){SEMANTICS;}})\
Q6INSN(TAG##fnew,"if (!Pu4.new) "OPER":nt "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBNEWNOT(PuN),, SPECULATE_NOT_TAKEN , 12,0)} {if(fLSBNEWNOT(PuN)){SEMANTICS;}})\
Q6INSN(TAG##tnewpt,"if (Pu4.new) "OPER":t "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBNEW(PuN),, SPECULATE_TAKEN , 12,0)} {if(fLSBNEW(PuN)){SEMANTICS;}})\
Q6INSN(TAG##fnewpt,"if (!Pu4.new) "OPER":t "OPER2,ATTRIB,DESCR,{fBRANCH_SPECULATE_STALL(fLSBNEWNOT(PuN),, SPECULATE_TAKEN , 12,0)} {if(fLSBNEWNOT(PuN)){SEMANTICS;}})
NEWCOND_JUMP(J2_jump,"jump","#r15:2",ATTRIBS(A_CJNEWDIR,A_ARCHV2),"direct conditional jump",
fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMPNEW);)
NEWCOND_JUMP(J2_jumpr,"jumpr","Rs32",ATTRIBS(A_JINDIRNEW,A_ARCHV3),"indirect conditional jump",
fJUMPR(RsN,RsV,COF_TYPE_JUMPR);)
Q6INSN(J4_hintjumpr,"hintjr(Rs32)",ATTRIBS(A_JINDIR),"hint indirect conditional jump",
{fHINTJR(RsV);})
/*********************************************/
/* Compound Compare-Jumps */
/*********************************************/
Q6INSN(J2_jumprz,"if (Rs32!=#0) jump:nt #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register true",
{fBRANCH_SPECULATE_STALL((RsV!=0), , SPECULATE_NOT_TAKEN,12,0) if (RsV != 0) { fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprnz,"if (Rs32==#0) jump:nt #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register false",
{fBRANCH_SPECULATE_STALL((RsV==0), , SPECULATE_NOT_TAKEN,12,0) if (RsV == 0) {fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprzpt,"if (Rs32!=#0) jump:t #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register true",
{fBRANCH_SPECULATE_STALL((RsV!=0), , SPECULATE_TAKEN,12,0) if (RsV != 0) { fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprnzpt,"if (Rs32==#0) jump:t #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register false",
{fBRANCH_SPECULATE_STALL((RsV==0), , SPECULATE_TAKEN,12,0) if (RsV == 0) {fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprgtez,"if (Rs32>=#0) jump:nt #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register greater or equal to zero",
{fBRANCH_SPECULATE_STALL((RsV>=0), , SPECULATE_NOT_TAKEN,12,0) if (RsV>=0) { fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprgtezpt,"if (Rs32>=#0) jump:t #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register greater or equal to zero",
{fBRANCH_SPECULATE_STALL((RsV>=0), , SPECULATE_TAKEN,12,0) if (RsV>=0) { fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprltez,"if (Rs32<=#0) jump:nt #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register less than or equal to zero",
{fBRANCH_SPECULATE_STALL((RsV<=0), , SPECULATE_NOT_TAKEN,12,0) if (RsV<=0) { fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
Q6INSN(J2_jumprltezpt,"if (Rs32<=#0) jump:t #r13:2",ATTRIBS(A_CJNEWDIR,A_ARCHV3),"direct conditional jump if register less than or equal to zero",
{fBRANCH_SPECULATE_STALL((RsV<=0), , SPECULATE_TAKEN,12,0) if (RsV<=0) { fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
/*********************************************/
/* V4 Compound Compare-Jumps */
/*********************************************/
/* V4 compound compare jumps (CJ) */
#define STD_CMPJUMP(TAG,TST,TSTSEM)\
Q6INSN(J4_##TAG##_tp0_jump_nt, "p0="TST"; if (p0.new) jump:nt #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump", {fPART1(fWRITE_P0(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW0,,SPECULATE_NOT_TAKEN,13,0) if (fLSBNEW0) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_fp0_jump_nt, "p0="TST"; if (!p0.new) jump:nt #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump",{fPART1(fWRITE_P0(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW0NOT,,SPECULATE_NOT_TAKEN,13,0) if (fLSBNEW0NOT) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_tp0_jump_t, "p0="TST"; if (p0.new) jump:t #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump", {fPART1(fWRITE_P0(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW0,,SPECULATE_TAKEN,13,0) if (fLSBNEW0) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_fp0_jump_t, "p0="TST"; if (!p0.new) jump:t #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump", {fPART1(fWRITE_P0(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW0NOT,,SPECULATE_TAKEN,13,0) if (fLSBNEW0NOT) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_tp1_jump_nt, "p1="TST"; if (p1.new) jump:nt #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump", {fPART1(fWRITE_P1(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW1,,SPECULATE_NOT_TAKEN,13,0) if (fLSBNEW1) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_fp1_jump_nt, "p1="TST"; if (!p1.new) jump:nt #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump",{fPART1(fWRITE_P1(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW1NOT,,SPECULATE_NOT_TAKEN,13,0) if (fLSBNEW1NOT) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_tp1_jump_t, "p1="TST"; if (p1.new) jump:t #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump", {fPART1(fWRITE_P1(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW1,,SPECULATE_TAKEN,13,0) if (fLSBNEW1) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_fp1_jump_t, "p1="TST"; if (!p1.new) jump:t #r9:2", ATTRIBS(A_CJNEWDIR,A_NEWCMPJUMP),"compound compare-jump", {fPART1(fWRITE_P1(f8BITSOF(TSTSEM))) fBRANCH_SPECULATE_STALL(fLSBNEW1NOT,,SPECULATE_TAKEN,13,0) if (fLSBNEW1NOT) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
STD_CMPJUMP(cmpeqi,"cmp.eq(Rs16,#U5)",(RsV==UiV))
STD_CMPJUMP(cmpgti,"cmp.gt(Rs16,#U5)",(RsV>UiV))
STD_CMPJUMP(cmpgtui,"cmp.gtu(Rs16,#U5)",(fCAST4u(RsV)>UiV))
STD_CMPJUMP(cmpeqn1,"cmp.eq(Rs16,#-1)",(RsV==-1))
STD_CMPJUMP(cmpgtn1,"cmp.gt(Rs16,#-1)",(RsV>-1))
STD_CMPJUMP(tstbit0,"tstbit(Rs16,#0)",(RsV & 1))
STD_CMPJUMP(cmpeq,"cmp.eq(Rs16,Rt16)",(RsV==RtV))
STD_CMPJUMP(cmpgt,"cmp.gt(Rs16,Rt16)",(RsV>RtV))
STD_CMPJUMP(cmpgtu,"cmp.gtu(Rs16,Rt16)",(fCAST4u(RsV)>RtV))
/* V4 jump and transfer (CJ) */
Q6INSN(J4_jumpseti,"Rd16=#U6 ; jump #r9:2",ATTRIBS(A_JDIR), "direct unconditional jump and set register to immediate",
{fIMMEXT(riV); fPCALIGN(riV); RdV=UiV; fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);})
Q6INSN(J4_jumpsetr,"Rd16=Rs16 ; jump #r9:2",ATTRIBS(A_JDIR), "direct unconditional jump and transfer register",
{fIMMEXT(riV); fPCALIGN(riV); RdV=RsV; fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);})
/* V4 new-value jumps (NCJ) */
#define STD_CMPJUMPNEWRS(TAG,TST,TSTSEM)\
Q6INSN(J4_##TAG##_jumpnv_t, "if ("TST") jump:t #r9:2", ATTRIBS(A_NEWVALUEJ),"compound compare-jump",{fBRANCH_SPECULATE_STALL(TSTSEM,,SPECULATE_TAKEN,13,0);if (TSTSEM) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})\
Q6INSN(J4_##TAG##_jumpnv_nt,"if ("TST") jump:nt #r9:2",ATTRIBS(A_NEWVALUEJ),"compound compare-jump",{fBRANCH_SPECULATE_STALL(TSTSEM,,SPECULATE_NOT_TAKEN,13,0); if (TSTSEM) {fIMMEXT(riV); fPCALIGN(riV); fBRANCH(fREAD_PC()+riV,COF_TYPE_JUMP);}})
STD_CMPJUMPNEWRS(cmpeqi_t,"cmp.eq(Ns8.new,#U5)",(fNEWREG(NsN)==(UiV)))
STD_CMPJUMPNEWRS(cmpeqi_f,"!cmp.eq(Ns8.new,#U5)",(fNEWREG(NsN)!=(UiV)))
STD_CMPJUMPNEWRS(cmpgti_t,"cmp.gt(Ns8.new,#U5)",(fNEWREG(NsN)>(UiV)))
STD_CMPJUMPNEWRS(cmpgti_f,"!cmp.gt(Ns8.new,#U5)",!(fNEWREG(NsN)>(UiV)))
STD_CMPJUMPNEWRS(cmpgtui_t,"cmp.gtu(Ns8.new,#U5)",(fCAST4u(fNEWREG(NsN))>(UiV)))
STD_CMPJUMPNEWRS(cmpgtui_f,"!cmp.gtu(Ns8.new,#U5)",!(fCAST4u(fNEWREG(NsN))>(UiV)))
STD_CMPJUMPNEWRS(cmpeqn1_t,"cmp.eq(Ns8.new,#-1)",(fNEWREG(NsN)==(-1)))
STD_CMPJUMPNEWRS(cmpeqn1_f,"!cmp.eq(Ns8.new,#-1)",(fNEWREG(NsN)!=(-1)))
STD_CMPJUMPNEWRS(cmpgtn1_t,"cmp.gt(Ns8.new,#-1)",(fNEWREG(NsN)>(-1)))
STD_CMPJUMPNEWRS(cmpgtn1_f,"!cmp.gt(Ns8.new,#-1)",!(fNEWREG(NsN)>(-1)))
STD_CMPJUMPNEWRS(tstbit0_t,"tstbit(Ns8.new,#0)",((fNEWREG(NsN)) & 1))
STD_CMPJUMPNEWRS(tstbit0_f,"!tstbit(Ns8.new,#0)",!((fNEWREG(NsN)) & 1))
STD_CMPJUMPNEWRS(cmpeq_t, "cmp.eq(Ns8.new,Rt32)", (fNEWREG(NsN)==RtV))
STD_CMPJUMPNEWRS(cmpgt_t, "cmp.gt(Ns8.new,Rt32)", (fNEWREG(NsN)>RtV))
STD_CMPJUMPNEWRS(cmpgtu_t,"cmp.gtu(Ns8.new,Rt32)",(fCAST4u(fNEWREG(NsN))>fCAST4u(RtV)))
STD_CMPJUMPNEWRS(cmplt_t, "cmp.gt(Rt32,Ns8.new)", (RtV>fNEWREG(NsN)))
STD_CMPJUMPNEWRS(cmpltu_t,"cmp.gtu(Rt32,Ns8.new)",(fCAST4u(RtV)>fCAST4u(fNEWREG(NsN))))
STD_CMPJUMPNEWRS(cmpeq_f, "!cmp.eq(Ns8.new,Rt32)", (fNEWREG(NsN)!=RtV))
STD_CMPJUMPNEWRS(cmpgt_f, "!cmp.gt(Ns8.new,Rt32)", !(fNEWREG(NsN)>RtV))
STD_CMPJUMPNEWRS(cmpgtu_f,"!cmp.gtu(Ns8.new,Rt32)",!(fCAST4u(fNEWREG(NsN))>fCAST4u(RtV)))
STD_CMPJUMPNEWRS(cmplt_f, "!cmp.gt(Rt32,Ns8.new)", !(RtV>fNEWREG(NsN)))
STD_CMPJUMPNEWRS(cmpltu_f,"!cmp.gtu(Rt32,Ns8.new)",!(fCAST4u(RtV)>fCAST4u(fNEWREG(NsN))))
/*********************************************/
/* Subroutine Call instructions */
/*********************************************/
#define CDIR_STD A_CALL
#define CINDIR_STD A_CALL,A_INDIRECT
Q6INSN(J2_call,"call #r22:2",ATTRIBS(CDIR_STD), "direct unconditional call",
{fIMMEXT(riV); fPCALIGN(riV); fCALL(fREAD_PC()+riV); })
Q6INSN(J2_callt,"if (Pu4) call #r15:2",ATTRIBS(CDIR_STD),"direct conditional call if true",
{fIMMEXT(riV); fPCALIGN(riV); fBRANCH_SPECULATE_STALL(fLSBOLD(PuV),,SPECULATE_NOT_TAKEN,12,0); if (fLSBOLD(PuV)) { fCALL(fREAD_PC()+riV); }})
Q6INSN(J2_callf,"if (!Pu4) call #r15:2",ATTRIBS(CDIR_STD),"direct conditional call if false",
{fIMMEXT(riV); fPCALIGN(riV); fBRANCH_SPECULATE_STALL(fLSBOLDNOT(PuV),,SPECULATE_NOT_TAKEN,12,0);if (fLSBOLDNOT(PuV)) { fCALL(fREAD_PC()+riV); }})
Q6INSN(J2_callr,"callr Rs32",ATTRIBS(CINDIR_STD), "indirect unconditional call",
{ fCALLR(RsV); })
Q6INSN(J2_callrt,"if (Pu4) callr Rs32",ATTRIBS(CINDIR_STD),"indirect conditional call if true",
{fBRANCH_SPECULATE_STALL(fLSBOLD(PuV),,SPECULATE_NOT_TAKEN,12,0);if (fLSBOLD(PuV)) { fCALLR(RsV); }})
Q6INSN(J2_callrf,"if (!Pu4) callr Rs32",ATTRIBS(CINDIR_STD),"indirect conditional call if false",
{fBRANCH_SPECULATE_STALL(fLSBOLDNOT(PuV),,SPECULATE_NOT_TAKEN,12,0);if (fLSBOLDNOT(PuV)) { fCALLR(RsV); }})
/*********************************************/
/* HW Loop instructions */
/*********************************************/
Q6INSN(J2_loop0r,"loop0(#r7:2,Rs32)",ATTRIBS(),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, RsV);
fSET_LPCFG(0);
})
Q6INSN(J2_loop1r,"loop1(#r7:2,Rs32)",ATTRIBS(),"Initialize HW loop 1",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS1(/*sa,lc*/ fREAD_PC()+riV, RsV);
})
Q6INSN(J2_loop0i,"loop0(#r7:2,#U10)",ATTRIBS(),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, UiV);
fSET_LPCFG(0);
})
Q6INSN(J2_loop1i,"loop1(#r7:2,#U10)",ATTRIBS(),"Initialize HW loop 1",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS1(/*sa,lc*/ fREAD_PC()+riV, UiV);
})
Q6INSN(J2_ploop1sr,"p3=sp1loop0(#r7:2,Rs32)",ATTRIBS(A_ARCHV2),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, RsV);
fSET_LPCFG(1);
fWRITE_P3(0);
})
Q6INSN(J2_ploop1si,"p3=sp1loop0(#r7:2,#U10)",ATTRIBS(A_ARCHV2),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, UiV);
fSET_LPCFG(1);
fWRITE_P3(0);
})
Q6INSN(J2_ploop2sr,"p3=sp2loop0(#r7:2,Rs32)",ATTRIBS(A_ARCHV2),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, RsV);
fSET_LPCFG(2);
fWRITE_P3(0);
})
Q6INSN(J2_ploop2si,"p3=sp2loop0(#r7:2,#U10)",ATTRIBS(A_ARCHV2),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, UiV);
fSET_LPCFG(2);
fWRITE_P3(0);
})
Q6INSN(J2_ploop3sr,"p3=sp3loop0(#r7:2,Rs32)",ATTRIBS(A_ARCHV2),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, RsV);
fSET_LPCFG(3);
fWRITE_P3(0);
})
Q6INSN(J2_ploop3si,"p3=sp3loop0(#r7:2,#U10)",ATTRIBS(A_ARCHV2),"Initialize HW loop 0",
{ fIMMEXT(riV); fPCALIGN(riV);
fWRITE_LOOP_REGS0(/*sa,lc*/ fREAD_PC()+riV, UiV);
fSET_LPCFG(3);
fWRITE_P3(0);
})
Q6INSN(J2_endloop01,"endloop01",ATTRIBS(A_HWLOOP0_END,A_HWLOOP1_END),"Loopend for inner and outer loop",
{
/* V2: With predicate control */
if (fGET_LPCFG) {
fHIDE( if (fGET_LPCFG >= 2) { /* Nothing */ } else )
if (fGET_LPCFG==1) {
fWRITE_P3(0xff);
}
fSET_LPCFG(fGET_LPCFG-1);
}
/* check if iterate */
if (fREAD_LC0>1) {
fBRANCH(fREAD_SA0,COF_TYPE_LOOPEND0);
/* decrement loop count */
fWRITE_LC0(fREAD_LC0-1);
} else {
/* check if iterate */
if (fREAD_LC1>1) {
fBRANCH(fREAD_SA1,COF_TYPE_LOOPEND1);
/* decrement loop count */
fWRITE_LC1(fREAD_LC1-1);
}
}
})
Q6INSN(J2_endloop0,"endloop0",ATTRIBS(A_HWLOOP0_END),"Loopend for inner loop",
{
/* V2: With predicate control */
if (fGET_LPCFG) {
fHIDE( if (fGET_LPCFG >= 2) { /* Nothing */ } else )
if (fGET_LPCFG==1) {
fWRITE_P3(0xff);
}
fSET_LPCFG(fGET_LPCFG-1);
}
/* check if iterate */
if (fREAD_LC0>1) {
fBRANCH(fREAD_SA0,COF_TYPE_LOOPEND0);
/* decrement loop count */
fWRITE_LC0(fREAD_LC0-1);
}
})
Q6INSN(J2_endloop1,"endloop1",ATTRIBS(A_HWLOOP1_END),"Loopend for outer loop",
{
/* check if iterate */
if (fREAD_LC1>1) {
fBRANCH(fREAD_SA1,COF_TYPE_LOOPEND1);
/* decrement loop count */
fWRITE_LC1(fREAD_LC1-1);
}
})

View File

@ -0,0 +1,619 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Compare Instructions
*/
/*********************************************/
/* Scalar compare instructions */
/*********************************************/
Q6INSN(C2_cmpeq,"Pd4=cmp.eq(Rs32,Rt32)",ATTRIBS(),
"Compare for Equal",
{PdV=f8BITSOF(RsV==RtV);})
Q6INSN(C2_cmpgt,"Pd4=cmp.gt(Rs32,Rt32)",ATTRIBS(),
"Compare for signed Greater Than",
{PdV=f8BITSOF(RsV>RtV);})
Q6INSN(C2_cmpgtu,"Pd4=cmp.gtu(Rs32,Rt32)",ATTRIBS(),
"Compare for Greater Than Unsigned",
{PdV=f8BITSOF(fCAST4u(RsV)>fCAST4u(RtV));})
Q6INSN(C2_cmpeqp,"Pd4=cmp.eq(Rss32,Rtt32)",ATTRIBS(),
"Compare for Equal",
{PdV=f8BITSOF(RssV==RttV);})
Q6INSN(C2_cmpgtp,"Pd4=cmp.gt(Rss32,Rtt32)",ATTRIBS(),
"Compare for signed Greater Than",
{PdV=f8BITSOF(RssV>RttV);})
Q6INSN(C2_cmpgtup,"Pd4=cmp.gtu(Rss32,Rtt32)",ATTRIBS(),
"Compare for Greater Than Unsigned",
{PdV=f8BITSOF(fCAST8u(RssV)>fCAST8u(RttV));})
/*********************************************/
/* Compare and put result in GPR */
/* typically for function I/O */
/*********************************************/
Q6INSN(A4_rcmpeqi,"Rd32=cmp.eq(Rs32,#s8)",ATTRIBS(),
"Compare for Equal",
{fIMMEXT(siV); RdV=(RsV==siV); })
Q6INSN(A4_rcmpneqi,"Rd32=!cmp.eq(Rs32,#s8)",ATTRIBS(),
"Compare for Equal",
{fIMMEXT(siV); RdV=(RsV!=siV); })
Q6INSN(A4_rcmpeq,"Rd32=cmp.eq(Rs32,Rt32)",ATTRIBS(),
"Compare for Equal",
{RdV=(RsV==RtV); })
Q6INSN(A4_rcmpneq,"Rd32=!cmp.eq(Rs32,Rt32)",ATTRIBS(),
"Compare for Equal",
{RdV=(RsV!=RtV); })
/*********************************************/
/* Scalar compare instructions */
/*********************************************/
Q6INSN(C2_bitsset,"Pd4=bitsset(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Compare for selected bits set",
{PdV=f8BITSOF((RsV&RtV)==RtV);})
Q6INSN(C2_bitsclr,"Pd4=bitsclr(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Compare for selected bits clear",
{PdV=f8BITSOF((RsV&RtV)==0);})
Q6INSN(C4_nbitsset,"Pd4=!bitsset(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Compare for selected bits set",
{PdV=f8BITSOF((RsV&RtV)!=RtV);})
Q6INSN(C4_nbitsclr,"Pd4=!bitsclr(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Compare for selected bits clear",
{PdV=f8BITSOF((RsV&RtV)!=0);})
/*********************************************/
/* Scalar compare instructions W/ immediate */
/*********************************************/
Q6INSN(C2_cmpeqi,"Pd4=cmp.eq(Rs32,#s10)",ATTRIBS(),
"Compare for Equal",
{fIMMEXT(siV); PdV=f8BITSOF(RsV==siV);})
Q6INSN(C2_cmpgti,"Pd4=cmp.gt(Rs32,#s10)",ATTRIBS(),
"Compare for signed Greater Than",
{fIMMEXT(siV); PdV=f8BITSOF(RsV>siV);})
Q6INSN(C2_cmpgtui,"Pd4=cmp.gtu(Rs32,#u9)",ATTRIBS(),
"Compare for Greater Than Unsigned",
{fIMMEXT(uiV); PdV=f8BITSOF(fCAST4u(RsV)>fCAST4u(uiV));})
Q6INSN(C2_bitsclri,"Pd4=bitsclr(Rs32,#u6)",ATTRIBS(A_ARCHV2),
"Compare for selected bits clear",
{PdV=f8BITSOF((RsV&uiV)==0);})
Q6INSN(C4_nbitsclri,"Pd4=!bitsclr(Rs32,#u6)",ATTRIBS(A_ARCHV2),
"Compare for selected bits clear",
{PdV=f8BITSOF((RsV&uiV)!=0);})
Q6INSN(C4_cmpneqi,"Pd4=!cmp.eq(Rs32,#s10)",ATTRIBS(), "Compare for Not Equal", {fIMMEXT(siV); PdV=f8BITSOF(RsV!=siV);})
Q6INSN(C4_cmpltei,"Pd4=!cmp.gt(Rs32,#s10)",ATTRIBS(), "Compare for Less Than or Equal", {fIMMEXT(siV); PdV=f8BITSOF(RsV<=siV);})
Q6INSN(C4_cmplteui,"Pd4=!cmp.gtu(Rs32,#u9)",ATTRIBS(), "Compare for Less Than or Equal Unsigned", {fIMMEXT(uiV); PdV=f8BITSOF(fCAST4u(RsV)<=fCAST4u(uiV));})
Q6INSN(C4_cmpneq,"Pd4=!cmp.eq(Rs32,Rt32)",ATTRIBS(), "And-Compare for Equal", {PdV=f8BITSOF(RsV!=RtV);})
Q6INSN(C4_cmplte,"Pd4=!cmp.gt(Rs32,Rt32)",ATTRIBS(), "And-Compare for signed Greater Than", {PdV=f8BITSOF(RsV<=RtV);})
Q6INSN(C4_cmplteu,"Pd4=!cmp.gtu(Rs32,Rt32)",ATTRIBS(), "And-Compare for Greater Than Unsigned", {PdV=f8BITSOF(fCAST4u(RsV)<=fCAST4u(RtV));})
/* Predicate Logical Operations */
Q6INSN(C2_and,"Pd4=and(Pt4,Ps4)",ATTRIBS(A_CRSLOT23),
"Predicate AND",
{PdV=PsV & PtV;})
Q6INSN(C2_or,"Pd4=or(Pt4,Ps4)",ATTRIBS(A_CRSLOT23),
"Predicate OR",
{PdV=PsV | PtV;})
Q6INSN(C2_xor,"Pd4=xor(Ps4,Pt4)",ATTRIBS(A_CRSLOT23),
"Predicate XOR",
{PdV=PsV ^ PtV;})
Q6INSN(C2_andn,"Pd4=and(Pt4,!Ps4)",ATTRIBS(A_CRSLOT23),
"Predicate AND NOT",
{PdV=PtV & (~PsV);})
Q6INSN(C2_not,"Pd4=not(Ps4)",ATTRIBS(A_CRSLOT23),
"Logical NOT Predicate",
{PdV=~PsV;})
Q6INSN(C2_orn,"Pd4=or(Pt4,!Ps4)",ATTRIBS(A_ARCHV2,A_CRSLOT23),
"Predicate OR NOT",
{PdV=PtV | (~PsV);})
Q6INSN(C4_and_and,"Pd4=and(Ps4,and(Pt4,Pu4))",ATTRIBS(A_CRSLOT23),
"Compound And-And", { PdV = PsV & PtV & PuV; })
Q6INSN(C4_and_or,"Pd4=and(Ps4,or(Pt4,Pu4))",ATTRIBS(A_CRSLOT23),
"Compound And-Or", { PdV = PsV & (PtV | PuV); })
Q6INSN(C4_or_and,"Pd4=or(Ps4,and(Pt4,Pu4))",ATTRIBS(A_CRSLOT23),
"Compound Or-And", { PdV = PsV | (PtV & PuV); })
Q6INSN(C4_or_or,"Pd4=or(Ps4,or(Pt4,Pu4))",ATTRIBS(A_CRSLOT23),
"Compound Or-Or", { PdV = PsV | PtV | PuV; })
Q6INSN(C4_and_andn,"Pd4=and(Ps4,and(Pt4,!Pu4))",ATTRIBS(A_CRSLOT23),
"Compound And-And", { PdV = PsV & PtV & (~PuV); })
Q6INSN(C4_and_orn,"Pd4=and(Ps4,or(Pt4,!Pu4))",ATTRIBS(A_CRSLOT23),
"Compound And-Or", { PdV = PsV & (PtV | (~PuV)); })
Q6INSN(C4_or_andn,"Pd4=or(Ps4,and(Pt4,!Pu4))",ATTRIBS(A_CRSLOT23),
"Compound Or-And", { PdV = PsV | (PtV & (~PuV)); })
Q6INSN(C4_or_orn,"Pd4=or(Ps4,or(Pt4,!Pu4))",ATTRIBS(A_CRSLOT23),
"Compound Or-Or", { PdV = PsV | PtV | (~PuV); })
Q6INSN(C2_any8,"Pd4=any8(Ps4)",ATTRIBS(A_CRSLOT23),
"Logical ANY of low 8 predicate bits",
{ PsV ? (PdV=0xff) : (PdV=0x00); })
Q6INSN(C2_all8,"Pd4=all8(Ps4)",ATTRIBS(A_CRSLOT23),
"Logical ALL of low 8 predicate bits",
{ (PsV==0xff) ? (PdV=0xff) : (PdV=0x00); })
Q6INSN(C2_vitpack,"Rd32=vitpack(Ps4,Pt4)",ATTRIBS(),
"Pack the odd and even bits of two predicate registers",
{ RdV = (PsV&0x55) | (PtV&0xAA); })
/* Mux instructions */
Q6INSN(C2_mux,"Rd32=mux(Pu4,Rs32,Rt32)",ATTRIBS(),
"Scalar MUX",
{ (fLSBOLD(PuV)) ? (RdV=RsV):(RdV=RtV); })
Q6INSN(C2_cmovenewit,"if (Pu4.new) Rd32=#s12",ATTRIBS(A_ARCHV2),
"Scalar conditional move",
{ fIMMEXT(siV); if (fLSBNEW(PuN)) RdV=siV; else CANCEL;})
Q6INSN(C2_cmovenewif,"if (!Pu4.new) Rd32=#s12",ATTRIBS(A_ARCHV2),
"Scalar conditional move",
{ fIMMEXT(siV); if (fLSBNEWNOT(PuN)) RdV=siV; else CANCEL;})
Q6INSN(C2_cmoveit,"if (Pu4) Rd32=#s12",ATTRIBS(A_ARCHV2),
"Scalar conditional move",
{ fIMMEXT(siV); if (fLSBOLD(PuV)) RdV=siV; else CANCEL;})
Q6INSN(C2_cmoveif,"if (!Pu4) Rd32=#s12",ATTRIBS(A_ARCHV2),
"Scalar conditional move",
{ fIMMEXT(siV); if (fLSBOLDNOT(PuV)) RdV=siV; else CANCEL;})
Q6INSN(C2_ccombinewnewt,"if (Pu4.new) Rdd32=combine(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Conditionally combine two words into a register pair",
{ if (fLSBNEW(PuN)) {
fSETWORD(0,RddV,RtV);
fSETWORD(1,RddV,RsV);
} else {CANCEL;}
})
Q6INSN(C2_ccombinewnewf,"if (!Pu4.new) Rdd32=combine(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Conditionally combine two words into a register pair",
{ if (fLSBNEWNOT(PuN)) {
fSETWORD(0,RddV,RtV);
fSETWORD(1,RddV,RsV);
} else {CANCEL;}
})
Q6INSN(C2_ccombinewt,"if (Pu4) Rdd32=combine(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Conditionally combine two words into a register pair",
{ if (fLSBOLD(PuV)) {
fSETWORD(0,RddV,RtV);
fSETWORD(1,RddV,RsV);
} else {CANCEL;}
})
Q6INSN(C2_ccombinewf,"if (!Pu4) Rdd32=combine(Rs32,Rt32)",ATTRIBS(A_ARCHV2),
"Conditionally combine two words into a register pair",
{ if (fLSBOLDNOT(PuV)) {
fSETWORD(0,RddV,RtV);
fSETWORD(1,RddV,RsV);
} else {CANCEL;}
})
Q6INSN(C2_muxii,"Rd32=mux(Pu4,#s8,#S8)",ATTRIBS(A_ARCHV2),
"Scalar MUX immediates",
{ fIMMEXT(siV); (fLSBOLD(PuV)) ? (RdV=siV):(RdV=SiV); })
Q6INSN(C2_muxir,"Rd32=mux(Pu4,Rs32,#s8)",ATTRIBS(A_ARCHV2),
"Scalar MUX register immediate",
{ fIMMEXT(siV); (fLSBOLD(PuV)) ? (RdV=RsV):(RdV=siV); })
Q6INSN(C2_muxri,"Rd32=mux(Pu4,#s8,Rs32)",ATTRIBS(A_ARCHV2),
"Scalar MUX register immediate",
{ fIMMEXT(siV); (fLSBOLD(PuV)) ? (RdV=siV):(RdV=RsV); })
Q6INSN(C2_vmux,"Rdd32=vmux(Pu4,Rss32,Rtt32)",ATTRIBS(),
"Vector MUX",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBYTE(i,RddV,(fGETBIT(i,PuV)?(fGETBYTE(i,RssV)):(fGETBYTE(i,RttV))));
}
})
Q6INSN(C2_mask,"Rdd32=mask(Pt4)",ATTRIBS(),
"Vector Mask Generation",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBYTE(i,RddV,(fGETBIT(i,PtV)?(0xff):(0x00)));
}
})
/* VCMP */
Q6INSN(A2_vcmpbeq,"Pd4=vcmpb.eq(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBIT(i,PdV,(fGETBYTE(i,RssV) == fGETBYTE(i,RttV)));
}
})
Q6INSN(A4_vcmpbeqi,"Pd4=vcmpb.eq(Rss32,#u8)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBIT(i,PdV,(fGETUBYTE(i,RssV) == uiV));
}
})
Q6INSN(A4_vcmpbeq_any,"Pd4=any8(vcmpb.eq(Rss32,Rtt32))",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
PdV = 0;
for (i = 0; i < 8; i++) {
if (fGETBYTE(i,RssV) == fGETBYTE(i,RttV)) PdV = 0xff;
}
})
Q6INSN(A6_vcmpbeq_notany,"Pd4=!any8(vcmpb.eq(Rss32,Rtt32))",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
PdV = 0;
for (i = 0; i < 8; i++) {
if (fGETBYTE(i,RssV) == fGETBYTE(i,RttV)) PdV = 0xff;
}
PdV = ~PdV;
})
Q6INSN(A2_vcmpbgtu,"Pd4=vcmpb.gtu(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBIT(i,PdV,(fGETUBYTE(i,RssV) > fGETUBYTE(i,RttV)));
}
})
Q6INSN(A4_vcmpbgtui,"Pd4=vcmpb.gtu(Rss32,#u7)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBIT(i,PdV,(fGETUBYTE(i,RssV) > uiV));
}
})
Q6INSN(A4_vcmpbgt,"Pd4=vcmpb.gt(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBIT(i,PdV,(fGETBYTE(i,RssV) > fGETBYTE(i,RttV)));
}
})
Q6INSN(A4_vcmpbgti,"Pd4=vcmpb.gt(Rss32,#s8)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 8; i++) {
fSETBIT(i,PdV,(fGETBYTE(i,RssV) > siV));
}
})
Q6INSN(A4_cmpbeq,"Pd4=cmpb.eq(Rs32,Rt32)",ATTRIBS(),
"Compare bytes ",
{
PdV=f8BITSOF(fGETBYTE(0,RsV) == fGETBYTE(0,RtV));
})
Q6INSN(A4_cmpbeqi,"Pd4=cmpb.eq(Rs32,#u8)",ATTRIBS(),
"Compare bytes ",
{
PdV=f8BITSOF(fGETUBYTE(0,RsV) == uiV);
})
Q6INSN(A4_cmpbgtu,"Pd4=cmpb.gtu(Rs32,Rt32)",ATTRIBS(),
"Compare bytes ",
{
PdV=f8BITSOF(fGETUBYTE(0,RsV) > fGETUBYTE(0,RtV));
})
Q6INSN(A4_cmpbgtui,"Pd4=cmpb.gtu(Rs32,#u7)",ATTRIBS(),
"Compare bytes ",
{
fIMMEXT(uiV);
PdV=f8BITSOF(fGETUBYTE(0,RsV) > fCAST4u(uiV));
})
Q6INSN(A4_cmpbgt,"Pd4=cmpb.gt(Rs32,Rt32)",ATTRIBS(),
"Compare bytes ",
{
PdV=f8BITSOF(fGETBYTE(0,RsV) > fGETBYTE(0,RtV));
})
Q6INSN(A4_cmpbgti,"Pd4=cmpb.gt(Rs32,#s8)",ATTRIBS(),
"Compare bytes ",
{
PdV=f8BITSOF(fGETBYTE(0,RsV) > siV);
})
Q6INSN(A2_vcmpheq,"Pd4=vcmph.eq(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 4; i++) {
fSETBIT(i*2,PdV, (fGETHALF(i,RssV) == fGETHALF(i,RttV)));
fSETBIT(i*2+1,PdV,(fGETHALF(i,RssV) == fGETHALF(i,RttV)));
}
})
Q6INSN(A2_vcmphgt,"Pd4=vcmph.gt(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 4; i++) {
fSETBIT(i*2, PdV, (fGETHALF(i,RssV) > fGETHALF(i,RttV)));
fSETBIT(i*2+1,PdV, (fGETHALF(i,RssV) > fGETHALF(i,RttV)));
}
})
Q6INSN(A2_vcmphgtu,"Pd4=vcmph.gtu(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 4; i++) {
fSETBIT(i*2, PdV, (fGETUHALF(i,RssV) > fGETUHALF(i,RttV)));
fSETBIT(i*2+1,PdV, (fGETUHALF(i,RssV) > fGETUHALF(i,RttV)));
}
})
Q6INSN(A4_vcmpheqi,"Pd4=vcmph.eq(Rss32,#s8)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 4; i++) {
fSETBIT(i*2,PdV, (fGETHALF(i,RssV) == siV));
fSETBIT(i*2+1,PdV,(fGETHALF(i,RssV) == siV));
}
})
Q6INSN(A4_vcmphgti,"Pd4=vcmph.gt(Rss32,#s8)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 4; i++) {
fSETBIT(i*2, PdV, (fGETHALF(i,RssV) > siV));
fSETBIT(i*2+1,PdV, (fGETHALF(i,RssV) > siV));
}
})
Q6INSN(A4_vcmphgtui,"Pd4=vcmph.gtu(Rss32,#u7)",ATTRIBS(),
"Compare elements of two vectors ",
{
fHIDE(int i;)
for (i = 0; i < 4; i++) {
fSETBIT(i*2, PdV, (fGETUHALF(i,RssV) > uiV));
fSETBIT(i*2+1,PdV, (fGETUHALF(i,RssV) > uiV));
}
})
Q6INSN(A4_cmpheq,"Pd4=cmph.eq(Rs32,Rt32)",ATTRIBS(),
"Compare halfwords ",
{
PdV=f8BITSOF(fGETHALF(0,RsV) == fGETHALF(0,RtV));
})
Q6INSN(A4_cmphgt,"Pd4=cmph.gt(Rs32,Rt32)",ATTRIBS(),
"Compare halfwords ",
{
PdV=f8BITSOF(fGETHALF(0,RsV) > fGETHALF(0,RtV));
})
Q6INSN(A4_cmphgtu,"Pd4=cmph.gtu(Rs32,Rt32)",ATTRIBS(),
"Compare halfwords ",
{
PdV=f8BITSOF(fGETUHALF(0,RsV) > fGETUHALF(0,RtV));
})
Q6INSN(A4_cmpheqi,"Pd4=cmph.eq(Rs32,#s8)",ATTRIBS(),
"Compare halfwords ",
{
fIMMEXT(siV);
PdV=f8BITSOF(fGETHALF(0,RsV) == siV);
})
Q6INSN(A4_cmphgti,"Pd4=cmph.gt(Rs32,#s8)",ATTRIBS(),
"Compare halfwords ",
{
fIMMEXT(siV);
PdV=f8BITSOF(fGETHALF(0,RsV) > siV);
})
Q6INSN(A4_cmphgtui,"Pd4=cmph.gtu(Rs32,#u7)",ATTRIBS(),
"Compare halfwords ",
{
fIMMEXT(uiV);
PdV=f8BITSOF(fGETUHALF(0,RsV) > fCAST4u(uiV));
})
Q6INSN(A2_vcmpweq,"Pd4=vcmpw.eq(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fSETBITS(3,0,PdV,(fGETWORD(0,RssV)==fGETWORD(0,RttV)));
fSETBITS(7,4,PdV,(fGETWORD(1,RssV)==fGETWORD(1,RttV)));
})
Q6INSN(A2_vcmpwgt,"Pd4=vcmpw.gt(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fSETBITS(3,0,PdV,(fGETWORD(0,RssV)>fGETWORD(0,RttV)));
fSETBITS(7,4,PdV,(fGETWORD(1,RssV)>fGETWORD(1,RttV)));
})
Q6INSN(A2_vcmpwgtu,"Pd4=vcmpw.gtu(Rss32,Rtt32)",ATTRIBS(),
"Compare elements of two vectors ",
{
fSETBITS(3,0,PdV,(fGETUWORD(0,RssV)>fGETUWORD(0,RttV)));
fSETBITS(7,4,PdV,(fGETUWORD(1,RssV)>fGETUWORD(1,RttV)));
})
Q6INSN(A4_vcmpweqi,"Pd4=vcmpw.eq(Rss32,#s8)",ATTRIBS(),
"Compare elements of two vectors ",
{
fSETBITS(3,0,PdV,(fGETWORD(0,RssV)==siV));
fSETBITS(7,4,PdV,(fGETWORD(1,RssV)==siV));
})
Q6INSN(A4_vcmpwgti,"Pd4=vcmpw.gt(Rss32,#s8)",ATTRIBS(),
"Compare elements of two vectors ",
{
fSETBITS(3,0,PdV,(fGETWORD(0,RssV)>siV));
fSETBITS(7,4,PdV,(fGETWORD(1,RssV)>siV));
})
Q6INSN(A4_vcmpwgtui,"Pd4=vcmpw.gtu(Rss32,#u7)",ATTRIBS(),
"Compare elements of two vectors ",
{
fSETBITS(3,0,PdV,(fGETUWORD(0,RssV)>fCAST4u(uiV)));
fSETBITS(7,4,PdV,(fGETUWORD(1,RssV)>fCAST4u(uiV)));
})
Q6INSN(A4_boundscheck_hi,"Pd4=boundscheck(Rss32,Rtt32):raw:hi",ATTRIBS(),
"Detect if a register is within bounds",
{
fHIDE(size4u_t src;)
src = fGETUWORD(1,RssV);
PdV = f8BITSOF((fCAST4u(src) >= fGETUWORD(0,RttV)) && (fCAST4u(src) < fGETUWORD(1,RttV)));
})
Q6INSN(A4_boundscheck_lo,"Pd4=boundscheck(Rss32,Rtt32):raw:lo",ATTRIBS(),
"Detect if a register is within bounds",
{
fHIDE(size4u_t src;)
src = fGETUWORD(0,RssV);
PdV = f8BITSOF((fCAST4u(src) >= fGETUWORD(0,RttV)) && (fCAST4u(src) < fGETUWORD(1,RttV)));
})
Q6INSN(A4_tlbmatch,"Pd4=tlbmatch(Rss32,Rt32)",ATTRIBS(),
"Detect if a VA/ASID matches a TLB entry",
{
fHIDE(size4u_t TLBHI; size4u_t TLBLO; size4u_t MASK; size4u_t SIZE;)
MASK = 0x07ffffff;
TLBLO = fGETUWORD(0,RssV);
TLBHI = fGETUWORD(1,RssV);
SIZE = fMIN(6,fCL1_4(~fBREV_4(TLBLO)));
MASK &= (0xffffffff << 2*SIZE);
PdV = f8BITSOF(fGETBIT(31,TLBHI) && ((TLBHI & MASK) == (RtV & MASK)));
})
Q6INSN(C2_tfrpr,"Rd32=Ps4",ATTRIBS(),
"Transfer predicate to general register", { RdV = fZXTN(8,32,PsV); })
Q6INSN(C2_tfrrp,"Pd4=Rs32",ATTRIBS(),
"Transfer general register to Predicate", { PdV = fGETUBYTE(0,RsV); })
Q6INSN(C4_fastcorner9,"Pd4=fastcorner9(Ps4,Pt4)",ATTRIBS(A_CRSLOT23),
"Determine whether the predicate sources define a corner",
{
fHIDE(size4u_t tmp = 0; size4u_t i;)
fSETHALF(0,tmp,(PsV<<8)|PtV);
fSETHALF(1,tmp,(PsV<<8)|PtV);
for (i = 1; i < 9; i++) {
tmp &= tmp >> 1;
}
PdV = f8BITSOF(tmp != 0);
})
Q6INSN(C4_fastcorner9_not,"Pd4=!fastcorner9(Ps4,Pt4)",ATTRIBS(A_CRSLOT23),
"Determine whether the predicate sources define a corner",
{
fHIDE(size4u_t tmp = 0; size4u_t i;)
fSETHALF(0,tmp,(PsV<<8)|PtV);
fSETHALF(1,tmp,(PsV<<8)|PtV);
for (i = 1; i < 9; i++) {
tmp &= tmp >> 1;
}
PdV = f8BITSOF(tmp == 0);
})

View File

@ -0,0 +1,124 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This just includes all encoding files
*/
#ifndef DEF_FIELD32
#define __SELF_DEF_FIELD32
#define DEF_FIELD32(...) /* nothing */
#endif
#ifndef DEF_CLASS32
#define __SELF_DEF_CLASS32
#define DEF_CLASS32(...) /* nothing */
#endif
#ifndef DEF_ANTICLASS32
#define __SELF_DEF_ANTICLASS32
#define DEF_ANTICLASS32(...) /* nothing */
#endif
#ifndef LEGACY_DEF_ENC32
#define __SELF_DEF_LEGACY_DEF_ENC32
#define LEGACY_DEF_ENC32(...) /* nothing */
#endif
#ifndef DEF_FIELDROW_DESC32
#define __SELF_DEF_FIELDROW_DESC32
#define DEF_FIELDROW_DESC32(...) /* nothing */
#endif
#ifndef DEF_ENC32
#define __SELF_DEF_ENC32
#define DEF_ENC32(...) /* nothing */
#endif
#ifndef DEF_PACKED32
#define __SELF_DEF_PACKED32
#define DEF_PACKED32(...) /* nothing */
#endif
#ifndef DEF_ENC_SUBINSN
#define __SELF_DEF_ENC_SUBINSN
#define DEF_ENC_SUBINSN(...) /* nothing */
#endif
#ifndef DEF_EXT_ENC
#define __SELF_DEF_EXT_ENC
#define DEF_EXT_ENC(...) /* nothing */
#endif
#ifndef DEF_EXT_SPACE
#define __SELF_DEF_EXT_SPACE
#define DEF_EXT_SPACE(...) /* nothing */
#endif
#include "encode_pp.def"
#include "encode_subinsn.def"
#ifdef __SELF_DEF_FIELD32
#undef __SELF_DEF_FIELD32
#undef DEF_FIELD32
#endif
#ifdef __SELF_DEF_CLASS32
#undef __SELF_DEF_CLASS32
#undef DEF_CLASS32
#endif
#ifdef __SELF_DEF_ANTICLASS32
#undef __SELF_DEF_ANTICLASS32
#undef DEF_ANTICLASS32
#endif
#ifdef __SELF_DEF_LEGACY_DEF_ENC32
#undef __SELF_DEF_LEGACY_DEF_ENC32
#undef LEGACY_DEF_ENC32
#endif
#ifdef __SELF_DEF_FIELDROW_DESC32
#undef __SELF_DEF_FIELDROW_DESC32
#undef DEF_FIELDROW_DESC32
#endif
#ifdef __SELF_DEF_ENC32
#undef __SELF_DEF_ENC32
#undef DEF_ENC32
#endif
#ifdef __SELF_DEF_EXT_SPACE
#undef __SELF_DEF_EXT_SPACE
#undef DEF_EXT_SPACE
#endif
#ifdef __SELF_DEF_PACKED32
#undef __SELF_DEF_PACKED32
#undef DEF_PACKED32
#endif
#ifdef __SELF_DEF_ENC_SUBINSN
#undef __SELF_DEF_ENC_SUBINSN
#undef DEF_ENC_SUBINSN
#endif
#ifdef __SELF_DEF_EXT_ENC
#undef __SELF_DEF_EXT_ENC
#undef DEF_EXT_ENC
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,149 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* DEF_ENC_SUBINSN(TAG, CLASS, ENCSTR) */
/*********************/
/* Ld1-type subinsns */
/*********************/
DEF_ENC_SUBINSN(SL1_loadri_io, SUBINSN_L1, "0iiiissssdddd")
DEF_ENC_SUBINSN(SL1_loadrub_io, SUBINSN_L1, "1iiiissssdddd")
/*********************/
/* St1-type subinsns */
/*********************/
DEF_ENC_SUBINSN(SS1_storew_io, SUBINSN_S1, "0ii iisssstttt")
DEF_ENC_SUBINSN(SS1_storeb_io, SUBINSN_S1, "1ii iisssstttt")
/*********************/
/* Ld2-type subinsns */
/*********************/
DEF_ENC_SUBINSN(SL2_loadrh_io, SUBINSN_L2, "00i iissssdddd")
DEF_ENC_SUBINSN(SL2_loadruh_io, SUBINSN_L2, "01i iissssdddd")
DEF_ENC_SUBINSN(SL2_loadrb_io, SUBINSN_L2, "10i iissssdddd")
DEF_ENC_SUBINSN(SL2_loadri_sp, SUBINSN_L2, "111 0iiiiidddd")
DEF_ENC_SUBINSN(SL2_loadrd_sp, SUBINSN_L2, "111 10iiiiiddd")
DEF_ENC_SUBINSN(SL2_deallocframe,SUBINSN_L2, "111 1100---0--")
DEF_ENC_SUBINSN(SL2_return, SUBINSN_L2, "111 1101---0--")
DEF_ENC_SUBINSN(SL2_return_t, SUBINSN_L2, "111 1101---100")
DEF_ENC_SUBINSN(SL2_return_f, SUBINSN_L2, "111 1101---101")
DEF_ENC_SUBINSN(SL2_return_tnew, SUBINSN_L2, "111 1101---110")
DEF_ENC_SUBINSN(SL2_return_fnew, SUBINSN_L2, "111 1101---111")
DEF_ENC_SUBINSN(SL2_jumpr31, SUBINSN_L2, "111 1111---0--")
DEF_ENC_SUBINSN(SL2_jumpr31_t, SUBINSN_L2, "111 1111---100")
DEF_ENC_SUBINSN(SL2_jumpr31_f, SUBINSN_L2, "111 1111---101")
DEF_ENC_SUBINSN(SL2_jumpr31_tnew,SUBINSN_L2, "111 1111---110")
DEF_ENC_SUBINSN(SL2_jumpr31_fnew,SUBINSN_L2, "111 1111---111")
/*********************/
/* St2-type subinsns */
/*********************/
DEF_ENC_SUBINSN(SS2_storeh_io, SUBINSN_S2, "00i iisssstttt")
DEF_ENC_SUBINSN(SS2_storew_sp, SUBINSN_S2, "010 0iiiiitttt")
DEF_ENC_SUBINSN(SS2_stored_sp, SUBINSN_S2, "010 1iiiiiittt")
DEF_ENC_SUBINSN(SS2_storewi0, SUBINSN_S2, "100 00ssssiiii")
DEF_ENC_SUBINSN(SS2_storewi1, SUBINSN_S2, "100 01ssssiiii")
DEF_ENC_SUBINSN(SS2_storebi0, SUBINSN_S2, "100 10ssssiiii")
DEF_ENC_SUBINSN(SS2_storebi1, SUBINSN_S2, "100 11ssssiiii")
DEF_ENC_SUBINSN(SS2_allocframe, SUBINSN_S2, "111 0iiiii----")
/*******************/
/* A-type subinsns */
/*******************/
DEF_ENC_SUBINSN(SA1_addi, SUBINSN_A, "00i iiiiiixxxx")
DEF_ENC_SUBINSN(SA1_seti, SUBINSN_A, "010 iiiiiidddd")
DEF_ENC_SUBINSN(SA1_addsp, SUBINSN_A, "011 iiiiiidddd")
DEF_ENC_SUBINSN(SA1_tfr, SUBINSN_A, "100 00ssssdddd")
DEF_ENC_SUBINSN(SA1_inc, SUBINSN_A, "100 01ssssdddd")
DEF_ENC_SUBINSN(SA1_and1, SUBINSN_A, "100 10ssssdddd")
DEF_ENC_SUBINSN(SA1_dec, SUBINSN_A, "100 11ssssdddd")
DEF_ENC_SUBINSN(SA1_sxth, SUBINSN_A, "101 00ssssdddd")
DEF_ENC_SUBINSN(SA1_sxtb, SUBINSN_A, "101 01ssssdddd")
DEF_ENC_SUBINSN(SA1_zxth, SUBINSN_A, "101 10ssssdddd")
DEF_ENC_SUBINSN(SA1_zxtb, SUBINSN_A, "101 11ssssdddd")
DEF_ENC_SUBINSN(SA1_addrx, SUBINSN_A, "110 00ssssxxxx")
DEF_ENC_SUBINSN(SA1_cmpeqi, SUBINSN_A, "110 01ssss--ii")
DEF_ENC_SUBINSN(SA1_setin1, SUBINSN_A, "110 1--0--dddd")
DEF_ENC_SUBINSN(SA1_clrtnew, SUBINSN_A, "110 1--100dddd")
DEF_ENC_SUBINSN(SA1_clrfnew, SUBINSN_A, "110 1--101dddd")
DEF_ENC_SUBINSN(SA1_clrt, SUBINSN_A, "110 1--110dddd")
DEF_ENC_SUBINSN(SA1_clrf, SUBINSN_A, "110 1--111dddd")
DEF_ENC_SUBINSN(SA1_combine0i, SUBINSN_A, "111 -0-ii00ddd")
DEF_ENC_SUBINSN(SA1_combine1i, SUBINSN_A, "111 -0-ii01ddd")
DEF_ENC_SUBINSN(SA1_combine2i, SUBINSN_A, "111 -0-ii10ddd")
DEF_ENC_SUBINSN(SA1_combine3i, SUBINSN_A, "111 -0-ii11ddd")
DEF_ENC_SUBINSN(SA1_combinezr, SUBINSN_A, "111 -1ssss0ddd")
DEF_ENC_SUBINSN(SA1_combinerz, SUBINSN_A, "111 -1ssss1ddd")
/* maybe R=cmpeq ? */
/* Add a group of NCJ: if (R.new==#0) jump:hint #r9 */
/* Add a group of NCJ: if (R.new!=#0) jump:hint #r9 */
/* NCJ goes with LD1, LD2 */
DEF_FIELD32("---! !!!! !!!!!!!! EE------ --------",SUBFIELD_B_SLOT1,"B: Slot1 Instruction")
DEF_FIELD32("---- ---- -------- EE-!!!!! !!!!!!!!",SUBFIELD_A_SLOT0,"A: Slot0 Instruction")
/* DEF_PACKED32(TAG, CLASSA, CLASSB, ENCSTR) */
DEF_PACKED32(P2_PACKED_L1_L1, SUBINSN_L1, SUBINSN_L1, "000B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_L1_L2, SUBINSN_L2, SUBINSN_L1, "000B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_L2_L2, SUBINSN_L2, SUBINSN_L2, "001B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_A_A, SUBINSN_A, SUBINSN_A, "001B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_L1_A, SUBINSN_L1, SUBINSN_A, "010B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_L2_A, SUBINSN_L2, SUBINSN_A, "010B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S1_A, SUBINSN_S1, SUBINSN_A, "011B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S2_A, SUBINSN_S2, SUBINSN_A, "011B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S1_L1, SUBINSN_S1, SUBINSN_L1, "100B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S1_L2, SUBINSN_S1, SUBINSN_L2, "100B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S1_S1, SUBINSN_S1, SUBINSN_S1, "101B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S1_S2, SUBINSN_S2, SUBINSN_S1, "101B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S2_L1, SUBINSN_S2, SUBINSN_L1, "110B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S2_L2, SUBINSN_S2, SUBINSN_L2, "110B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_S2_S2, SUBINSN_S2, SUBINSN_S2, "111B BBBB BBBB BBBB EE0A AAAA AAAA AAAA")
DEF_PACKED32(P2_PACKED_RESERVED, SUBINSN_INVALID, SUBINSN_INVALID, "111B BBBB BBBB BBBB EE1A AAAA AAAA AAAA")

View File

@ -0,0 +1,312 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Floating-Point Instructions
*/
/*************************************/
/* Scalar FP */
/*************************************/
Q6INSN(F2_sfadd,"Rd32=sfadd(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Add",
{ RdV=fUNFLOAT(fFLOAT(RsV)+fFLOAT(RtV));})
Q6INSN(F2_sfsub,"Rd32=sfsub(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Subtract",
{ RdV=fUNFLOAT(fFLOAT(RsV)-fFLOAT(RtV));})
Q6INSN(F2_sfmpy,"Rd32=sfmpy(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Multiply",
{ RdV=fUNFLOAT(fSFMPY(fFLOAT(RsV),fFLOAT(RtV)));})
Q6INSN(F2_sffma,"Rx32+=sfmpy(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Fused Multiply Add",
{ RxV=fUNFLOAT(fFMAF(fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV)));})
Q6INSN(F2_sffma_sc,"Rx32+=sfmpy(Rs32,Rt32,Pu4):scale",ATTRIBS(),
"Floating-Point Fused Multiply Add w/ Additional Scaling (2**Pu)",
{
fHIDE(size4s_t tmp;)
fCHECKSFNAN3(RxV,RxV,RsV,RtV);
tmp=fUNFLOAT(fFMAFX(fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV),PuV));
if (!((fFLOAT(RxV) == 0.0) && fISZEROPROD(fFLOAT(RsV),fFLOAT(RtV)))) RxV = tmp;
})
Q6INSN(F2_sffms,"Rx32-=sfmpy(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Fused Multiply Add",
{ RxV=fUNFLOAT(fFMAF(-fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV))); })
Q6INSN(F2_sffma_lib,"Rx32+=sfmpy(Rs32,Rt32):lib",ATTRIBS(),
"Floating-Point Fused Multiply Add for Library Routines",
{ fFPSETROUND_NEAREST(); fHIDE(int infinp; int infminusinf; size4s_t tmp;)
infminusinf = ((isinf(fFLOAT(RxV))) &&
(fISINFPROD(fFLOAT(RsV),fFLOAT(RtV))) &&
(fGETBIT(31,RsV ^ RxV ^ RtV) != 0));
infinp = (isinf(fFLOAT(RxV))) || (isinf(fFLOAT(RtV))) || (isinf(fFLOAT(RsV)));
fCHECKSFNAN3(RxV,RxV,RsV,RtV);
tmp=fUNFLOAT(fFMAF(fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV)));
if (!((fFLOAT(RxV) == 0.0) && fISZEROPROD(fFLOAT(RsV),fFLOAT(RtV)))) RxV = tmp;
fFPCANCELFLAGS();
if (isinf(fFLOAT(RxV)) && !infinp) RxV = RxV - 1;
if (infminusinf) RxV = 0;
})
Q6INSN(F2_sffms_lib,"Rx32-=sfmpy(Rs32,Rt32):lib",ATTRIBS(),
"Floating-Point Fused Multiply Add for Library Routines",
{ fFPSETROUND_NEAREST(); fHIDE(int infinp; int infminusinf; size4s_t tmp;)
infminusinf = ((isinf(fFLOAT(RxV))) &&
(fISINFPROD(fFLOAT(RsV),fFLOAT(RtV))) &&
(fGETBIT(31,RsV ^ RxV ^ RtV) == 0));
infinp = (isinf(fFLOAT(RxV))) || (isinf(fFLOAT(RtV))) || (isinf(fFLOAT(RsV)));
fCHECKSFNAN3(RxV,RxV,RsV,RtV);
tmp=fUNFLOAT(fFMAF(-fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV)));
if (!((fFLOAT(RxV) == 0.0) && fISZEROPROD(fFLOAT(RsV),fFLOAT(RtV)))) RxV = tmp;
fFPCANCELFLAGS();
if (isinf(fFLOAT(RxV)) && !infinp) RxV = RxV - 1;
if (infminusinf) RxV = 0;
})
Q6INSN(F2_sfcmpeq,"Pd4=sfcmp.eq(Rs32,Rt32)",ATTRIBS(),
"Floating Point Compare for Equal",
{PdV=f8BITSOF(fFLOAT(RsV)==fFLOAT(RtV));})
Q6INSN(F2_sfcmpgt,"Pd4=sfcmp.gt(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than",
{PdV=f8BITSOF(fFLOAT(RsV)>fFLOAT(RtV));})
/* cmpge is not the same as !cmpgt(swapops) in IEEE */
Q6INSN(F2_sfcmpge,"Pd4=sfcmp.ge(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than / Equal To",
{PdV=f8BITSOF(fFLOAT(RsV)>=fFLOAT(RtV));})
/* Everyone seems to have this... */
Q6INSN(F2_sfcmpuo,"Pd4=sfcmp.uo(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Compare for Unordered",
{PdV=f8BITSOF(isunordered(fFLOAT(RsV),fFLOAT(RtV)));})
Q6INSN(F2_sfmax,"Rd32=sfmax(Rs32,Rt32)",ATTRIBS(),
"Maximum of Floating-Point values",
{ RdV = fUNFLOAT(fSF_MAX(fFLOAT(RsV),fFLOAT(RtV))); })
Q6INSN(F2_sfmin,"Rd32=sfmin(Rs32,Rt32)",ATTRIBS(),
"Minimum of Floating-Point values",
{ RdV = fUNFLOAT(fSF_MIN(fFLOAT(RsV),fFLOAT(RtV))); })
Q6INSN(F2_sfclass,"Pd4=sfclass(Rs32,#u5)",ATTRIBS(),
"Classify Floating-Point Value",
{
fHIDE(int class;)
PdV = 0;
class = fpclassify(fFLOAT(RsV));
/* Is the value zero? */
if (fGETBIT(0,uiV) && (class == FP_ZERO)) PdV = 0xff;
if (fGETBIT(1,uiV) && (class == FP_NORMAL)) PdV = 0xff;
if (fGETBIT(2,uiV) && (class == FP_SUBNORMAL)) PdV = 0xff;
if (fGETBIT(3,uiV) && (class == FP_INFINITE)) PdV = 0xff;
if (fGETBIT(4,uiV) && (class == FP_NAN)) PdV = 0xff;
fFPCANCELFLAGS();
})
/* Range: +/- (1.0 .. 1+(63/64)) * 2**(-6 .. +9) */
/* More immediate bits should probably be used for more precision? */
Q6INSN(F2_sfimm_p,"Rd32=sfmake(#u10):pos",ATTRIBS(),
"Make Floating Point Value",
{
RdV = (127 - 6) << 23;
RdV += uiV << 17;
})
Q6INSN(F2_sfimm_n,"Rd32=sfmake(#u10):neg",ATTRIBS(),
"Make Floating Point Value",
{
RdV = (127 - 6) << 23;
RdV += (uiV << 17);
RdV |= (1 << 31);
})
Q6INSN(F2_sffixupn,"Rd32=sffixupn(Rs32,Rt32)",ATTRIBS(),
"Fix Up Numerator",
{
fHIDE(int adjust;)
fSF_RECIP_COMMON(RsV,RtV,RdV,adjust);
RdV = RsV;
})
Q6INSN(F2_sffixupd,"Rd32=sffixupd(Rs32,Rt32)",ATTRIBS(),
"Fix Up Denominator",
{
fHIDE(int adjust;)
fSF_RECIP_COMMON(RsV,RtV,RdV,adjust);
RdV = RtV;
})
Q6INSN(F2_sffixupr,"Rd32=sffixupr(Rs32)",ATTRIBS(),
"Fix Up Radicand",
{
fHIDE(int adjust;)
fSF_INVSQRT_COMMON(RsV,RdV,adjust);
RdV = RsV;
})
/*************************************/
/* Scalar DP */
/*************************************/
Q6INSN(F2_dfadd,"Rdd32=dfadd(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Add",
{ RddV=fUNDOUBLE(fDOUBLE(RssV)+fDOUBLE(RttV));})
Q6INSN(F2_dfsub,"Rdd32=dfsub(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Subtract",
{ RddV=fUNDOUBLE(fDOUBLE(RssV)-fDOUBLE(RttV));})
Q6INSN(F2_dfmax,"Rdd32=dfmax(Rss32,Rtt32)",ATTRIBS(),
"Maximum of Floating-Point values",
{ RddV = fUNDOUBLE(fDF_MAX(fDOUBLE(RssV),fDOUBLE(RttV))); })
Q6INSN(F2_dfmin,"Rdd32=dfmin(Rss32,Rtt32)",ATTRIBS(),
"Minimum of Floating-Point values",
{ RddV = fUNDOUBLE(fDF_MIN(fDOUBLE(RssV),fDOUBLE(RttV))); })
Q6INSN(F2_dfmpyfix,"Rdd32=dfmpyfix(Rss32,Rtt32)",ATTRIBS(),
"Fix Up Multiplicand for Multiplication",
{
if (fDF_ISDENORM(RssV) && fDF_ISBIG(RttV) && fDF_ISNORMAL(RttV)) RddV = fUNDOUBLE(fDOUBLE(RssV) * 0x1.0p52);
else if (fDF_ISDENORM(RttV) && fDF_ISBIG(RssV) && fDF_ISNORMAL(RssV)) RddV = fUNDOUBLE(fDOUBLE(RssV) * 0x1.0p-52);
else RddV = RssV;
})
Q6INSN(F2_dfmpyll,"Rdd32=dfmpyll(Rss32,Rtt32)",ATTRIBS(),
"Multiply low*low and shift off low 32 bits into sticky (in MSB)",
{
fHIDE(size8u_t prod;)
prod = fMPY32UU(fGETUWORD(0,RssV),fGETUWORD(0,RttV));
RddV = (prod >> 32) << 1;
if (fGETUWORD(0,prod) != 0) fSETBIT(0,RddV,1);
})
Q6INSN(F2_dfmpylh,"Rxx32+=dfmpylh(Rss32,Rtt32)",ATTRIBS(),
"Multiply low*high and accumulate",
{
RxxV += (fGETUWORD(0,RssV) * (0x00100000 | fZXTN(20,64,fGETUWORD(1,RttV)))) << 1;
})
Q6INSN(F2_dfmpyhh,"Rxx32+=dfmpyhh(Rss32,Rtt32)",ATTRIBS(),
"Multiply high*high and accumulate with L*H value",
{
RxxV = fUNDOUBLE(fDF_MPY_HH(fDOUBLE(RssV),fDOUBLE(RttV),RxxV));
})
Q6INSN(F2_dfcmpeq,"Pd4=dfcmp.eq(Rss32,Rtt32)",ATTRIBS(),
"Floating Point Compare for Equal",
{PdV=f8BITSOF(fDOUBLE(RssV)==fDOUBLE(RttV));})
Q6INSN(F2_dfcmpgt,"Pd4=dfcmp.gt(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than",
{PdV=f8BITSOF(fDOUBLE(RssV)>fDOUBLE(RttV));})
/* cmpge is not the same as !cmpgt(swapops) in IEEE */
Q6INSN(F2_dfcmpge,"Pd4=dfcmp.ge(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than / Equal To",
{PdV=f8BITSOF(fDOUBLE(RssV)>=fDOUBLE(RttV));})
/* Everyone seems to have this... */
Q6INSN(F2_dfcmpuo,"Pd4=dfcmp.uo(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Compare for Unordered",
{PdV=f8BITSOF(isunordered(fDOUBLE(RssV),fDOUBLE(RttV)));})
Q6INSN(F2_dfclass,"Pd4=dfclass(Rss32,#u5)",ATTRIBS(),
"Classify Floating-Point Value",
{
fHIDE(int class;)
PdV = 0;
class = fpclassify(fDOUBLE(RssV));
/* Is the value zero? */
if (fGETBIT(0,uiV) && (class == FP_ZERO)) PdV = 0xff;
if (fGETBIT(1,uiV) && (class == FP_NORMAL)) PdV = 0xff;
if (fGETBIT(2,uiV) && (class == FP_SUBNORMAL)) PdV = 0xff;
if (fGETBIT(3,uiV) && (class == FP_INFINITE)) PdV = 0xff;
if (fGETBIT(4,uiV) && (class == FP_NAN)) PdV = 0xff;
fFPCANCELFLAGS();
})
/* Range: +/- (1.0 .. 1+(63/64)) * 2**(-6 .. +9) */
/* More immediate bits should probably be used for more precision? */
Q6INSN(F2_dfimm_p,"Rdd32=dfmake(#u10):pos",ATTRIBS(),
"Make Floating Point Value",
{
RddV = (1023ULL - 6) << 52;
RddV += (fHIDE((size8u_t))uiV) << 46;
})
Q6INSN(F2_dfimm_n,"Rdd32=dfmake(#u10):neg",ATTRIBS(),
"Make Floating Point Value",
{
RddV = (1023ULL - 6) << 52;
RddV += (fHIDE((size8u_t))uiV) << 46;
RddV |= ((1ULL) << 63);
})
/* CONVERSION */
#define CONVERT(TAG,DEST,DESTV,SRC,SRCV,OUTCAST,OUTTYPE,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
Q6INSN(F2_conv_##TAG##MODETAG,#DEST"=convert_"#TAG"("#SRC")"#MODESYN,ATTRIBS(), \
"Floating point format conversion", \
{ MODEBEH DESTV = OUTCAST(conv_##INTYPE##_to_##OUTTYPE(INCAST(SRCV))); })
CONVERT(sf2df,Rdd32,RddV,Rs32,RsV,fUNDOUBLE,df,fFLOAT,sf,,,)
CONVERT(df2sf,Rd32,RdV,Rss32,RssV,fUNFLOAT,sf,fDOUBLE,df,,,)
#define ALLINTDST(TAGSTART,SRC,SRCV,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##uw,Rd32,RdV,SRC,SRCV,fCAST4u,4u,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##w,Rd32,RdV,SRC,SRCV,fCAST4s,4s,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##ud,Rdd32,RddV,SRC,SRCV,fCAST8u,8u,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##d,Rdd32,RddV,SRC,SRCV,fCAST8s,8s,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH)
#define ALLFPDST(TAGSTART,SRC,SRCV,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##sf,Rd32,RdV,SRC,SRCV,fUNFLOAT,sf,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##df,Rdd32,RddV,SRC,SRCV,fUNDOUBLE,df,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH)
#define ALLINTSRC(GEN,MODETAG,MODESYN,MODEBEH) \
GEN(uw##2,Rs32,RsV,fCAST4u,4u,MODETAG,MODESYN,MODEBEH) \
GEN(w##2,Rs32,RsV,fCAST4s,4s,MODETAG,MODESYN,MODEBEH) \
GEN(ud##2,Rss32,RssV,fCAST8u,8u,MODETAG,MODESYN,MODEBEH) \
GEN(d##2,Rss32,RssV,fCAST8s,8s,MODETAG,MODESYN,MODEBEH)
#define ALLFPSRC(GEN,MODETAG,MODESYN,MODEBEH) \
GEN(sf##2,Rs32,RsV,fFLOAT,sf,MODETAG,MODESYN,MODEBEH) \
GEN(df##2,Rss32,RssV,fDOUBLE,df,MODETAG,MODESYN,MODEBEH)
ALLINTSRC(ALLFPDST,,,)
ALLFPSRC(ALLINTDST,,,)
ALLFPSRC(ALLINTDST,_chop,:chop,fFPSETROUND_CHOP();)

View File

@ -0,0 +1,51 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* DEF_*(TYPE,SLOTS,UNITS) */
DEF_PP_ICLASS32(EXTENDER,0123,LDST|SUNIT|MUNIT) /* 0 */
DEF_PP_ICLASS32(CJ,0123,CTRLFLOW) /* 1 */
DEF_PP_ICLASS32(NCJ,01,LDST|CTRLFLOW) /* 2 */
DEF_PP_ICLASS32(V4LDST,01,LDST) /* 3 */
DEF_PP_ICLASS32(V2LDST,01,LDST) /* 4 */
DEF_PP_ICLASS32(J,0123,CTRLFLOW) /* 5 */
DEF_PP_ICLASS32(CR,3,SUNIT) /* 6 */
DEF_PP_ICLASS32(ALU32_2op,0123,LDST|SUNIT|MUNIT) /* 7 */
DEF_PP_ICLASS32(S_2op,23,SUNIT|MUNIT) /* 8 */
DEF_PP_ICLASS32(LD,01,LDST) /* 9 */
DEF_PP_ICLASS32(ST,01,LDST) /* 10 */
DEF_PP_ICLASS32(ALU32_ADDI,0123,LDST|SUNIT|MUNIT) /* 11 */
DEF_PP_ICLASS32(S_3op,23,SUNIT|MUNIT) /* 12 */
DEF_PP_ICLASS32(ALU64,23,SUNIT|MUNIT) /* 13 */
DEF_PP_ICLASS32(M,23,SUNIT|MUNIT) /* 14 */
DEF_PP_ICLASS32(ALU32_3op,0123,LDST|SUNIT|MUNIT) /* 15 */
DEF_EE_ICLASS32(EE0,01,INVALID) /* 0 */
DEF_EE_ICLASS32(EE1,01,INVALID) /* 1 */
DEF_EE_ICLASS32(EE2,01,INVALID) /* 2 */
DEF_EE_ICLASS32(EE3,01,INVALID) /* 3 */
DEF_EE_ICLASS32(EE4,01,INVALID) /* 4 */
DEF_EE_ICLASS32(EE5,01,INVALID) /* 5 */
DEF_EE_ICLASS32(EE6,01,INVALID) /* 6 */
DEF_EE_ICLASS32(EE7,01,INVALID) /* 7 */
DEF_EE_ICLASS32(EE8,01,INVALID) /* 8 */
DEF_EE_ICLASS32(EE9,01,INVALID) /* 9 */
DEF_EE_ICLASS32(EEA,01,INVALID) /* 10 */
DEF_EE_ICLASS32(EEB,01,INVALID) /* 11 */
DEF_EE_ICLASS32(EEC,01,INVALID) /* 12 */
DEF_EE_ICLASS32(EED,01,INVALID) /* 13 */
DEF_EE_ICLASS32(EEE,01,INVALID) /* 14 */
DEF_EE_ICLASS32(EEF,01,INVALID) /* 15 */

View File

@ -0,0 +1,286 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Load and Store instruction definitions
*/
/* The set of addressing modes standard to all Load instructions */
#define STD_LD_AMODES(TAG,OPER,DESCR,ATTRIB,SHFT,SEMANTICS,SCALE)\
Q6INSN(L2_##TAG##_io, OPER"(Rs32+#s11:"SHFT")", ATTRIB,DESCR,{fIMMEXT(siV); fEA_RI(RsV,siV); SEMANTICS; })\
Q6INSN(L4_##TAG##_ur, OPER"(Rt32<<#u2+#U6)", ATTRIB,DESCR,{fMUST_IMMEXT(UiV); fEA_IRs(UiV,RtV,uiV); SEMANTICS;})\
Q6INSN(L4_##TAG##_ap, OPER"(Re32=#U6)", ATTRIB,DESCR,{fMUST_IMMEXT(UiV); fEA_IMM(UiV); SEMANTICS; ReV=UiV; })\
Q6INSN(L2_##TAG##_pr, OPER"(Rx32++Mu2)", ATTRIB,DESCR,{fEA_REG(RxV); fPM_M(RxV,MuV); SEMANTICS;})\
Q6INSN(L2_##TAG##_pi, OPER"(Rx32++#s4:"SHFT")", ATTRIB,DESCR,{fEA_REG(RxV); fPM_I(RxV,siV); SEMANTICS;})\
/* The set of 32-bit load instructions */
STD_LD_AMODES(loadrub,"Rd32=memub","Load Unsigned Byte",ATTRIBS(A_LOAD),"0",fLOAD(1,1,u,EA,RdV),0)
STD_LD_AMODES(loadrb, "Rd32=memb", "Load signed Byte",ATTRIBS(A_LOAD),"0",fLOAD(1,1,s,EA,RdV),0)
STD_LD_AMODES(loadruh,"Rd32=memuh","Load unsigned Half integer",ATTRIBS(A_LOAD),"1",fLOAD(1,2,u,EA,RdV),1)
STD_LD_AMODES(loadrh, "Rd32=memh", "Load signed Half integer",ATTRIBS(A_LOAD),"1",fLOAD(1,2,s,EA,RdV),1)
STD_LD_AMODES(loadri, "Rd32=memw", "Load Word",ATTRIBS(A_LOAD),"2",fLOAD(1,4,u,EA,RdV),2)
STD_LD_AMODES(loadrd, "Rdd32=memd","Load Double integer",ATTRIBS(A_LOAD),"3",fLOAD(1,8,u,EA,RddV),3)
/* The set of addressing modes standard to all Store instructions */
#define STD_ST_AMODES(TAG,DEST,OPER,DESCR,ATTRIB,SHFT,SEMANTICS,SCALE)\
Q6INSN(S2_##TAG##_io, OPER"(Rs32+#s11:"SHFT")="DEST, ATTRIB,DESCR,{fIMMEXT(siV); fEA_RI(RsV,siV); SEMANTICS; })\
Q6INSN(S2_##TAG##_pi, OPER"(Rx32++#s4:"SHFT")="DEST, ATTRIB,DESCR,{fEA_REG(RxV); fPM_I(RxV,siV); SEMANTICS; })\
Q6INSN(S4_##TAG##_ap, OPER"(Re32=#U6)="DEST, ATTRIB,DESCR,{fMUST_IMMEXT(UiV); fEA_IMM(UiV); SEMANTICS; ReV=UiV; })\
Q6INSN(S2_##TAG##_pr, OPER"(Rx32++Mu2)="DEST, ATTRIB,DESCR,{fEA_REG(RxV); fPM_M(RxV,MuV); SEMANTICS; })\
Q6INSN(S4_##TAG##_ur, OPER"(Ru32<<#u2+#U6)="DEST, ATTRIB,DESCR,{fMUST_IMMEXT(UiV); fEA_IRs(UiV,RuV,uiV); SEMANTICS;})\
/* The set of 32-bit store instructions */
STD_ST_AMODES(storerb, "Rt32", "memb","Store Byte",ATTRIBS(A_STORE),"0",fSTORE(1,1,EA,fGETBYTE(0,RtV)),0)
STD_ST_AMODES(storerh, "Rt32", "memh","Store Half integer",ATTRIBS(A_STORE),"1",fSTORE(1,2,EA,fGETHALF(0,RtV)),1)
STD_ST_AMODES(storerf, "Rt.H32", "memh","Store Upper Half integer",ATTRIBS(A_STORE),"1",fSTORE(1,2,EA,fGETHALF(1,RtV)),1)
STD_ST_AMODES(storeri, "Rt32", "memw","Store Word",ATTRIBS(A_STORE),"2",fSTORE(1,4,EA,RtV),2)
STD_ST_AMODES(storerd, "Rtt32","memd","Store Double integer",ATTRIBS(A_STORE),"3",fSTORE(1,8,EA,RttV),3)
STD_ST_AMODES(storerinew, "Nt8.new", "memw","Store Word",ATTRIBS(A_STORE),"2",fSTORE(1,4,EA,fNEWREG_ST(NtN)),2)
STD_ST_AMODES(storerbnew, "Nt8.new", "memb","Store Byte",ATTRIBS(A_STORE),"0",fSTORE(1,1,EA,fGETBYTE(0,fNEWREG_ST(NtN))),0)
STD_ST_AMODES(storerhnew, "Nt8.new", "memh","Store Half integer",ATTRIBS(A_STORE),"1",fSTORE(1,2,EA,fGETHALF(0,fNEWREG_ST(NtN))),1)
Q6INSN(S2_allocframe,"allocframe(Rx32,#u11:3):raw", ATTRIBS(A_STORE,A_RESTRICT_SLOT0ONLY), "Allocate stack frame",
{ fEA_RI(RxV,-8); fSTORE(1,8,EA,fFRAME_SCRAMBLE((fCAST8_8u(fREAD_LR()) << 32) | fCAST4_4u(fREAD_FP()))); fWRITE_FP(EA); fFRAMECHECK(EA-uiV,EA); RxV = EA-uiV; })
#define A_RETURN A_RESTRICT_SLOT0ONLY
Q6INSN(L2_deallocframe,"Rdd32=deallocframe(Rs32):raw", ATTRIBS(A_LOAD), "Deallocate stack frame",
{ fHIDE(size8u_t tmp;) fEA_REG(RsV);
fLOAD(1,8,u,EA,tmp);
RddV = fFRAME_UNSCRAMBLE(tmp);
fWRITE_SP(EA+8); })
Q6INSN(L4_return,"Rdd32=dealloc_return(Rs32):raw", ATTRIBS(A_JINDIR,A_LOAD,A_RETURN), "Deallocate stack frame and return",
{ fHIDE(size8u_t tmp;) fEA_REG(RsV);
fLOAD(1,8,u,EA,tmp);
RddV = fFRAME_UNSCRAMBLE(tmp);
fWRITE_SP(EA+8);
fJUMPR(REG_LR,fGETWORD(1,RddV),COF_TYPE_JUMPR);})
#define CONDSEM(SRCREG,STALLBITS0,STALLBITS1,PREDFUNC,PREDARG,STALLSPEC,PREDCOND) \
{ \
fHIDE(size8u_t tmp;) \
fBRANCH_SPECULATE_STALL(PREDFUNC##PREDCOND(PREDARG),,STALLSPEC,STALLBITS0,STALLBITS1); \
fEA_REG(SRCREG); \
if (PREDFUNC##PREDCOND(PREDARG)) { \
fLOAD(1,8,u,EA,tmp); \
RddV = fFRAME_UNSCRAMBLE(tmp); \
fWRITE_SP(EA+8); \
fJUMPR(REG_LR,fGETWORD(1,RddV),COF_TYPE_JUMPR); \
} else { \
LOAD_CANCEL(EA); \
} \
}
#define COND_RETURN_TF(TG,TG2,DOTNEW,STALLBITS0,STALLBITS1,STALLSPEC,ATTRIBS,PREDFUNC,PREDARG,T_NT) \
Q6INSN(TG##_t##TG2,"if (Pv4"DOTNEW") Rdd32=dealloc_return(Rs32)"T_NT":raw",ATTRIBS,"deallocate stack frame and return", \
CONDSEM(RsV,STALLBITS0,STALLBITS1,PREDFUNC,PREDARG,STALLSPEC,)) \
Q6INSN(TG##_f##TG2,"if (!Pv4"DOTNEW") Rdd32=dealloc_return(Rs32)"T_NT":raw",ATTRIBS,"deallocate stack frame and return", \
CONDSEM(RsV,STALLBITS0,STALLBITS1,PREDFUNC##NOT,PREDARG,STALLSPEC,))
#define COND_RETURN_NEW(TG,STALLBITS0,STALLBITS1,ATTRIBS) \
COND_RETURN_TF(TG,new_pt,".new",12,0,SPECULATE_TAKEN,ATTRIBS,fLSBNEW,PvN,":t") \
COND_RETURN_TF(TG,new_pnt,".new",12,0,SPECULATE_NOT_TAKEN,ATTRIBS,fLSBNEW,PvN,":nt") \
#define RETURN_ATTRIBS A_LOAD,A_RETURN
COND_RETURN_TF(L4_return,,,7,0,SPECULATE_NOT_TAKEN,ATTRIBS(RETURN_ATTRIBS,A_JINDIROLD),fLSBOLD,PvV,)
COND_RETURN_NEW(L4_return,12,0,ATTRIBS(RETURN_ATTRIBS,A_JINDIRNEW))
Q6INSN(L2_loadw_locked,"Rd32=memw_locked(Rs32)", ATTRIBS(A_LOAD,A_RESTRICT_SLOT0ONLY), "Load word with lock",
{ fEA_REG(RsV); fLOAD_LOCKED(1,4,u,EA,RdV) })
Q6INSN(S2_storew_locked,"memw_locked(Rs32,Pd4)=Rt32", ATTRIBS(A_STORE,A_RESTRICT_SLOT0ONLY), "Store word with lock",
{ fEA_REG(RsV); fSTORE_LOCKED(1,4,EA,RtV,PdV) })
Q6INSN(L4_loadd_locked,"Rdd32=memd_locked(Rs32)", ATTRIBS(A_LOAD,A_RESTRICT_SLOT0ONLY), "Load double with lock",
{ fEA_REG(RsV); fLOAD_LOCKED(1,8,u,EA,RddV) })
Q6INSN(S4_stored_locked,"memd_locked(Rs32,Pd4)=Rtt32", ATTRIBS(A_STORE,A_RESTRICT_SLOT0ONLY), "Store word with lock",
{ fEA_REG(RsV); fSTORE_LOCKED(1,8,EA,RttV,PdV) })
/*****************************************************************/
/* */
/* Predicated LDST */
/* */
/*****************************************************************/
#define STD_PLD_AMODES(TAG,OPER,DESCR,ATTRIB,SHFT,SHFTNUM,SEMANTICS)\
Q6INSN(L4_##TAG##_rr, OPER"(Rs32+Rt32<<#u2)", ATTRIB,DESCR,{fEA_RRs(RsV,RtV,uiV); SEMANTICS;})\
Q6INSN(L2_p##TAG##t_io, "if (Pt4) "OPER"(Rs32+#u6:"SHFT")", ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if(fLSBOLD(PtV)){SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##t_pi, "if (Pt4) "OPER"(Rx32++#s4:"SHFT")", ATTRIB,DESCR,{fEA_REG(RxV); if(fLSBOLD(PtV)){ fPM_I(RxV,siV); SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##f_io, "if (!Pt4) "OPER"(Rs32+#u6:"SHFT")", ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if(fLSBOLDNOT(PtV)){ SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##f_pi, "if (!Pt4) "OPER"(Rx32++#s4:"SHFT")", ATTRIB,DESCR,{fEA_REG(RxV); if(fLSBOLDNOT(PtV)){ fPM_I(RxV,siV); SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##tnew_io,"if (Pt4.new) "OPER"(Rs32+#u6:"SHFT")",ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if (fLSBNEW(PtN)) { SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##fnew_io,"if (!Pt4.new) "OPER"(Rs32+#u6:"SHFT")",ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if (fLSBNEWNOT(PtN)) { SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##t_rr, "if (Pv4) "OPER"(Rs32+Rt32<<#u2)", ATTRIB,DESCR,{fEA_RRs(RsV,RtV,uiV); if(fLSBOLD(PvV)){ SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##f_rr, "if (!Pv4) "OPER"(Rs32+Rt32<<#u2)", ATTRIB,DESCR,{fEA_RRs(RsV,RtV,uiV); if(fLSBOLDNOT(PvV)){ SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##tnew_rr,"if (Pv4.new) "OPER"(Rs32+Rt32<<#u2)",ATTRIB,DESCR,{fEA_RRs(RsV,RtV,uiV); if (fLSBNEW(PvN)) { SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##fnew_rr,"if (!Pv4.new) "OPER"(Rs32+Rt32<<#u2)",ATTRIB,DESCR,{fEA_RRs(RsV,RtV,uiV); if (fLSBNEWNOT(PvN)) { SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##tnew_pi, "if (Pt4.new) "OPER"(Rx32++#s4:"SHFT")", ATTRIB,DESCR,{fEA_REG(RxV); if(fLSBNEW(PtN)){ fPM_I(RxV,siV); SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L2_p##TAG##fnew_pi, "if (!Pt4.new) "OPER"(Rx32++#s4:"SHFT")", ATTRIB,DESCR,{fEA_REG(RxV); if(fLSBNEWNOT(PtN)){ fPM_I(RxV,siV); SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##t_abs, "if (Pt4) "OPER"(#u6)", ATTRIB,DESCR,{fMUST_IMMEXT(uiV); fEA_IMM(uiV); if(fLSBOLD(PtV)){ SEMANTICS;} else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##f_abs, "if (!Pt4) "OPER"(#u6)", ATTRIB,DESCR,{fMUST_IMMEXT(uiV); fEA_IMM(uiV); if(fLSBOLDNOT(PtV)){ SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##tnew_abs,"if (Pt4.new) "OPER"(#u6)",ATTRIB,DESCR,{fMUST_IMMEXT(uiV); fEA_IMM(uiV);if (fLSBNEW(PtN)) { SEMANTICS; } else {LOAD_CANCEL(EA);}})\
Q6INSN(L4_p##TAG##fnew_abs,"if (!Pt4.new) "OPER"(#u6)",ATTRIB,DESCR,{fMUST_IMMEXT(uiV); fEA_IMM(uiV);if (fLSBNEWNOT(PtN)) { SEMANTICS; } else {LOAD_CANCEL(EA);}})
/* The set of 32-bit predicated load instructions */
STD_PLD_AMODES(loadrub,"Rd32=memub","Load Unsigned Byte",ATTRIBS(A_ARCHV2,A_LOAD),"0",0,fLOAD(1,1,u,EA,RdV))
STD_PLD_AMODES(loadrb, "Rd32=memb", "Load signed Byte",ATTRIBS(A_ARCHV2,A_LOAD),"0",0,fLOAD(1,1,s,EA,RdV))
STD_PLD_AMODES(loadruh,"Rd32=memuh","Load unsigned Half integer",ATTRIBS(A_ARCHV2,A_LOAD),"1",1,fLOAD(1,2,u,EA,RdV))
STD_PLD_AMODES(loadrh, "Rd32=memh", "Load signed Half integer",ATTRIBS(A_ARCHV2,A_LOAD),"1",1,fLOAD(1,2,s,EA,RdV))
STD_PLD_AMODES(loadri, "Rd32=memw", "Load Word",ATTRIBS(A_ARCHV2,A_LOAD),"2",2,fLOAD(1,4,u,EA,RdV))
STD_PLD_AMODES(loadrd, "Rdd32=memd","Load Double integer",ATTRIBS(A_ARCHV2,A_LOAD),"3",3,fLOAD(1,8,u,EA,RddV))
/* The set of addressing modes standard to all predicated store instructions */
#define STD_PST_AMODES(TAG,DEST,OPER,DESCR,ATTRIB,SHFT,SHFTNUM,SEMANTICS)\
Q6INSN(S4_##TAG##_rr, OPER"(Rs32+Ru32<<#u2)="DEST, ATTRIB,DESCR,{fEA_RRs(RsV,RuV,uiV); SEMANTICS;})\
Q6INSN(S2_p##TAG##t_io, "if (Pv4) "OPER"(Rs32+#u6:"SHFT")="DEST, ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if (fLSBOLD(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S2_p##TAG##t_pi, "if (Pv4) "OPER"(Rx32++#s4:"SHFT")="DEST, ATTRIB,DESCR,{fEA_REG(RxV); if (fLSBOLD(PvV)){ fPM_I(RxV,siV); SEMANTICS;} else {STORE_CANCEL(EA);}})\
Q6INSN(S2_p##TAG##f_io, "if (!Pv4) "OPER"(Rs32+#u6:"SHFT")="DEST, ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if (fLSBOLDNOT(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S2_p##TAG##f_pi, "if (!Pv4) "OPER"(Rx32++#s4:"SHFT")="DEST, ATTRIB,DESCR,{fEA_REG(RxV); if (fLSBOLDNOT(PvV)){ fPM_I(RxV,siV); SEMANTICS;} else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##t_rr, "if (Pv4) "OPER"(Rs32+Ru32<<#u2)="DEST, ATTRIB,DESCR,{fEA_RRs(RsV,RuV,uiV); if (fLSBOLD(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##f_rr, "if (!Pv4) "OPER"(Rs32+Ru32<<#u2)="DEST, ATTRIB,DESCR,{fEA_RRs(RsV,RuV,uiV); if (fLSBOLDNOT(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##tnew_io,"if (Pv4.new) "OPER"(Rs32+#u6:"SHFT")="DEST,ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if ( fLSBNEW(PvN)) { SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##fnew_io,"if (!Pv4.new) "OPER"(Rs32+#u6:"SHFT")="DEST,ATTRIB,DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); if (fLSBNEWNOT(PvN)) { SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##tnew_rr,"if (Pv4.new) "OPER"(Rs32+Ru32<<#u2)="DEST,ATTRIB,DESCR,{fEA_RRs(RsV,RuV,uiV); if ( fLSBNEW(PvN)) { SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##fnew_rr,"if (!Pv4.new) "OPER"(Rs32+Ru32<<#u2)="DEST,ATTRIB,DESCR,{fEA_RRs(RsV,RuV,uiV); if (fLSBNEWNOT(PvN)) { SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S2_p##TAG##tnew_pi, "if (Pv4.new) "OPER"(Rx32++#s4:"SHFT")="DEST, ATTRIB,DESCR,{fEA_REG(RxV); if (fLSBNEW(PvN)){ fPM_I(RxV,siV); SEMANTICS;} else {STORE_CANCEL(EA);}})\
Q6INSN(S2_p##TAG##fnew_pi, "if (!Pv4.new) "OPER"(Rx32++#s4:"SHFT")="DEST, ATTRIB,DESCR,{fEA_REG(RxV); if (fLSBNEWNOT(PvN)){ fPM_I(RxV,siV); SEMANTICS;} else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##t_abs, "if (Pv4) "OPER"(#u6)="DEST, ATTRIB,DESCR,{fMUST_IMMEXT(uiV); fEA_IMM(uiV); if (fLSBOLD(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##f_abs, "if (!Pv4) "OPER"(#u6)="DEST, ATTRIB,DESCR,{fMUST_IMMEXT(uiV);fEA_IMM(uiV); if (fLSBOLDNOT(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##tnew_abs,"if (Pv4.new) "OPER"(#u6)="DEST,ATTRIB,DESCR,{fMUST_IMMEXT(uiV);fEA_IMM(uiV); if ( fLSBNEW(PvN)) { SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_p##TAG##fnew_abs,"if (!Pv4.new) "OPER"(#u6)="DEST,ATTRIB,DESCR,{fMUST_IMMEXT(uiV);fEA_IMM(uiV); if (fLSBNEWNOT(PvN)) { SEMANTICS; } else {STORE_CANCEL(EA);}})
/* The set of 32-bit predicated store instructions */
STD_PST_AMODES(storerb,"Rt32","memb","Store Byte",ATTRIBS(A_ARCHV2,A_STORE),"0",0,fSTORE(1,1,EA,fGETBYTE(0,RtV)))
STD_PST_AMODES(storerh,"Rt32","memh","Store Half integer",ATTRIBS(A_ARCHV2,A_STORE),"1",1,fSTORE(1,2,EA,fGETHALF(0,RtV)))
STD_PST_AMODES(storerf,"Rt.H32","memh","Store Upper Half integer",ATTRIBS(A_ARCHV2,A_STORE),"1",1,fSTORE(1,2,EA,fGETHALF(1,RtV)))
STD_PST_AMODES(storeri,"Rt32","memw","Store Word",ATTRIBS(A_ARCHV2,A_STORE),"2",2,fSTORE(1,4,EA,RtV))
STD_PST_AMODES(storerd,"Rtt32","memd","Store Double integer",ATTRIBS(A_ARCHV2,A_STORE),"3",3,fSTORE(1,8,EA,RttV))
STD_PST_AMODES(storerinew,"Nt8.new","memw","Store Word",ATTRIBS(A_ARCHV2,A_STORE),"2",2,fSTORE(1,4,EA,fNEWREG_ST(NtN)))
STD_PST_AMODES(storerbnew,"Nt8.new","memb","Store Byte",ATTRIBS(A_ARCHV2,A_STORE),"0",0,fSTORE(1,1,EA,fGETBYTE(0,fNEWREG_ST(NtN))))
STD_PST_AMODES(storerhnew,"Nt8.new","memh","Store Half integer",ATTRIBS(A_ARCHV2,A_STORE),"1",1,fSTORE(1,2,EA,fGETHALF(0,fNEWREG_ST(NtN))))
/*****************************************************************/
/* */
/* Mem-Ops (Load-op-Store) */
/* */
/*****************************************************************/
/* The set of 32-bit non-predicated mem-ops */
#define STD_MEMOP_AMODES(TAG,OPER,DESCR,SEMANTICS)\
Q6INSN(L4_##TAG##w_io, "memw(Rs32+#u6:2)"OPER, ATTRIBS(A_RESTRICT_SLOT0ONLY),DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); fHIDE(size4s_t tmp;) fLOAD(1,4,s,EA,tmp); SEMANTICS; fSTORE(1,4,EA,tmp); })\
Q6INSN(L4_##TAG##b_io, "memb(Rs32+#u6:0)"OPER, ATTRIBS(A_RESTRICT_SLOT0ONLY),DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); fHIDE(size4s_t tmp;) fLOAD(1,1,s,EA,tmp); SEMANTICS; fSTORE(1,1,EA,tmp); })\
Q6INSN(L4_##TAG##h_io, "memh(Rs32+#u6:1)"OPER, ATTRIBS(A_RESTRICT_SLOT0ONLY),DESCR,{fIMMEXT(uiV); fEA_RI(RsV,uiV); fHIDE(size4s_t tmp;) fLOAD(1,2,s,EA,tmp); SEMANTICS; fSTORE(1,2,EA,tmp); })
STD_MEMOP_AMODES(add_memop, "+=Rt32", "Add Register to Memory Word", tmp += RtV)
STD_MEMOP_AMODES(sub_memop, "-=Rt32", "Sub Register from Memory Word", tmp -= RtV)
STD_MEMOP_AMODES(and_memop, "&=Rt32", "Logical AND Register to Memory Word", tmp &= RtV)
STD_MEMOP_AMODES(or_memop, "|=Rt32", "Logical OR Register to Memory Word", tmp |= RtV)
STD_MEMOP_AMODES(iadd_memop, "+=#U5", "Add Immediate to Memory Word", tmp += UiV)
STD_MEMOP_AMODES(isub_memop, "-=#U5", "Sub Immediate to Memory Word", tmp -= UiV)
STD_MEMOP_AMODES(iand_memop, "=clrbit(#U5)", "Clear a bit in memory", tmp &= (~(1<<UiV)))
STD_MEMOP_AMODES(ior_memop, "=setbit(#U5)", "Set a bit in memory", tmp |= (1<<UiV))
/*****************************************************************/
/* */
/* V4 store immediates */
/* */
/*****************************************************************/
/* Predicated Store immediates */
#define V4_PSTI_AMODES(TAG,DEST,OPER,DESCR,ATTRIB,SHFT,SEMANTICS)\
Q6INSN(S4_##TAG##t_io,"if (Pv4) "OPER"(Rs32+#u6:"SHFT")="DEST,ATTRIB,DESCR,{fEA_RI(RsV,uiV); if (fLSBOLD(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_##TAG##f_io,"if (!Pv4) "OPER"(Rs32+#u6:"SHFT")="DEST,ATTRIB,DESCR,{fEA_RI(RsV,uiV); if (fLSBOLDNOT(PvV)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_##TAG##tnew_io,"if (Pv4.new) "OPER"(Rs32+#u6:"SHFT")="DEST,ATTRIB,DESCR,{fEA_RI(RsV,uiV); if (fLSBNEW(PvN)){ SEMANTICS; } else {STORE_CANCEL(EA);}})\
Q6INSN(S4_##TAG##fnew_io,"if (!Pv4.new) "OPER"(Rs32+#u6:"SHFT")="DEST,ATTRIB,DESCR,{fEA_RI(RsV,uiV); if (fLSBNEWNOT(PvN)){ SEMANTICS; } else {STORE_CANCEL(EA);}})
/* The set of 32-bit store immediate instructions */
V4_PSTI_AMODES(storeirb,"#S6","memb","Store Immediate Byte",ATTRIBS(A_ARCHV2,A_STORE),"0",fIMMEXT(SiV); fSTORE(1,1,EA,SiV))
V4_PSTI_AMODES(storeirh,"#S6","memh","Store Immediate Half integer",ATTRIBS(A_ARCHV2,A_STORE),"1",fIMMEXT(SiV); fSTORE(1,2,EA,SiV))
V4_PSTI_AMODES(storeiri,"#S6","memw","Store Immediate Word",ATTRIBS(A_ARCHV2,A_STORE),"2",fIMMEXT(SiV); fSTORE(1,4,EA,SiV))
/* Non-predicated store immediates */
#define V4_STI_AMODES(TAG,DEST,OPER,DESCR,ATTRIB,SHFT,SEMANTICS)\
Q6INSN(S4_##TAG##_io, OPER"(Rs32+#u6:"SHFT")="DEST, ATTRIB,DESCR,{fEA_RI(RsV,uiV); SEMANTICS; })
/* The set of 32-bit store immediate instructions */
V4_STI_AMODES(storeirb,"#S8","memb","Store Immediate Byte",ATTRIBS(A_ARCHV2,A_STORE),"0",fIMMEXT(SiV); fSTORE(1,1,EA,SiV))
V4_STI_AMODES(storeirh,"#S8","memh","Store Immediate Half integer",ATTRIBS(A_ARCHV2,A_STORE),"1",fIMMEXT(SiV); fSTORE(1,2,EA,SiV))
V4_STI_AMODES(storeiri,"#S8","memw","Store Immediate Word",ATTRIBS(A_ARCHV2,A_STORE),"2",fIMMEXT(SiV); fSTORE(1,4,EA,SiV))
/*****************************************************************/
/* */
/* V2 GP-relative LD/ST */
/* */
/*****************************************************************/
#define STD_GPLD_AMODES(TAG,OPER,DESCR,ATTRIB,SHFT,SEMANTICS)\
Q6INSN(L2_##TAG##gp, OPER"(gp+#u16:"SHFT")", ATTRIB,DESCR,{fIMMEXT(uiV); fEA_GPI(uiV); SEMANTICS; })
/* The set of 32-bit load instructions */
STD_GPLD_AMODES(loadrub,"Rd32=memub","Load Unsigned Byte",ATTRIBS(A_LOAD,A_ARCHV2),"0",fLOAD(1,1,u,EA,RdV))
STD_GPLD_AMODES(loadrb, "Rd32=memb", "Load signed Byte",ATTRIBS(A_LOAD,A_ARCHV2),"0",fLOAD(1,1,s,EA,RdV))
STD_GPLD_AMODES(loadruh,"Rd32=memuh","Load unsigned Half integer",ATTRIBS(A_LOAD,A_ARCHV2),"1",fLOAD(1,2,u,EA,RdV))
STD_GPLD_AMODES(loadrh, "Rd32=memh", "Load signed Half integer",ATTRIBS(A_LOAD,A_ARCHV2),"1",fLOAD(1,2,s,EA,RdV))
STD_GPLD_AMODES(loadri, "Rd32=memw", "Load Word",ATTRIBS(A_LOAD,A_ARCHV2),"2",fLOAD(1,4,u,EA,RdV))
STD_GPLD_AMODES(loadrd, "Rdd32=memd","Load Double integer",ATTRIBS(A_LOAD,A_ARCHV2),"3",fLOAD(1,8,u,EA,RddV))
#define STD_GPST_AMODES(TAG,DEST,OPER,DESCR,ATTRIB,SHFT,SEMANTICS)\
Q6INSN(S2_##TAG##gp, OPER"(gp+#u16:"SHFT")="DEST, ATTRIB,DESCR,{fIMMEXT(uiV); fEA_GPI(uiV); SEMANTICS; })
/* The set of 32-bit store instructions */
STD_GPST_AMODES(storerb, "Rt32", "memb","Store Byte",ATTRIBS(A_STORE,A_ARCHV2),"0",fSTORE(1,1,EA,fGETBYTE(0,RtV)))
STD_GPST_AMODES(storerh, "Rt32", "memh","Store Half integer",ATTRIBS(A_STORE,A_ARCHV2),"1",fSTORE(1,2,EA,fGETHALF(0,RtV)))
STD_GPST_AMODES(storerf, "Rt.H32", "memh","Store Upper Half integer",ATTRIBS(A_STORE,A_ARCHV2),"1",fSTORE(1,2,EA,fGETHALF(1,RtV)))
STD_GPST_AMODES(storeri, "Rt32", "memw","Store Word",ATTRIBS(A_STORE,A_ARCHV2),"2",fSTORE(1,4,EA,RtV))
STD_GPST_AMODES(storerd, "Rtt32","memd","Store Double integer",ATTRIBS(A_STORE,A_ARCHV2),"3",fSTORE(1,8,EA,RttV))
STD_GPST_AMODES(storerinew, "Nt8.new", "memw","Store Word",ATTRIBS(A_STORE,A_ARCHV2),"2",fSTORE(1,4,EA,fNEWREG_ST(NtN)))
STD_GPST_AMODES(storerbnew, "Nt8.new", "memb","Store Byte",ATTRIBS(A_STORE,A_ARCHV2),"0",fSTORE(1,1,EA,fGETBYTE(0,fNEWREG_ST(NtN))))
STD_GPST_AMODES(storerhnew, "Nt8.new", "memh","Store Half integer",ATTRIBS(A_STORE,A_ARCHV2),"1",fSTORE(1,2,EA,fGETHALF(0,fNEWREG_ST(NtN))))

1531
target/hexagon/imported/macros.def Executable file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,149 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* sub-instructions
*/
/*****************************************************************/
/* */
/* A-type subinsns */
/* */
/*****************************************************************/
Q6INSN(SA1_addi, "Rx16=add(Rx16,#s7)", ATTRIBS(A_SUBINSN),"Add", { fIMMEXT(siV); RxV=RxV+siV;})
Q6INSN(SA1_tfr, "Rd16=Rs16", ATTRIBS(A_SUBINSN),"Tfr", { RdV=RsV;})
Q6INSN(SA1_seti, "Rd16=#u6", ATTRIBS(A_SUBINSN),"Set immed", { fIMMEXT(uiV); RdV=uiV;})
Q6INSN(SA1_setin1, "Rd16=#-1", ATTRIBS(A_SUBINSN),"Set to -1", { RdV=-1;})
Q6INSN(SA1_clrtnew, "if (p0.new) Rd16=#0", ATTRIBS(A_SUBINSN),"clear if true", { if (fLSBNEW0) {RdV=0;} else {CANCEL;} })
Q6INSN(SA1_clrfnew, "if (!p0.new) Rd16=#0", ATTRIBS(A_SUBINSN),"clear if false",{ if (fLSBNEW0NOT) {RdV=0;} else {CANCEL;} })
Q6INSN(SA1_clrt, "if (p0) Rd16=#0", ATTRIBS(A_SUBINSN),"clear if true", { if (fLSBOLD(fREAD_P0())) {RdV=0;} else {CANCEL;} })
Q6INSN(SA1_clrf, "if (!p0) Rd16=#0", ATTRIBS(A_SUBINSN),"clear if false",{ if (fLSBOLDNOT(fREAD_P0())) {RdV=0;} else {CANCEL;} })
Q6INSN(SA1_addsp, "Rd16=add(r29,#u6:2)", ATTRIBS(A_SUBINSN),"Add", { RdV=fREAD_SP()+uiV; })
Q6INSN(SA1_inc, "Rd16=add(Rs16,#1)", ATTRIBS(A_SUBINSN),"Inc", { RdV=RsV+1;})
Q6INSN(SA1_dec, "Rd16=add(Rs16,#-1)", ATTRIBS(A_SUBINSN),"Dec", { RdV=RsV-1;})
Q6INSN(SA1_addrx, "Rx16=add(Rx16,Rs16)", ATTRIBS(A_SUBINSN),"Add", { RxV=RxV+RsV; })
Q6INSN(SA1_zxtb, "Rd16=and(Rs16,#255)", ATTRIBS(A_SUBINSN),"Zxtb", { RdV= fZXTN(8,32,RsV);})
Q6INSN(SA1_and1, "Rd16=and(Rs16,#1)", ATTRIBS(A_SUBINSN),"And #1", { RdV= RsV&1;})
Q6INSN(SA1_sxtb, "Rd16=sxtb(Rs16)", ATTRIBS(A_SUBINSN),"Sxtb", { RdV= fSXTN(8,32,RsV);})
Q6INSN(SA1_zxth, "Rd16=zxth(Rs16)", ATTRIBS(A_SUBINSN),"Zxth", { RdV= fZXTN(16,32,RsV);})
Q6INSN(SA1_sxth, "Rd16=sxth(Rs16)", ATTRIBS(A_SUBINSN),"Sxth", { RdV= fSXTN(16,32,RsV);})
Q6INSN(SA1_combinezr,"Rdd8=combine(#0,Rs16)", ATTRIBS(A_SUBINSN),"Combines", { fSETWORD(0,RddV,RsV); fSETWORD(1,RddV,0); })
Q6INSN(SA1_combinerz,"Rdd8=combine(Rs16,#0)", ATTRIBS(A_SUBINSN),"Combines", { fSETWORD(0,RddV,0); fSETWORD(1,RddV,RsV); })
Q6INSN(SA1_combine0i,"Rdd8=combine(#0,#u2)", ATTRIBS(A_SUBINSN),"Combines", { fSETWORD(0,RddV,uiV); fSETWORD(1,RddV,0); })
Q6INSN(SA1_combine1i,"Rdd8=combine(#1,#u2)", ATTRIBS(A_SUBINSN),"Combines", { fSETWORD(0,RddV,uiV); fSETWORD(1,RddV,1); })
Q6INSN(SA1_combine2i,"Rdd8=combine(#2,#u2)", ATTRIBS(A_SUBINSN),"Combines", { fSETWORD(0,RddV,uiV); fSETWORD(1,RddV,2); })
Q6INSN(SA1_combine3i,"Rdd8=combine(#3,#u2)", ATTRIBS(A_SUBINSN),"Combines", { fSETWORD(0,RddV,uiV); fSETWORD(1,RddV,3); })
Q6INSN(SA1_cmpeqi, "p0=cmp.eq(Rs16,#u2)", ATTRIBS(A_SUBINSN),"CompareImmed",{fWRITE_P0(f8BITSOF(RsV==uiV));})
/*****************************************************************/
/* */
/* Ld1/2 subinsns */
/* */
/*****************************************************************/
Q6INSN(SL1_loadri_io, "Rd16=memw(Rs16+#u4:2)", ATTRIBS(A_LOAD,A_SUBINSN),"load word", {fEA_RI(RsV,uiV); fLOAD(1,4,u,EA,RdV);})
Q6INSN(SL1_loadrub_io, "Rd16=memub(Rs16+#u4:0)",ATTRIBS(A_LOAD,A_SUBINSN),"load byte", {fEA_RI(RsV,uiV); fLOAD(1,1,u,EA,RdV);})
Q6INSN(SL2_loadrh_io, "Rd16=memh(Rs16+#u3:1)", ATTRIBS(A_LOAD,A_SUBINSN),"load half", {fEA_RI(RsV,uiV); fLOAD(1,2,s,EA,RdV);})
Q6INSN(SL2_loadruh_io, "Rd16=memuh(Rs16+#u3:1)",ATTRIBS(A_LOAD,A_SUBINSN),"load half", {fEA_RI(RsV,uiV); fLOAD(1,2,u,EA,RdV);})
Q6INSN(SL2_loadrb_io, "Rd16=memb(Rs16+#u3:0)", ATTRIBS(A_LOAD,A_SUBINSN),"load byte", {fEA_RI(RsV,uiV); fLOAD(1,1,s,EA,RdV);})
Q6INSN(SL2_loadri_sp, "Rd16=memw(r29+#u5:2)", ATTRIBS(A_LOAD,A_SUBINSN),"load word", {fEA_RI(fREAD_SP(),uiV); fLOAD(1,4,u,EA,RdV);})
Q6INSN(SL2_loadrd_sp, "Rdd8=memd(r29+#u5:3)", ATTRIBS(A_LOAD,A_SUBINSN),"load dword",{fEA_RI(fREAD_SP(),uiV); fLOAD(1,8,u,EA,RddV);})
Q6INSN(SL2_deallocframe,"deallocframe", ATTRIBS(A_SUBINSN,A_LOAD), "Deallocate stack frame",
{ fHIDE(size8u_t tmp;) fEA_REG(fREAD_FP());
fLOAD(1,8,u,EA,tmp);
tmp = fFRAME_UNSCRAMBLE(tmp);
fWRITE_LR(fGETWORD(1,tmp));
fWRITE_FP(fGETWORD(0,tmp));
fWRITE_SP(EA+8); })
Q6INSN(SL2_return,"dealloc_return", ATTRIBS(A_JINDIR,A_SUBINSN,A_LOAD,A_RETURN,A_RESTRICT_SLOT0ONLY), "Deallocate stack frame and return",
{ fHIDE(size8u_t tmp;) fEA_REG(fREAD_FP());
fLOAD(1,8,u,EA,tmp);
tmp = fFRAME_UNSCRAMBLE(tmp);
fWRITE_LR(fGETWORD(1,tmp));
fWRITE_FP(fGETWORD(0,tmp));
fWRITE_SP(EA+8);
fJUMPR(REG_LR,fGETWORD(1,tmp),COF_TYPE_JUMPR);})
Q6INSN(SL2_return_t,"if (p0) dealloc_return", ATTRIBS(A_JINDIROLD,A_SUBINSN,A_LOAD,A_RETURN,A_RESTRICT_SLOT0ONLY), "Deallocate stack frame and return",
{ fHIDE(size8u_t tmp;); fBRANCH_SPECULATE_STALL(fLSBOLD(fREAD_P0()),, SPECULATE_NOT_TAKEN,4,0); fEA_REG(fREAD_FP()); if (fLSBOLD(fREAD_P0())) { fLOAD(1,8,u,EA,tmp); tmp = fFRAME_UNSCRAMBLE(tmp); fWRITE_LR(fGETWORD(1,tmp)); fWRITE_FP(fGETWORD(0,tmp)); fWRITE_SP(EA+8);
fJUMPR(REG_LR,fGETWORD(1,tmp),COF_TYPE_JUMPR);} else {LOAD_CANCEL(EA);} })
Q6INSN(SL2_return_f,"if (!p0) dealloc_return", ATTRIBS(A_JINDIROLD,A_SUBINSN,A_LOAD,A_RETURN,A_RESTRICT_SLOT0ONLY), "Deallocate stack frame and return",
{ fHIDE(size8u_t tmp;);fBRANCH_SPECULATE_STALL(fLSBOLDNOT(fREAD_P0()),, SPECULATE_NOT_TAKEN,4,0); fEA_REG(fREAD_FP()); if (fLSBOLDNOT(fREAD_P0())) { fLOAD(1,8,u,EA,tmp); tmp = fFRAME_UNSCRAMBLE(tmp); fWRITE_LR(fGETWORD(1,tmp)); fWRITE_FP(fGETWORD(0,tmp)); fWRITE_SP(EA+8);
fJUMPR(REG_LR,fGETWORD(1,tmp),COF_TYPE_JUMPR);} else {LOAD_CANCEL(EA);} })
Q6INSN(SL2_return_tnew,"if (p0.new) dealloc_return:nt", ATTRIBS(A_JINDIRNEW,A_SUBINSN,A_LOAD,A_RETURN,A_RESTRICT_SLOT0ONLY), "Deallocate stack frame and return",
{ fHIDE(size8u_t tmp;) fBRANCH_SPECULATE_STALL(fLSBNEW0,, SPECULATE_NOT_TAKEN , 4,3); fEA_REG(fREAD_FP()); if (fLSBNEW0) { fLOAD(1,8,u,EA,tmp); tmp = fFRAME_UNSCRAMBLE(tmp); fWRITE_LR(fGETWORD(1,tmp)); fWRITE_FP(fGETWORD(0,tmp)); fWRITE_SP(EA+8);
fJUMPR(REG_LR,fGETWORD(1,tmp),COF_TYPE_JUMPR);} else {LOAD_CANCEL(EA);} })
Q6INSN(SL2_return_fnew,"if (!p0.new) dealloc_return:nt", ATTRIBS(A_JINDIRNEW,A_SUBINSN,A_LOAD,A_RETURN,A_RESTRICT_SLOT0ONLY), "Deallocate stack frame and return",
{ fHIDE(size8u_t tmp;) fBRANCH_SPECULATE_STALL(fLSBNEW0NOT,, SPECULATE_NOT_TAKEN , 4,3); fEA_REG(fREAD_FP()); if (fLSBNEW0NOT) { fLOAD(1,8,u,EA,tmp); tmp = fFRAME_UNSCRAMBLE(tmp); fWRITE_LR(fGETWORD(1,tmp)); fWRITE_FP(fGETWORD(0,tmp)); fWRITE_SP(EA+8);
fJUMPR(REG_LR,fGETWORD(1,tmp),COF_TYPE_JUMPR);} else {LOAD_CANCEL(EA);} })
Q6INSN(SL2_jumpr31,"jumpr r31",ATTRIBS(A_SUBINSN,A_JINDIR,A_RESTRICT_SLOT0ONLY),"indirect unconditional jump",
{ fJUMPR(REG_LR,fREAD_LR(),COF_TYPE_JUMPR);})
Q6INSN(SL2_jumpr31_t,"if (p0) jumpr r31",ATTRIBS(A_SUBINSN,A_JINDIROLD,A_RESTRICT_SLOT0ONLY),"indirect conditional jump if true",
{fBRANCH_SPECULATE_STALL(fLSBOLD(fREAD_P0()),, SPECULATE_TAKEN,4,0); if (fLSBOLD(fREAD_P0())) {fJUMPR(REG_LR,fREAD_LR(),COF_TYPE_JUMPR);}})
Q6INSN(SL2_jumpr31_f,"if (!p0) jumpr r31",ATTRIBS(A_SUBINSN,A_JINDIROLD,A_RESTRICT_SLOT0ONLY),"indirect conditional jump if false",
{fBRANCH_SPECULATE_STALL(fLSBOLDNOT(fREAD_P0()),, SPECULATE_TAKEN,4,0); if (fLSBOLDNOT(fREAD_P0())) {fJUMPR(REG_LR,fREAD_LR(),COF_TYPE_JUMPR);}})
Q6INSN(SL2_jumpr31_tnew,"if (p0.new) jumpr:nt r31",ATTRIBS(A_SUBINSN,A_JINDIRNEW,A_RESTRICT_SLOT0ONLY),"indirect conditional jump if true",
{fBRANCH_SPECULATE_STALL(fLSBNEW0,, SPECULATE_NOT_TAKEN , 4,3); if (fLSBNEW0) {fJUMPR(REG_LR,fREAD_LR(),COF_TYPE_JUMPR);}})
Q6INSN(SL2_jumpr31_fnew,"if (!p0.new) jumpr:nt r31",ATTRIBS(A_SUBINSN,A_JINDIRNEW,A_RESTRICT_SLOT0ONLY),"indirect conditional jump if false",
{fBRANCH_SPECULATE_STALL(fLSBNEW0NOT,, SPECULATE_NOT_TAKEN , 4,3); if (fLSBNEW0NOT) {fJUMPR(REG_LR,fREAD_LR(),COF_TYPE_JUMPR);}})
/*****************************************************************/
/* */
/* St1/2 subinsns */
/* */
/*****************************************************************/
Q6INSN(SS1_storew_io, "memw(Rs16+#u4:2)=Rt16", ATTRIBS(A_STORE,A_SUBINSN), "store word", {fEA_RI(RsV,uiV); fSTORE(1,4,EA,RtV);})
Q6INSN(SS1_storeb_io, "memb(Rs16+#u4:0)=Rt16", ATTRIBS(A_STORE,A_SUBINSN), "store byte", {fEA_RI(RsV,uiV); fSTORE(1,1,EA,fGETBYTE(0,RtV));})
Q6INSN(SS2_storeh_io, "memh(Rs16+#u3:1)=Rt16", ATTRIBS(A_STORE,A_SUBINSN), "store half", {fEA_RI(RsV,uiV); fSTORE(1,2,EA,fGETHALF(0,RtV));})
Q6INSN(SS2_stored_sp, "memd(r29+#s6:3)=Rtt8", ATTRIBS(A_STORE,A_SUBINSN), "store dword",{fEA_RI(fREAD_SP(),siV); fSTORE(1,8,EA,RttV);})
Q6INSN(SS2_storew_sp, "memw(r29+#u5:2)=Rt16", ATTRIBS(A_STORE,A_SUBINSN), "store word", {fEA_RI(fREAD_SP(),uiV); fSTORE(1,4,EA,RtV);})
Q6INSN(SS2_storewi0, "memw(Rs16+#u4:2)=#0", ATTRIBS(A_STORE,A_SUBINSN), "store word", {fEA_RI(RsV,uiV); fSTORE(1,4,EA,0);})
Q6INSN(SS2_storebi0, "memb(Rs16+#u4:0)=#0", ATTRIBS(A_STORE,A_SUBINSN), "store byte", {fEA_RI(RsV,uiV); fSTORE(1,1,EA,0);})
Q6INSN(SS2_storewi1, "memw(Rs16+#u4:2)=#1", ATTRIBS(A_STORE,A_SUBINSN), "store word", {fEA_RI(RsV,uiV); fSTORE(1,4,EA,1);})
Q6INSN(SS2_storebi1, "memb(Rs16+#u4:0)=#1", ATTRIBS(A_STORE,A_SUBINSN), "store byte", {fEA_RI(RsV,uiV); fSTORE(1,1,EA,1);})
Q6INSN(SS2_allocframe,"allocframe(#u5:3)", ATTRIBS(A_SUBINSN,A_STORE,A_RESTRICT_SLOT0ONLY), "Allocate stack frame",
{ fEA_RI(fREAD_SP(),-8); fSTORE(1,8,EA,fFRAME_SCRAMBLE((fCAST8_8u(fREAD_LR()) << 32) | fCAST4_4u(fREAD_FP()))); fWRITE_FP(EA); fFRAMECHECK(EA-uiV,EA); fWRITE_SP(EA-uiV); })

View File

@ -0,0 +1,68 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* System Interface Instructions
*/
/********************************************/
/* User->OS interface */
/********************************************/
Q6INSN(J2_trap0,"trap0(#u8)",ATTRIBS(A_COF),
"Trap to Operating System",
fTRAP(0,uiV);
)
Q6INSN(J2_pause,"pause(#u8)",ATTRIBS(A_COF),
"Enter low-power state for #u8 cycles",{fPAUSE(uiV);})
Q6INSN(Y2_icinva,"icinva(Rs32)",ATTRIBS(A_ICOP,A_ICFLUSHOP),"Instruction Cache Invalidate Address",{fEA_REG(RsV); fICINVA(EA);})
Q6INSN(Y2_isync,"isync",ATTRIBS(),"Memory Synchronization",{fISYNC();})
Q6INSN(Y2_barrier,"barrier",ATTRIBS(A_RESTRICT_SLOT0ONLY),"Memory Barrier",{fBARRIER();})
Q6INSN(Y2_syncht,"syncht",ATTRIBS(A_RESTRICT_SLOT0ONLY),"Memory Synchronization",{fSYNCH();})
Q6INSN(Y2_dcfetchbo,"dcfetch(Rs32+#u11:3)",ATTRIBS(A_RESTRICT_PREFERSLOT0,A_DCFETCH),"Data Cache Prefetch",{fEA_RI(RsV,uiV); fDCFETCH(EA);})
Q6INSN(Y2_dczeroa,"dczeroa(Rs32)",ATTRIBS(A_STORE,A_RESTRICT_SLOT0ONLY,A_DCZEROA),"Zero an aligned 32-byte cacheline",{fEA_REG(RsV); fDCZEROA(EA);})
Q6INSN(Y2_dccleana,"dccleana(Rs32)",ATTRIBS(A_RESTRICT_SLOT0ONLY,A_DCFLUSHOP),"Data Cache Clean Address",{fEA_REG(RsV); fDCCLEANA(EA);})
Q6INSN(Y2_dccleaninva,"dccleaninva(Rs32)",ATTRIBS(A_RESTRICT_SLOT0ONLY,A_DCFLUSHOP),"Data Cache Clean and Invalidate Address",{fEA_REG(RsV); fDCCLEANINVA(EA);})
Q6INSN(Y2_dcinva,"dcinva(Rs32)",ATTRIBS(A_RESTRICT_SLOT0ONLY,A_DCFLUSHOP),"Data Cache Invalidate Address",{fEA_REG(RsV); fDCCLEANINVA(EA);})
Q6INSN(Y4_l2fetch,"l2fetch(Rs32,Rt32)",ATTRIBS(A_RESTRICT_SLOT0ONLY),"L2 Cache Prefetch",
{ fL2FETCH(RsV,
(RtV&0xff), /*height*/
((RtV>>8)&0xff), /*width*/
((RtV>>16)&0xffff), /*stride*/
0); /*extra attrib flags*/
})
Q6INSN(Y5_l2fetch,"l2fetch(Rs32,Rtt32)",ATTRIBS(A_RESTRICT_SLOT0ONLY),"L2 Cache Prefetch",
{ fL2FETCH(RsV,
fGETUHALF(0,RttV), /*height*/
fGETUHALF(1,RttV), /*width*/
fGETUHALF(2,RttV), /*stride*/
fGETUHALF(3,RttV)); /*flags*/
})

74
target/hexagon/insn.h Normal file
View File

@ -0,0 +1,74 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_INSN_H
#define HEXAGON_INSN_H
#include "cpu.h"
#define INSTRUCTIONS_MAX 7 /* 2 pairs + loopend */
#define REG_OPERANDS_MAX 5
#define IMMEDS_MAX 2
struct Instruction;
struct Packet;
struct DisasContext;
typedef void (*SemanticInsn)(CPUHexagonState *env,
struct DisasContext *ctx,
struct Instruction *insn,
struct Packet *pkt);
struct Instruction {
SemanticInsn generate; /* pointer to genptr routine */
uint8_t regno[REG_OPERANDS_MAX]; /* reg operands including predicates */
uint16_t opcode;
uint32_t iclass:6;
uint32_t slot:3;
uint32_t part1:1; /*
* cmp-jumps are split into two insns.
* set for the compare and clear for the jump
*/
uint32_t extension_valid:1; /* Has a constant extender attached */
uint32_t which_extended:1; /* If has an extender, which immediate */
uint32_t is_endloop:1; /* This is an end of loop */
uint32_t new_value_producer_slot:4;
int32_t immed[IMMEDS_MAX]; /* immediate field */
};
typedef struct Instruction Insn;
struct Packet {
uint16_t num_insns;
uint16_t encod_pkt_size_in_bytes;
/* Pre-decodes about COF */
uint32_t pkt_has_cof:1; /* Has any change-of-flow */
uint32_t pkt_has_endloop:1;
uint32_t pkt_has_dczeroa:1;
uint32_t pkt_has_store_s0:1;
uint32_t pkt_has_store_s1:1;
Insn insn[INSTRUCTIONS_MAX];
};
typedef struct Packet Packet;
#endif

37
target/hexagon/internal.h Normal file
View File

@ -0,0 +1,37 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_INTERNAL_H
#define HEXAGON_INTERNAL_H
/*
* Change HEX_DEBUG to 1 to turn on debugging output
*/
#define HEX_DEBUG 0
#if HEX_DEBUG
#define HEX_DEBUG_LOG(...) qemu_log(__VA_ARGS__)
#else
#define HEX_DEBUG_LOG(...) do { } while (0)
#endif
int hexagon_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int hexagon_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void hexagon_debug(CPUHexagonState *env);
extern const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS];
#endif

592
target/hexagon/macros.h Normal file
View File

@ -0,0 +1,592 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_MACROS_H
#define HEXAGON_MACROS_H
#include "cpu.h"
#include "hex_regs.h"
#include "reg_fields.h"
#ifdef QEMU_GENERATE
#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
#define READ_PREG(dest, NUM) gen_read_preg(dest, (NUM))
#else
#define READ_REG(NUM) (env->gpr[(NUM)])
#define READ_PREG(NUM) (env->pred[NUM])
#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
#endif
#define PCALIGN 4
#define PCALIGN_MASK (PCALIGN - 1)
#define GET_FIELD(FIELD, REGIN) \
fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset)
#ifdef QEMU_GENERATE
#define GET_USR_FIELD(FIELD, DST) \
tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
reg_field_info[FIELD].offset, \
reg_field_info[FIELD].width)
#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
#define SET_USR_FIELD_FUNC(X) \
__builtin_choose_expr(TYPE_INT(X), \
gen_set_usr_fieldi, \
__builtin_choose_expr(TYPE_TCGV(X), \
gen_set_usr_field, (void)0))
#define SET_USR_FIELD(FIELD, VAL) \
SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
#else
#define GET_USR_FIELD(FIELD) \
fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset)
#define SET_USR_FIELD(FIELD, VAL) \
fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset, (VAL))
#endif
#ifdef QEMU_GENERATE
/*
* Section 5.5 of the Hexagon V67 Programmer's Reference Manual
*
* Slot 1 store with slot 0 load
* A slot 1 store operation with a slot 0 load operation can appear in a packet.
* The packet attribute :mem_noshuf inhibits the instruction reordering that
* would otherwise be done by the assembler. For example:
* {
* memw(R5) = R2 // slot 1 store
* R3 = memh(R6) // slot 0 load
* }:mem_noshuf
* Unlike most packetized operations, these memory operations are not executed
* in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
* effectively executes first, followed by the load instruction in Slot 0. If
* the addresses of the two operations are overlapping, the load will receive
* the newly stored data. This feature is supported in processor versions
* V65 or greater.
*
*
* For qemu, we look for a load in slot 0 when there is a store in slot 1
* in the same packet. When we see this, we call a helper that merges the
* bytes from the store buffer with the value loaded from memory.
*/
#define CHECK_NOSHUF \
do { \
if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
process_store(ctx, pkt, 1); \
} \
} while (0)
#define MEM_LOAD1s(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD1u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD2s(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD2u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD4s(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD4u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD8u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
} while (0)
#else
#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
#endif
#define CANCEL cancel_slot(env, slot)
#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
#ifdef QEMU_GENERATE
static inline void gen_pred_cancel(TCGv pred, int slot_num)
{
TCGv slot_mask = tcg_const_tl(1 << slot_num);
TCGv tmp = tcg_temp_new();
TCGv zero = tcg_const_tl(0);
TCGv one = tcg_const_tl(1);
tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
tcg_gen_andi_tl(tmp, pred, 1);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
slot_mask, hex_slot_cancelled);
tcg_temp_free(slot_mask);
tcg_temp_free(tmp);
tcg_temp_free(zero);
tcg_temp_free(one);
}
#define PRED_LOAD_CANCEL(PRED, EA) \
gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
#endif
#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
#define fABS(A) (((A) < 0) ? (-(A)) : (A))
#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
(fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
(((HIBIT) - (LOWBIT) + 1) ? \
extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
0LL)
#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
#ifdef QEMU_GENERATE
#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
#else
#define fLSBOLD(VAL) ((VAL) & 1)
#endif
#ifdef QEMU_GENERATE
#define fLSBNEW(PVAL) tcg_gen_mov_tl(LSB, (PVAL))
#define fLSBNEW0 tcg_gen_mov_tl(LSB, hex_new_pred_value[0])
#define fLSBNEW1 tcg_gen_mov_tl(LSB, hex_new_pred_value[1])
#else
#define fLSBNEW(PVAL) (PVAL)
#define fLSBNEW0 new_pred_value(env, 0)
#define fLSBNEW1 new_pred_value(env, 1)
#endif
#ifdef QEMU_GENERATE
static inline void gen_logical_not(TCGv dest, TCGv src)
{
TCGv one = tcg_const_tl(1);
TCGv zero = tcg_const_tl(0);
tcg_gen_movcond_tl(TCG_COND_NE, dest, src, zero, zero, one);
tcg_temp_free(one);
tcg_temp_free(zero);
}
#define fLSBOLDNOT(VAL) \
do { \
tcg_gen_andi_tl(LSB, (VAL), 1); \
tcg_gen_xori_tl(LSB, LSB, 1); \
} while (0)
#define fLSBNEWNOT(PNUM) \
gen_logical_not(LSB, (PNUM))
#else
#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
#define fLSBNEW0NOT (!fLSBNEW0)
#define fLSBNEW1NOT (!fLSBNEW1)
#endif
#define fNEWREG(VAL) ((int32_t)(VAL))
#define fNEWREG_ST(VAL) (VAL)
#define fSATUVALN(N, VAL) \
({ \
fSET_OVERFLOW(); \
((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
})
#define fSATVALN(N, VAL) \
({ \
fSET_OVERFLOW(); \
((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
})
#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
#define fSATN(N, VAL) \
((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
#define fADDSAT64(DST, A, B) \
do { \
uint64_t __a = fCAST8u(A); \
uint64_t __b = fCAST8u(B); \
uint64_t __sum = __a + __b; \
uint64_t __xor = __a ^ __b; \
const uint64_t __mask = 0x8000000000000000ULL; \
if (__xor & __mask) { \
DST = __sum; \
} \
else if ((__a ^ __sum) & __mask) { \
if (__sum & __mask) { \
DST = 0x7FFFFFFFFFFFFFFFLL; \
fSET_OVERFLOW(); \
} else { \
DST = 0x8000000000000000LL; \
fSET_OVERFLOW(); \
} \
} else { \
DST = __sum; \
} \
} while (0)
#define fSATUN(N, VAL) \
((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
#define fSATH(VAL) (fSATN(16, VAL))
#define fSATUH(VAL) (fSATUN(16, VAL))
#define fSATUB(VAL) (fSATUN(8, VAL))
#define fSATB(VAL) (fSATN(8, VAL))
#define fIMMEXT(IMM) (IMM = IMM)
#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
#define fREAD_LR() (READ_REG(HEX_REG_LR))
#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
#define fREAD_SP() (READ_REG(HEX_REG_SP))
#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
#define fREAD_FP() (READ_REG(HEX_REG_FP))
#ifdef FIXME
/* Figure out how to get insn->extension_valid to helper */
#define fREAD_GP() \
(insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
#else
#define fREAD_GP() READ_REG(HEX_REG_GP)
#endif
#define fREAD_PC() (READ_REG(HEX_REG_PC))
#define fREAD_NPC() (env->next_PC & (0xfffffffe))
#define fREAD_P0() (READ_PREG(0))
#define fREAD_P3() (READ_PREG(3))
#define fCHECK_PCALIGN(A)
#define fWRITE_NPC(A) write_new_pc(env, A)
#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
#define fHINTJR(TARGET) { /* Not modelled in qemu */}
#define fCALL(A) \
do { \
fWRITE_LR(fREAD_NPC()); \
fBRANCH(A, COF_TYPE_CALL); \
} while (0)
#define fCALLR(A) \
do { \
fWRITE_LR(fREAD_NPC()); \
fBRANCH(A, COF_TYPE_CALLR); \
} while (0)
#define fWRITE_LOOP_REGS0(START, COUNT) \
do { \
WRITE_RREG(HEX_REG_LC0, COUNT); \
WRITE_RREG(HEX_REG_SA0, START); \
} while (0)
#define fWRITE_LOOP_REGS1(START, COUNT) \
do { \
WRITE_RREG(HEX_REG_LC1, COUNT); \
WRITE_RREG(HEX_REG_SA1, START);\
} while (0)
#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
#define fCARRY_FROM_ADD(A, B, C) carry_from_add64(A, B, C)
#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
#define fPART1(WORK) if (part1) { WORK; return; }
#define fCAST4u(A) ((uint32_t)(A))
#define fCAST4s(A) ((int32_t)(A))
#define fCAST8u(A) ((uint64_t)(A))
#define fCAST8s(A) ((int64_t)(A))
#define fCAST4_4s(A) ((int32_t)(A))
#define fCAST4_4u(A) ((uint32_t)(A))
#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
#define fCAST8_8s(A) ((int64_t)(A))
#define fCAST8_8u(A) ((uint64_t)(A))
#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
#define fSE8_16(A) ((int16_t)((int8_t)(A)))
#define fSE16_32(A) ((int32_t)((int16_t)(A)))
#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
#define fSE32_64(A) ((int64_t)((int32_t)(A)))
#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
#define fSE8_32(A) ((int32_t)((int8_t)(A)))
#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
#define fMPY16US(A, B) fMPY16SU(B, A)
#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
#define fROUND(A) (A + 0x8000)
#define fCLIP(DST, SRC, U) \
do { \
int32_t maxv = (1 << U) - 1; \
int32_t minv = -(1 << U); \
DST = fMIN(maxv, fMAX(SRC, minv)); \
} while (0)
#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
#define fCRNDN(A, N) (conv_round(A, N))
#define fADD128(A, B) (int128_add(A, B))
#define fSUB128(A, B) (int128_sub(A, B))
#define fSHIFTR128(A, B) (int128_rshift(A, B))
#define fSHIFTL128(A, B) (int128_lshift(A, B))
#define fAND128(A, B) (int128_and(A, B))
#define fCAST8S_16S(A) (int128_exts64(A))
#define fCAST16S_8S(A) (int128_getlo(A))
#define fEA_RI(REG, IMM) \
do { \
EA = REG + IMM; \
} while (0)
#define fEA_RRs(REG, REG2, SCALE) \
do { \
EA = REG + (REG2 << SCALE); \
} while (0)
#define fEA_IRs(IMM, REG, SCALE) \
do { \
EA = IMM + (REG << SCALE); \
} while (0)
#ifdef QEMU_GENERATE
#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
#else
#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
#define fEA_REG(REG) do { EA = (REG); } while (0)
#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
#endif
#define fSCALE(N, A) (((int64_t)(A)) << N)
#define fSATW(A) fSATN(32, ((long long)A))
#define fSAT(A) fSATN(32, (A))
#define fSAT_ORIG_SHL(A, ORIG_REG) \
((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
? fSATVALN(32, ((int32_t)(ORIG_REG))) \
: ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
: fSAT(A)))
#define fPASS(A) A
#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
: (fCAST##REGSTYPE(SRC) << (SHAMT)))
#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
: fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
: (fCAST##REGSTYPE(SRC) >> (SHAMT)))
#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
<< ((-(SHAMT)) - 1)) << 1, (SRC)) \
: (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
(((SHAMT) >= 64) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
#define fROTL(SRC, SHAMT, REGSTYPE) \
(((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
((fCAST##REGSTYPE##u(SRC) >> \
((sizeof(SRC) * 8) - (SHAMT))))))
#define fROTR(SRC, SHAMT, REGSTYPE) \
(((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
((fCAST##REGSTYPE##u(SRC) << \
((sizeof(SRC) * 8) - (SHAMT))))))
#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
(((SHAMT) >= 64) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
#ifdef QEMU_GENERATE
#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
#else
#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
#endif
#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
#ifdef CONFIG_USER_ONLY
#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
#else
/* System mode not implemented yet */
#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
#endif
#ifdef QEMU_GENERATE
#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
#endif
#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
#ifdef QEMU_GENERATE
#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
gen_store_conditional##SIZE(env, ctx, PdN, PRED, EA, SRC);
#endif
#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
#define fSETBYTE(N, DST, VAL) \
do { \
DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
(((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
} while (0)
#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
#define fSETHALF(N, DST, VAL) \
do { \
DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
(((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
} while (0)
#define fSETHALFw fSETHALF
#define fSETHALFd fSETHALF
#define fGETWORD(N, SRC) \
((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
#define fGETUWORD(N, SRC) \
((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
#define fSETWORD(N, DST, VAL) \
do { \
DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
(((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
} while (0)
#define fSETBIT(N, DST, VAL) \
do { \
DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
} while (0)
#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
#define fSETBITS(HI, LO, DST, VAL) \
do { \
int j; \
for (j = LO; j <= HI; j++) { \
fSETBIT(j, DST, VAL); \
} \
} while (0)
#define fCOUNTONES_4(VAL) ctpop32(VAL)
#define fCOUNTONES_8(VAL) ctpop64(VAL)
#define fBREV_8(VAL) revbit64(VAL)
#define fBREV_4(VAL) revbit32(VAL)
#define fCL1_8(VAL) clo64(VAL)
#define fCL1_4(VAL) clo32(VAL)
#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
#define fHIDE(A) A
#define fCONSTLL(A) A##LL
#define fECHO(A) (A)
#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
#define fPAUSE(IMM)
#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
((VAL) << reg_field_info[FIELD].offset)
#define fGET_REG_FIELD_MASK(FIELD) \
(((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
#define fREAD_REG_FIELD(REG, FIELD) \
fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset)
#define fGET_FIELD(VAL, FIELD)
#define fSET_FIELD(VAL, FIELD, NEWVAL)
#define fBARRIER()
#define fSYNCH()
#define fISYNC()
#define fDCFETCH(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fICINVA(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
#define fDCCLEANA(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fDCCLEANINVA(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
STRBITNUM) /* Nothing */
#endif

191
target/hexagon/meson.build Normal file
View File

@ -0,0 +1,191 @@
##
## Copyright(c) 2020-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
hexagon_ss = ss.source_set()
hex_common_py = 'hex_common.py'
attribs_def = meson.current_source_dir() / 'attribs_def.h.inc'
gen_tcg_h = meson.current_source_dir() / 'gen_tcg.h'
#
# Step 1
# We use a C program to create semantics_generated.pyinc
#
gen_semantics = executable(
'gen_semantics',
'gen_semantics.c',
native: true, build_by_default: false)
semantics_generated = custom_target(
'semantics_generated.pyinc',
output: 'semantics_generated.pyinc',
input: gen_semantics,
command: ['@INPUT@', '@OUTPUT@'],
)
hexagon_ss.add(semantics_generated)
#
# Step 2
# We use Python scripts to generate the following files
# shortcode_generated.h.inc
# helper_protos_generated.h.inc
# tcg_funcs_generated.c.inc
# tcg_func_table_generated.c.inc
# helper_funcs_generated.c.inc
# printinsn_generated.h.inc
# op_regs_generated.h.inc
# op_attribs_generated.h.inc
# opcodes_def_generated.h.inc
#
shortcode_generated = custom_target(
'shortcode_generated.h.inc',
output: 'shortcode_generated.h.inc',
input: 'gen_shortcode.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def],
command: [python, '@INPUT@', semantics_generated, attribs_def, '@OUTPUT@'],
)
hexagon_ss.add(shortcode_generated)
helper_protos_generated = custom_target(
'helper_protos_generated.h.inc',
output: 'helper_protos_generated.h.inc',
input: 'gen_helper_protos.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def, gen_tcg_h],
command: [python, '@INPUT@', semantics_generated, attribs_def, gen_tcg_h, '@OUTPUT@'],
)
hexagon_ss.add(helper_protos_generated)
tcg_funcs_generated = custom_target(
'tcg_funcs_generated.c.inc',
output: 'tcg_funcs_generated.c.inc',
input: 'gen_tcg_funcs.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def, gen_tcg_h],
command: [python, '@INPUT@', semantics_generated, attribs_def, gen_tcg_h, '@OUTPUT@'],
)
hexagon_ss.add(tcg_funcs_generated)
tcg_func_table_generated = custom_target(
'tcg_func_table_generated.c.inc',
output: 'tcg_func_table_generated.c.inc',
input: 'gen_tcg_func_table.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def],
command: [python, '@INPUT@', semantics_generated, attribs_def, '@OUTPUT@'],
)
hexagon_ss.add(tcg_func_table_generated)
helper_funcs_generated = custom_target(
'helper_funcs_generated.c.inc',
output: 'helper_funcs_generated.c.inc',
input: 'gen_helper_funcs.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def, gen_tcg_h],
command: [python, '@INPUT@', semantics_generated, attribs_def, gen_tcg_h, '@OUTPUT@'],
)
hexagon_ss.add(helper_funcs_generated)
printinsn_generated = custom_target(
'printinsn_generated.h.inc',
output: 'printinsn_generated.h.inc',
input: 'gen_printinsn.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def],
command: [python, '@INPUT@', semantics_generated, attribs_def, '@OUTPUT@'],
)
hexagon_ss.add(printinsn_generated)
op_regs_generated = custom_target(
'op_regs_generated.h.inc',
output: 'op_regs_generated.h.inc',
input: 'gen_op_regs.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def],
command: [python, '@INPUT@', semantics_generated, attribs_def, '@OUTPUT@'],
)
hexagon_ss.add(op_regs_generated)
op_attribs_generated = custom_target(
'op_attribs_generated.h.inc',
output: 'op_attribs_generated.h.inc',
input: 'gen_op_attribs.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def],
command: [python, '@INPUT@', semantics_generated, attribs_def, '@OUTPUT@'],
)
hexagon_ss.add(op_attribs_generated)
opcodes_def_generated = custom_target(
'opcodes_def_generated.h.inc',
output: 'opcodes_def_generated.h.inc',
input: 'gen_opcodes_def.py',
depends: [semantics_generated],
depend_files: [hex_common_py, attribs_def],
command: [python, '@INPUT@', semantics_generated, attribs_def, '@OUTPUT@'],
)
hexagon_ss.add(opcodes_def_generated)
#
# Step 3
# We use a C program to create iset.py which is imported into dectree.py
# to create the decode tree
#
gen_dectree_import = executable(
'gen_dectree_import',
'gen_dectree_import.c', opcodes_def_generated, op_regs_generated,
native: true, build_by_default: false)
iset_py = custom_target(
'iset.py',
output: 'iset.py',
input: gen_dectree_import,
command: ['@INPUT@', '@OUTPUT@'],
)
hexagon_ss.add(iset_py)
#
# Step 4
# We use the dectree.py script to generate the decode tree header file
#
dectree_generated = custom_target(
'dectree_generated.h.inc',
output: 'dectree_generated.h.inc',
input: 'dectree.py',
depends: [iset_py],
command: ['PYTHONPATH=' + meson.current_build_dir(), '@INPUT@', '@OUTPUT@'],
)
hexagon_ss.add(dectree_generated)
hexagon_ss.add(files(
'cpu.c',
'translate.c',
'op_helper.c',
'gdbstub.c',
'genptr.c',
'reg_fields.c',
'decode.c',
'iclass.c',
'opcodes.c',
'printinsn.c',
'arch.c',
'fma_emu.c',
'conv_emu.c',
))
target_arch += {'hexagon': hexagon_ss}

1064
target/hexagon/op_helper.c Normal file

File diff suppressed because it is too large Load Diff

142
target/hexagon/opcodes.c Normal file
View File

@ -0,0 +1,142 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* opcodes.c
*
* data tables generated automatically
* Maybe some functions too
*/
#include "qemu/osdep.h"
#include "attribs.h"
#include "decode.h"
#define VEC_DESCR(A, B, C) DESCR(A, B, C)
#define DONAME(X) #X
const char * const opcode_names[] = {
#define OPCODE(IID) DONAME(IID)
#include "opcodes_def_generated.h.inc"
NULL
#undef OPCODE
};
const char * const opcode_reginfo[] = {
#define IMMINFO(TAG, SIGN, SIZE, SHAMT, SIGN2, SIZE2, SHAMT2) /* nothing */
#define REGINFO(TAG, REGINFO, RREGS, WREGS) REGINFO,
#include "op_regs_generated.h.inc"
NULL
#undef REGINFO
#undef IMMINFO
};
const char * const opcode_rregs[] = {
#define IMMINFO(TAG, SIGN, SIZE, SHAMT, SIGN2, SIZE2, SHAMT2) /* nothing */
#define REGINFO(TAG, REGINFO, RREGS, WREGS) RREGS,
#include "op_regs_generated.h.inc"
NULL
#undef REGINFO
#undef IMMINFO
};
const char * const opcode_wregs[] = {
#define IMMINFO(TAG, SIGN, SIZE, SHAMT, SIGN2, SIZE2, SHAMT2) /* nothing */
#define REGINFO(TAG, REGINFO, RREGS, WREGS) WREGS,
#include "op_regs_generated.h.inc"
NULL
#undef REGINFO
#undef IMMINFO
};
const char * const opcode_short_semantics[] = {
#define DEF_SHORTCODE(TAG, SHORTCODE) [TAG] = #SHORTCODE,
#include "shortcode_generated.h.inc"
#undef DEF_SHORTCODE
NULL
};
DECLARE_BITMAP(opcode_attribs[XX_LAST_OPCODE], A_ZZ_LASTATTRIB);
static void init_attribs(int tag, ...)
{
va_list ap;
int attr;
va_start(ap, tag);
while ((attr = va_arg(ap, int)) != 0) {
set_bit(attr, opcode_attribs[tag]);
}
}
const OpcodeEncoding opcode_encodings[] = {
#define DEF_ENC32(OPCODE, ENCSTR) \
[OPCODE] = { .encoding = ENCSTR },
#define DEF_ENC_SUBINSN(OPCODE, CLASS, ENCSTR) \
[OPCODE] = { .encoding = ENCSTR, .enc_class = CLASS },
#define DEF_EXT_ENC(OPCODE, CLASS, ENCSTR) \
[OPCODE] = { .encoding = ENCSTR, .enc_class = CLASS },
#include "imported/encode.def"
#undef DEF_ENC32
#undef DEF_ENC_SUBINSN
#undef DEF_EXT_ENC
};
void opcode_init(void)
{
init_attribs(0, 0);
#define ATTRIBS(...) , ## __VA_ARGS__, 0
#define OP_ATTRIB(TAG, ARGS) init_attribs(TAG ARGS);
#include "op_attribs_generated.h.inc"
#undef OP_ATTRIB
#undef ATTRIBS
decode_init();
}
#define NEEDLE "IMMEXT("
int opcode_which_immediate_is_extended(Opcode opcode)
{
const char *p;
g_assert(opcode < XX_LAST_OPCODE);
g_assert(GET_ATTRIB(opcode, A_EXTENDABLE));
p = opcode_short_semantics[opcode];
p = strstr(p, NEEDLE);
g_assert(p);
p += strlen(NEEDLE);
while (isspace(*p)) {
p++;
}
/* lower is always imm 0, upper always imm 1. */
if (islower(*p)) {
return 0;
} else if (isupper(*p)) {
return 1;
} else {
g_assert_not_reached();
}
}

58
target/hexagon/opcodes.h Normal file
View File

@ -0,0 +1,58 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_OPCODES_H
#define HEXAGON_OPCODES_H
typedef enum {
#define OPCODE(IID) IID
#include "opcodes_def_generated.h.inc"
XX_LAST_OPCODE
#undef OPCODE
} Opcode;
typedef enum {
NORMAL,
HALF,
SUBINSN_A,
SUBINSN_L1,
SUBINSN_L2,
SUBINSN_S1,
SUBINSN_S2,
EXT_noext,
EXT_mmvec,
XX_LAST_ENC_CLASS
} EncClass;
extern const char * const opcode_names[];
extern const char * const opcode_reginfo[];
extern const char * const opcode_rregs[];
extern const char * const opcode_wregs[];
typedef struct {
const char * const encoding;
const EncClass enc_class;
} OpcodeEncoding;
extern const OpcodeEncoding opcode_encodings[XX_LAST_OPCODE];
void opcode_init(void);
int opcode_which_immediate_is_extended(Opcode opcode);
#endif

146
target/hexagon/printinsn.c Normal file
View File

@ -0,0 +1,146 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "attribs.h"
#include "printinsn.h"
#include "insn.h"
#include "reg_fields.h"
#include "internal.h"
static const char *sreg2str(unsigned int reg)
{
if (reg < TOTAL_PER_THREAD_REGS) {
return hexagon_regnames[reg];
} else {
return "???";
}
}
static const char *creg2str(unsigned int reg)
{
return sreg2str(reg + HEX_REG_SA0);
}
static void snprintinsn(GString *buf, Insn *insn)
{
switch (insn->opcode) {
#define DEF_VECX_PRINTINFO(TAG, FMT, ...) DEF_PRINTINFO(TAG, FMT, __VA_ARGS__)
#define DEF_PRINTINFO(TAG, FMT, ...) \
case TAG: \
g_string_append_printf(buf, FMT, __VA_ARGS__); \
break;
#include "printinsn_generated.h.inc"
#undef DEF_VECX_PRINTINFO
#undef DEF_PRINTINFO
}
}
void snprint_a_pkt_disas(GString *buf, Packet *pkt, uint32_t *words,
target_ulong pc)
{
bool has_endloop0 = false;
bool has_endloop1 = false;
bool has_endloop01 = false;
for (int i = 0; i < pkt->num_insns; i++) {
if (pkt->insn[i].part1) {
continue;
}
/* We'll print the endloop's at the end of the packet */
if (pkt->insn[i].opcode == J2_endloop0) {
has_endloop0 = true;
continue;
}
if (pkt->insn[i].opcode == J2_endloop1) {
has_endloop1 = true;
continue;
}
if (pkt->insn[i].opcode == J2_endloop01) {
has_endloop01 = true;
continue;
}
g_string_append_printf(buf, "0x" TARGET_FMT_lx "\t", words[i]);
if (i == 0) {
g_string_append(buf, "{");
}
g_string_append(buf, "\t");
snprintinsn(buf, &(pkt->insn[i]));
if (i < pkt->num_insns - 1) {
/*
* Subinstructions are two instructions encoded
* in the same word. Print them on the same line.
*/
if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN)) {
g_string_append(buf, "; ");
snprintinsn(buf, &(pkt->insn[i + 1]));
i++;
} else if (pkt->insn[i + 1].opcode != J2_endloop0 &&
pkt->insn[i + 1].opcode != J2_endloop1 &&
pkt->insn[i + 1].opcode != J2_endloop01) {
pc += 4;
g_string_append_printf(buf, "\n0x" TARGET_FMT_lx ": ", pc);
}
}
}
g_string_append(buf, " }");
if (has_endloop0) {
g_string_append(buf, " :endloop0");
}
if (has_endloop1) {
g_string_append(buf, " :endloop1");
}
if (has_endloop01) {
g_string_append(buf, " :endloop01");
}
}
void snprint_a_pkt_debug(GString *buf, Packet *pkt)
{
int slot, opcode;
if (pkt->num_insns > 1) {
g_string_append(buf, "\n{\n");
}
for (int i = 0; i < pkt->num_insns; i++) {
if (pkt->insn[i].part1) {
continue;
}
g_string_append(buf, "\t");
snprintinsn(buf, &(pkt->insn[i]));
if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN)) {
g_string_append(buf, " //subinsn");
}
if (pkt->insn[i].extension_valid) {
g_string_append(buf, " //constant extended");
}
slot = pkt->insn[i].slot;
opcode = pkt->insn[i].opcode;
g_string_append_printf(buf, " //slot=%d:tag=%s\n",
slot, opcode_names[opcode]);
}
if (pkt->num_insns > 1) {
g_string_append(buf, "}\n");
}
}

View File

@ -0,0 +1,27 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_PRINTINSN_H
#define HEXAGON_PRINTINSN_H
#include "insn.h"
void snprint_a_pkt_disas(GString *buf, Packet *pkt, uint32_t *words,
target_ulong pc);
void snprint_a_pkt_debug(GString *buf, Packet *pkt);
#endif

View File

@ -0,0 +1,27 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "reg_fields.h"
const RegField reg_field_info[] = {
#define DEF_REG_FIELD(TAG, START, WIDTH) \
{ START, WIDTH },
#include "reg_fields_def.h.inc"
{ 0, 0 }
#undef DEF_REG_FIELD
};

View File

@ -0,0 +1,36 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_REG_FIELDS_H
#define HEXAGON_REG_FIELDS_H
typedef struct {
int offset;
int width;
} RegField;
extern const RegField reg_field_info[];
enum {
#define DEF_REG_FIELD(TAG, START, WIDTH) \
TAG,
#include "reg_fields_def.h.inc"
NUM_REG_FIELDS
#undef DEF_REG_FIELD
};
#endif

View File

@ -0,0 +1,41 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For registers that have individual fields, explain them here
* DEF_REG_FIELD(tag,
* bit start offset,
* width
*/
/* USR fields */
DEF_REG_FIELD(USR_OVF, 0, 1)
DEF_REG_FIELD(USR_FPINVF, 1, 1)
DEF_REG_FIELD(USR_FPDBZF, 2, 1)
DEF_REG_FIELD(USR_FPOVFF, 3, 1)
DEF_REG_FIELD(USR_FPUNFF, 4, 1)
DEF_REG_FIELD(USR_FPINPF, 5, 1)
DEF_REG_FIELD(USR_LPCFG, 8, 2)
DEF_REG_FIELD(USR_FPRND, 22, 2)
DEF_REG_FIELD(USR_FPINVE, 25, 1)
DEF_REG_FIELD(USR_FPDBZE, 26, 1)
DEF_REG_FIELD(USR_FPOVFE, 27, 1)
DEF_REG_FIELD(USR_FPUNFE, 28, 1)
DEF_REG_FIELD(USR_FPINPE, 29, 1)

748
target/hexagon/translate.c Normal file
View File

@ -0,0 +1,748 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define QEMU_GENERATE
#include "qemu/osdep.h"
#include "cpu.h"
#include "tcg/tcg-op.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "internal.h"
#include "attribs.h"
#include "insn.h"
#include "decode.h"
#include "translate.h"
#include "printinsn.h"
TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
TCGv hex_pred[NUM_PREGS];
TCGv hex_next_PC;
TCGv hex_this_PC;
TCGv hex_slot_cancelled;
TCGv hex_branch_taken;
TCGv hex_new_value[TOTAL_PER_THREAD_REGS];
#if HEX_DEBUG
TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
#endif
TCGv hex_new_pred_value[NUM_PREGS];
TCGv hex_pred_written;
TCGv hex_store_addr[STORES_MAX];
TCGv hex_store_width[STORES_MAX];
TCGv hex_store_val32[STORES_MAX];
TCGv_i64 hex_store_val64[STORES_MAX];
TCGv hex_pkt_has_store_s1;
TCGv hex_dczero_addr;
TCGv hex_llsc_addr;
TCGv hex_llsc_val;
TCGv_i64 hex_llsc_val_i64;
static const char * const hexagon_prednames[] = {
"p0", "p1", "p2", "p3"
};
void gen_exception(int excp)
{
TCGv_i32 helper_tmp = tcg_const_i32(excp);
gen_helper_raise_exception(cpu_env, helper_tmp);
tcg_temp_free_i32(helper_tmp);
}
void gen_exception_debug(void)
{
gen_exception(EXCP_DEBUG);
}
#if HEX_DEBUG
#define PACKET_BUFFER_LEN 1028
static void print_pkt(Packet *pkt)
{
GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
snprint_a_pkt_debug(buf, pkt);
HEX_DEBUG_LOG("%s", buf->str);
g_string_free(buf, true);
}
#define HEX_DEBUG_PRINT_PKT(pkt) print_pkt(pkt)
#else
#define HEX_DEBUG_PRINT_PKT(pkt) /* nothing */
#endif
static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
uint32_t words[])
{
bool found_end = false;
int nwords, max_words;
memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
words[nwords] = cpu_ldl_code(env,
ctx->base.pc_next + nwords * sizeof(uint32_t));
found_end = is_packet_end(words[nwords]);
}
if (!found_end) {
/* Read too many words without finding the end */
return 0;
}
/* Check for page boundary crossing */
max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
if (nwords > max_words) {
/* We can only cross a page boundary at the beginning of a TB */
g_assert(ctx->base.num_insns == 1);
}
HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
HEX_DEBUG_LOG(" words = { ");
for (int i = 0; i < nwords; i++) {
HEX_DEBUG_LOG("0x%x, ", words[i]);
}
HEX_DEBUG_LOG("}\n");
return nwords;
}
static bool check_for_attrib(Packet *pkt, int attrib)
{
for (int i = 0; i < pkt->num_insns; i++) {
if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
return true;
}
}
return false;
}
static bool need_pc(Packet *pkt)
{
return check_for_attrib(pkt, A_IMPLICIT_READS_PC);
}
static bool need_slot_cancelled(Packet *pkt)
{
return check_for_attrib(pkt, A_CONDEXEC);
}
static bool need_pred_written(Packet *pkt)
{
return check_for_attrib(pkt, A_WRITES_PRED_REG);
}
static void gen_start_packet(DisasContext *ctx, Packet *pkt)
{
target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
int i;
/* Clear out the disassembly context */
ctx->reg_log_idx = 0;
bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
ctx->preg_log_idx = 0;
for (i = 0; i < STORES_MAX; i++) {
ctx->store_width[i] = 0;
}
tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1);
ctx->s1_store_processed = 0;
#if HEX_DEBUG
/* Handy place to set a breakpoint before the packet executes */
gen_helper_debug_start_packet(cpu_env);
tcg_gen_movi_tl(hex_this_PC, ctx->base.pc_next);
#endif
/* Initialize the runtime state for packet semantics */
if (need_pc(pkt)) {
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
}
if (need_slot_cancelled(pkt)) {
tcg_gen_movi_tl(hex_slot_cancelled, 0);
}
if (pkt->pkt_has_cof) {
tcg_gen_movi_tl(hex_branch_taken, 0);
tcg_gen_movi_tl(hex_next_PC, next_PC);
}
if (need_pred_written(pkt)) {
tcg_gen_movi_tl(hex_pred_written, 0);
}
}
/*
* The LOG_*_WRITE macros mark most of the writes in a packet
* However, there are some implicit writes marked as attributes
* of the applicable instructions.
*/
static void mark_implicit_reg_write(DisasContext *ctx, Insn *insn,
int attrib, int rnum)
{
if (GET_ATTRIB(insn->opcode, attrib)) {
int is_predicated = GET_ATTRIB(insn->opcode, A_CONDEXEC);
if (is_predicated && !is_preloaded(ctx, rnum)) {
tcg_gen_mov_tl(hex_new_value[rnum], hex_gpr[rnum]);
}
ctx_log_reg_write(ctx, rnum);
}
}
static void mark_implicit_pred_write(DisasContext *ctx, Insn *insn,
int attrib, int pnum)
{
if (GET_ATTRIB(insn->opcode, attrib)) {
ctx_log_pred_write(ctx, pnum);
}
}
static void mark_implicit_writes(DisasContext *ctx, Insn *insn)
{
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_FP, HEX_REG_FP);
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SP, HEX_REG_SP);
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LR, HEX_REG_LR);
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
mark_implicit_reg_write(ctx, insn, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P0, 0);
mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P1, 1);
mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P2, 2);
mark_implicit_pred_write(ctx, insn, A_IMPLICIT_WRITES_P3, 3);
}
static void gen_insn(CPUHexagonState *env, DisasContext *ctx,
Insn *insn, Packet *pkt)
{
if (insn->generate) {
mark_implicit_writes(ctx, insn);
insn->generate(env, ctx, insn, pkt);
} else {
gen_exception(HEX_EXCP_INVALID_OPCODE);
ctx->base.is_jmp = DISAS_NORETURN;
}
}
/*
* Helpers for generating the packet commit
*/
static void gen_reg_writes(DisasContext *ctx)
{
int i;
for (i = 0; i < ctx->reg_log_idx; i++) {
int reg_num = ctx->reg_log[i];
tcg_gen_mov_tl(hex_gpr[reg_num], hex_new_value[reg_num]);
}
}
static void gen_pred_writes(DisasContext *ctx, Packet *pkt)
{
TCGv zero, control_reg, pval;
int i;
/* Early exit if the log is empty */
if (!ctx->preg_log_idx) {
return;
}
zero = tcg_const_tl(0);
control_reg = tcg_temp_new();
pval = tcg_temp_new();
/*
* Only endloop instructions will conditionally
* write a predicate. If there are no endloop
* instructions, we can use the non-conditional
* write of the predicates.
*/
if (pkt->pkt_has_endloop) {
TCGv pred_written = tcg_temp_new();
for (i = 0; i < ctx->preg_log_idx; i++) {
int pred_num = ctx->preg_log[i];
tcg_gen_andi_tl(pred_written, hex_pred_written, 1 << pred_num);
tcg_gen_movcond_tl(TCG_COND_NE, hex_pred[pred_num],
pred_written, zero,
hex_new_pred_value[pred_num],
hex_pred[pred_num]);
}
tcg_temp_free(pred_written);
} else {
for (i = 0; i < ctx->preg_log_idx; i++) {
int pred_num = ctx->preg_log[i];
tcg_gen_mov_tl(hex_pred[pred_num], hex_new_pred_value[pred_num]);
#if HEX_DEBUG
/* Do this so HELPER(debug_commit_end) will know */
tcg_gen_ori_tl(hex_pred_written, hex_pred_written, 1 << pred_num);
#endif
}
}
tcg_temp_free(zero);
tcg_temp_free(control_reg);
tcg_temp_free(pval);
}
#if HEX_DEBUG
static inline void gen_check_store_width(DisasContext *ctx, int slot_num)
{
TCGv slot = tcg_const_tl(slot_num);
TCGv check = tcg_const_tl(ctx->store_width[slot_num]);
gen_helper_debug_check_store_width(cpu_env, slot, check);
tcg_temp_free(slot);
tcg_temp_free(check);
}
#define HEX_DEBUG_GEN_CHECK_STORE_WIDTH(ctx, slot_num) \
gen_check_store_width(ctx, slot_num)
#else
#define HEX_DEBUG_GEN_CHECK_STORE_WIDTH(ctx, slot_num) /* nothing */
#endif
static bool slot_is_predicated(Packet *pkt, int slot_num)
{
for (int i = 0; i < pkt->num_insns; i++) {
if (pkt->insn[i].slot == slot_num) {
return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
}
}
/* If we get to here, we didn't find an instruction in the requested slot */
g_assert_not_reached();
}
void process_store(DisasContext *ctx, Packet *pkt, int slot_num)
{
bool is_predicated = slot_is_predicated(pkt, slot_num);
TCGLabel *label_end = NULL;
/*
* We may have already processed this store
* See CHECK_NOSHUF in macros.h
*/
if (slot_num == 1 && ctx->s1_store_processed) {
return;
}
ctx->s1_store_processed = 1;
if (is_predicated) {
TCGv cancelled = tcg_temp_new();
label_end = gen_new_label();
/* Don't do anything if the slot was cancelled */
tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
tcg_temp_free(cancelled);
}
{
TCGv address = tcg_temp_local_new();
tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
/*
* If we know the width from the DisasContext, we can
* generate much cleaner code.
* Unfortunately, not all instructions execute the fSTORE
* macro during code generation. Anything that uses the
* generic helper will have this problem. Instructions
* that use fWRAP to generate proper TCG code will be OK.
*/
switch (ctx->store_width[slot_num]) {
case 1:
HEX_DEBUG_GEN_CHECK_STORE_WIDTH(ctx, slot_num);
tcg_gen_qemu_st8(hex_store_val32[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx);
break;
case 2:
HEX_DEBUG_GEN_CHECK_STORE_WIDTH(ctx, slot_num);
tcg_gen_qemu_st16(hex_store_val32[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx);
break;
case 4:
HEX_DEBUG_GEN_CHECK_STORE_WIDTH(ctx, slot_num);
tcg_gen_qemu_st32(hex_store_val32[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx);
break;
case 8:
HEX_DEBUG_GEN_CHECK_STORE_WIDTH(ctx, slot_num);
tcg_gen_qemu_st64(hex_store_val64[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx);
break;
default:
{
/*
* If we get to here, we don't know the width at
* TCG generation time, we'll use a helper to
* avoid branching based on the width at runtime.
*/
TCGv slot = tcg_const_tl(slot_num);
gen_helper_commit_store(cpu_env, slot);
tcg_temp_free(slot);
}
}
tcg_temp_free(address);
}
if (is_predicated) {
gen_set_label(label_end);
}
}
static void process_store_log(DisasContext *ctx, Packet *pkt)
{
/*
* When a packet has two stores, the hardware processes
* slot 1 and then slot 2. This will be important when
* the memory accesses overlap.
*/
if (pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa) {
process_store(ctx, pkt, 1);
}
if (pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa) {
process_store(ctx, pkt, 0);
}
}
/* Zero out a 32-bit cache line */
static void process_dczeroa(DisasContext *ctx, Packet *pkt)
{
if (pkt->pkt_has_dczeroa) {
/* Store 32 bytes of zero starting at (addr & ~0x1f) */
TCGv addr = tcg_temp_new();
TCGv_i64 zero = tcg_const_i64(0);
tcg_gen_andi_tl(addr, hex_dczero_addr, ~0x1f);
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
tcg_gen_addi_tl(addr, addr, 8);
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
tcg_gen_addi_tl(addr, addr, 8);
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
tcg_gen_addi_tl(addr, addr, 8);
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
tcg_temp_free(addr);
tcg_temp_free_i64(zero);
}
}
static void update_exec_counters(DisasContext *ctx, Packet *pkt)
{
int num_insns = pkt->num_insns;
int num_real_insns = 0;
for (int i = 0; i < num_insns; i++) {
if (!pkt->insn[i].is_endloop &&
!pkt->insn[i].part1 &&
!GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
num_real_insns++;
}
}
ctx->num_packets++;
ctx->num_insns += num_real_insns;
}
static void gen_exec_counters(DisasContext *ctx)
{
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
}
static void gen_commit_packet(DisasContext *ctx, Packet *pkt)
{
gen_reg_writes(ctx);
gen_pred_writes(ctx, pkt);
process_store_log(ctx, pkt);
process_dczeroa(ctx, pkt);
update_exec_counters(ctx, pkt);
#if HEX_DEBUG
{
TCGv has_st0 =
tcg_const_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
TCGv has_st1 =
tcg_const_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
/* Handy place to set a breakpoint at the end of execution */
gen_helper_debug_commit_end(cpu_env, has_st0, has_st1);
tcg_temp_free(has_st0);
tcg_temp_free(has_st1);
}
#endif
if (pkt->pkt_has_cof) {
ctx->base.is_jmp = DISAS_NORETURN;
}
}
static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
{
uint32_t words[PACKET_WORDS_MAX];
int nwords;
Packet pkt;
int i;
nwords = read_packet_words(env, ctx, words);
if (!nwords) {
gen_exception(HEX_EXCP_INVALID_PACKET);
ctx->base.is_jmp = DISAS_NORETURN;
return;
}
if (decode_packet(nwords, words, &pkt, false) > 0) {
HEX_DEBUG_PRINT_PKT(&pkt);
gen_start_packet(ctx, &pkt);
for (i = 0; i < pkt.num_insns; i++) {
gen_insn(env, ctx, &pkt.insn[i], &pkt);
}
gen_commit_packet(ctx, &pkt);
ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
} else {
gen_exception(HEX_EXCP_INVALID_PACKET);
ctx->base.is_jmp = DISAS_NORETURN;
}
}
static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
ctx->mem_idx = MMU_USER_IDX;
ctx->num_packets = 0;
ctx->num_insns = 0;
}
static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
}
static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
tcg_gen_insn_start(ctx->base.pc_next);
}
static bool hexagon_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
const CPUBreakpoint *bp)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
ctx->base.is_jmp = DISAS_NORETURN;
gen_exception_debug();
/*
* The address covered by the breakpoint must be included in
* [tb->pc, tb->pc + tb->size) in order to for it to be
* properly cleared -- thus we increment the PC here so that
* the logic setting tb->size below does the right thing.
*/
ctx->base.pc_next += 4;
return true;
}
static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
{
target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
bool found_end = false;
int nwords;
for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
uint32_t word = cpu_ldl_code(env,
ctx->base.pc_next + nwords * sizeof(uint32_t));
found_end = is_packet_end(word);
}
uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t);
return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
}
static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPUHexagonState *env = cpu->env_ptr;
decode_and_translate_packet(env, ctx);
if (ctx->base.is_jmp == DISAS_NEXT) {
target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
(ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
pkt_crosses_page(env, ctx))) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
/*
* The CPU log is used to compare against LLDB single stepping,
* so end the TLB after every packet.
*/
HexagonCPU *hex_cpu = container_of(env, HexagonCPU, env);
if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
#if HEX_DEBUG
/* When debugging, only put one packet per TB */
ctx->base.is_jmp = DISAS_TOO_MANY;
#endif
}
}
static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
switch (ctx->base.is_jmp) {
case DISAS_TOO_MANY:
gen_exec_counters(ctx);
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
if (ctx->base.singlestep_enabled) {
gen_exception_debug();
} else {
tcg_gen_exit_tb(NULL, 0);
}
break;
case DISAS_NORETURN:
gen_exec_counters(ctx);
tcg_gen_mov_tl(hex_gpr[HEX_REG_PC], hex_next_PC);
if (ctx->base.singlestep_enabled) {
gen_exception_debug();
} else {
tcg_gen_exit_tb(NULL, 0);
}
break;
default:
g_assert_not_reached();
}
}
static void hexagon_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu)
{
qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first));
log_target_disas(cpu, dcbase->pc_first, dcbase->tb->size);
}
static const TranslatorOps hexagon_tr_ops = {
.init_disas_context = hexagon_tr_init_disas_context,
.tb_start = hexagon_tr_tb_start,
.insn_start = hexagon_tr_insn_start,
.breakpoint_check = hexagon_tr_breakpoint_check,
.translate_insn = hexagon_tr_translate_packet,
.tb_stop = hexagon_tr_tb_stop,
.disas_log = hexagon_tr_disas_log,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
{
DisasContext ctx;
translator_loop(&hexagon_tr_ops, &ctx.base, cs, tb, max_insns);
}
#define NAME_LEN 64
static char new_value_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
#if HEX_DEBUG
static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
#endif
static char new_pred_value_names[NUM_PREGS][NAME_LEN];
static char store_addr_names[STORES_MAX][NAME_LEN];
static char store_width_names[STORES_MAX][NAME_LEN];
static char store_val32_names[STORES_MAX][NAME_LEN];
static char store_val64_names[STORES_MAX][NAME_LEN];
void hexagon_translate_init(void)
{
int i;
opcode_init();
#if HEX_DEBUG
if (!qemu_logfile) {
qemu_set_log(qemu_loglevel);
}
#endif
for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
hex_gpr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, gpr[i]),
hexagon_regnames[i]);
snprintf(new_value_names[i], NAME_LEN, "new_%s", hexagon_regnames[i]);
hex_new_value[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, new_value[i]),
new_value_names[i]);
#if HEX_DEBUG
snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
hexagon_regnames[i]);
hex_reg_written[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, reg_written[i]),
reg_written_names[i]);
#endif
}
for (i = 0; i < NUM_PREGS; i++) {
hex_pred[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, pred[i]),
hexagon_prednames[i]);
snprintf(new_pred_value_names[i], NAME_LEN, "new_pred_%s",
hexagon_prednames[i]);
hex_new_pred_value[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, new_pred_value[i]),
new_pred_value_names[i]);
}
hex_pred_written = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, pred_written), "pred_written");
hex_next_PC = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, next_PC), "next_PC");
hex_this_PC = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, this_PC), "this_PC");
hex_slot_cancelled = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
hex_branch_taken = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, branch_taken), "branch_taken");
hex_pkt_has_store_s1 = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, pkt_has_store_s1), "pkt_has_store_s1");
hex_dczero_addr = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, dczero_addr), "dczero_addr");
hex_llsc_addr = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
hex_llsc_val = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, llsc_val), "llsc_val");
hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
for (i = 0; i < STORES_MAX; i++) {
snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
hex_store_addr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].va),
store_addr_names[i]);
snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
hex_store_width[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].width),
store_width_names[i]);
snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
hex_store_val32[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].data32),
store_val32_names[i]);
snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].data64),
store_val64_names[i]);
}
}

View File

@ -0,0 +1,93 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_TRANSLATE_H
#define HEXAGON_TRANSLATE_H
#include "qemu/bitmap.h"
#include "cpu.h"
#include "exec/translator.h"
#include "tcg/tcg-op.h"
#include "internal.h"
typedef struct DisasContext {
DisasContextBase base;
uint32_t mem_idx;
uint32_t num_packets;
uint32_t num_insns;
int reg_log[REG_WRITES_MAX];
int reg_log_idx;
DECLARE_BITMAP(regs_written, TOTAL_PER_THREAD_REGS);
int preg_log[PRED_WRITES_MAX];
int preg_log_idx;
uint8_t store_width[STORES_MAX];
uint8_t s1_store_processed;
} DisasContext;
static inline void ctx_log_reg_write(DisasContext *ctx, int rnum)
{
#if HEX_DEBUG
if (test_bit(rnum, ctx->regs_written)) {
HEX_DEBUG_LOG("WARNING: Multiple writes to r%d\n", rnum);
}
#endif
ctx->reg_log[ctx->reg_log_idx] = rnum;
ctx->reg_log_idx++;
set_bit(rnum, ctx->regs_written);
}
static inline void ctx_log_reg_write_pair(DisasContext *ctx, int rnum)
{
ctx_log_reg_write(ctx, rnum);
ctx_log_reg_write(ctx, rnum + 1);
}
static inline void ctx_log_pred_write(DisasContext *ctx, int pnum)
{
ctx->preg_log[ctx->preg_log_idx] = pnum;
ctx->preg_log_idx++;
}
static inline bool is_preloaded(DisasContext *ctx, int num)
{
return test_bit(num, ctx->regs_written);
}
extern TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
extern TCGv hex_pred[NUM_PREGS];
extern TCGv hex_next_PC;
extern TCGv hex_this_PC;
extern TCGv hex_slot_cancelled;
extern TCGv hex_branch_taken;
extern TCGv hex_new_value[TOTAL_PER_THREAD_REGS];
extern TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
extern TCGv hex_new_pred_value[NUM_PREGS];
extern TCGv hex_pred_written;
extern TCGv hex_store_addr[STORES_MAX];
extern TCGv hex_store_width[STORES_MAX];
extern TCGv hex_store_val32[STORES_MAX];
extern TCGv_i64 hex_store_val64[STORES_MAX];
extern TCGv hex_dczero_addr;
extern TCGv hex_llsc_addr;
extern TCGv hex_llsc_val;
extern TCGv_i64 hex_llsc_val_i64;
void gen_exception(int excp);
void gen_exception_debug(void);
void process_store(DisasContext *ctx, Packet *pkt, int slot_num);
#endif

View File

@ -2,6 +2,7 @@ subdir('alpha')
subdir('arm') subdir('arm')
subdir('avr') subdir('avr')
subdir('cris') subdir('cris')
subdir('hexagon')
subdir('hppa') subdir('hppa')
subdir('i386') subdir('i386')
subdir('lm32') subdir('lm32')

View File

@ -49,6 +49,8 @@ fi
: $(cross_cc_alpha="alpha-linux-gnu-gcc") : $(cross_cc_alpha="alpha-linux-gnu-gcc")
: ${cross_cc_arm="arm-linux-gnueabihf-gcc"} : ${cross_cc_arm="arm-linux-gnueabihf-gcc"}
: ${cross_cc_cflags_armeb="-mbig-endian"} : ${cross_cc_cflags_armeb="-mbig-endian"}
: ${cross_cc_hexagon="hexagon-unknown-linux-musl-clang"}
: ${cross_cc_cflags_hexagon="-mv67 -O2 -static"}
: ${cross_cc_hppa="hppa-linux-gnu-gcc"} : ${cross_cc_hppa="hppa-linux-gnu-gcc"}
: ${cross_cc_i386="i386-pc-linux-gnu-gcc"} : ${cross_cc_i386="i386-pc-linux-gnu-gcc"}
: ${cross_cc_cflags_i386="-m32"} : ${cross_cc_cflags_i386="-m32"}
@ -94,7 +96,7 @@ for target in $target_list; do
xtensa|xtensaeb) xtensa|xtensaeb)
arches=xtensa arches=xtensa
;; ;;
alpha|cris|hppa|i386|lm32|microblaze|microblazeel|m68k|openrisc|riscv64|s390x|sh4|sparc64) alpha|cris|hexagon|hppa|i386|lm32|microblaze|microblazeel|m68k|openrisc|riscv64|s390x|sh4|sparc64)
arches=$target arches=$target
;; ;;
*) *)

View File

@ -0,0 +1,46 @@
##
## Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
# Hexagon doesn't support gdb, so skip the EXTRA_RUNS
EXTRA_RUNS =
# Hexagon has 64K pages, so increase the timeout to keep
# test-mmap from timing out
ifeq ($(CONFIG_DEBUG_TCG),y)
TIMEOUT=800
else
TIMEOUT=500
endif
CFLAGS += -Wno-incompatible-pointer-types -Wno-undefined-internal
HEX_SRC=$(SRC_PATH)/tests/tcg/hexagon
VPATH += $(HEX_SRC)
first: $(HEX_SRC)/first.S
$(CC) -static -mv67 -nostdlib $^ -o $@
HEX_TESTS = first
HEX_TESTS += misc
HEX_TESTS += preg_alias
HEX_TESTS += dual_stores
HEX_TESTS += mem_noshuf
HEX_TESTS += atomics
HEX_TESTS += fpstuff
TESTS += $(HEX_TESTS)

139
tests/tcg/hexagon/atomics.c Normal file
View File

@ -0,0 +1,139 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <pthread.h>
/* Using volatile because we are testing atomics */
static inline int atomic_inc32(volatile int *x)
{
int old, dummy;
__asm__ __volatile__(
"1: %0 = memw_locked(%2)\n\t"
" %1 = add(%0, #1)\n\t"
" memw_locked(%2, p0) = %1\n\t"
" if (!p0) jump 1b\n\t"
: "=&r"(old), "=&r"(dummy)
: "r"(x)
: "p0", "memory");
return old;
}
/* Using volatile because we are testing atomics */
static inline long long atomic_inc64(volatile long long *x)
{
long long old, dummy;
__asm__ __volatile__(
"1: %0 = memd_locked(%2)\n\t"
" %1 = #1\n\t"
" %1 = add(%0, %1)\n\t"
" memd_locked(%2, p0) = %1\n\t"
" if (!p0) jump 1b\n\t"
: "=&r"(old), "=&r"(dummy)
: "r"(x)
: "p0", "memory");
return old;
}
/* Using volatile because we are testing atomics */
static inline int atomic_dec32(volatile int *x)
{
int old, dummy;
__asm__ __volatile__(
"1: %0 = memw_locked(%2)\n\t"
" %1 = add(%0, #-1)\n\t"
" memw_locked(%2, p0) = %1\n\t"
" if (!p0) jump 1b\n\t"
: "=&r"(old), "=&r"(dummy)
: "r"(x)
: "p0", "memory");
return old;
}
/* Using volatile because we are testing atomics */
static inline long long atomic_dec64(volatile long long *x)
{
long long old, dummy;
__asm__ __volatile__(
"1: %0 = memd_locked(%2)\n\t"
" %1 = #-1\n\t"
" %1 = add(%0, %1)\n\t"
" memd_locked(%2, p0) = %1\n\t"
" if (!p0) jump 1b\n\t"
: "=&r"(old), "=&r"(dummy)
: "r"(x)
: "p0", "memory");
return old;
}
#define LOOP_CNT 1000
/* Using volatile because we are testing atomics */
volatile int tick32 = 1;
/* Using volatile because we are testing atomics */
volatile long long tick64 = 1;
int err;
void *thread1_func(void *arg)
{
int i;
for (i = 0; i < LOOP_CNT; i++) {
atomic_inc32(&tick32);
atomic_dec64(&tick64);
}
return NULL;
}
void *thread2_func(void *arg)
{
int i;
for (i = 0; i < LOOP_CNT; i++) {
atomic_dec32(&tick32);
atomic_inc64(&tick64);
}
return NULL;
}
void test_pthread(void)
{
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, thread1_func, "hello1");
pthread_create(&tid2, NULL, thread2_func, "hello2");
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
if (tick32 != 1) {
printf("ERROR: tick32 %d != 1\n", tick32);
err++;
}
if (tick64 != 1) {
printf("ERROR: tick64 %lld != 1\n", tick64);
err++;
}
}
int main(int argc, char **argv)
{
test_pthread();
puts(err ? "FAIL" : "PASS");
return err;
}

View File

@ -0,0 +1,60 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
/*
* Make sure that two stores in the same packet honor proper
* semantics: slot 1 executes first, then slot 0.
* This is important when the addresses overlap.
*/
static inline void dual_stores(int *p, char *q, int x, char y)
{
asm volatile("{\n\t"
" memw(%0) = %2\n\t"
" memb(%1) = %3\n\t"
"}\n"
:: "r"(p), "r"(q), "r"(x), "r"(y)
: "memory");
}
typedef union {
int word;
char byte;
} Dual;
int err;
static void check(Dual d, int expect)
{
if (d.word != expect) {
printf("ERROR: 0x%08x != 0x%08x\n", d.word, expect);
err++;
}
}
int main()
{
Dual d;
d.word = ~0;
dual_stores(&d.word, &d.byte, 0x12345678, 0xff);
check(d, 0x123456ff);
puts(err ? "FAIL" : "PASS");
return err;
}

56
tests/tcg/hexagon/first.S Normal file
View File

@ -0,0 +1,56 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define SYS_write 64
#define SYS_exit_group 94
#define SYS_exit 93
#define FD_STDOUT 1
.type str,@object
.section .rodata
str:
.string "Hello!\n"
.size str, 8
.text
.global _start
_start:
r6 = #SYS_write
r0 = #FD_STDOUT
r1 = ##str
r2 = #7
trap0(#1)
r0 = #0
r6 = #SYS_exit_group
trap0(#1)
.section ".note.ABI-tag", "a"
.align 4
.long 1f - 0f /* name length */
.long 3f - 2f /* data length */
.long 1 /* note type */
/*
* vendor name seems like this should be MUSL but lldb doesn't agree.
*/
0: .asciz "GNU"
1: .align 4
2: .long 0 /* linux */
.long 3,0,0
3: .align 4

View File

@ -0,0 +1,748 @@
### Rounding to nearest
from single: f32(-nan:0xffa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0xffc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-inf:0xff800000)
to double: f64(-inf:0x00fff0000000000000) (OK)
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
to double: f64(-0x1.fffffe00000000000000p+127:0x00c7efffffe0000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
to double: f64(-0x1.1874b200000000000000p+103:0x00c661874b20000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
to double: f64(-0x1.c0bab600000000000000p+99:0x00c62c0bab60000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.31f75000000000000000p-40:0xab98fba8)
to double: f64(-0x1.31f75000000000000000p-40:0x00bd731f7500000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.50544400000000000000p-66:0x9ea82a22)
to double: f64(-0x1.50544400000000000000p-66:0x00bbd5054440000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.00000000000000000000p-126:0x80800000)
to double: f64(-0x1.00000000000000000000p-126:0x00b810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(0x0.00000000000000000000p+0:0000000000)
to double: f64(0x0.00000000000000000000p+0:00000000000000000000) (OK)
to int32: 0 (OK)
to int64: 0 (OK)
to uint32: 0 (OK)
to uint64: 0 (OK)
from single: f32(0x1.00000000000000000000p-126:0x00800000)
to double: f64(0x1.00000000000000000000p-126:0x003810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p-25:0x33000000)
to double: f64(0x1.00000000000000000000p-25:0x003e60000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ffffe600000000000000p-25:0x337ffff3)
to double: f64(0x1.ffffe600000000000000p-25:0x003e6ffffe60000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ff801a00000000000000p-15:0x387fc00d)
to double: f64(0x1.ff801a00000000000000p-15:0x003f0ff801a0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000c00000000000000p-14:0x38800006)
to double: f64(0x1.00000c00000000000000p-14:0x003f100000c0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p+0:0x3f800000)
to double: f64(0x1.00000000000000000000p+0:0x003ff0000000000000) (OK)
to int32: 1 (OK)
to int64: 1 (OK)
to uint32: 1 (OK)
to uint64: 1 (OK)
from single: f32(0x1.00400000000000000000p+0:0x3f802000)
to double: f64(0x1.00400000000000000000p+0:0x003ff0040000000000) (INEXACT )
to int32: 1 (INEXACT )
to int64: 1 (INEXACT )
to uint32: 1 (INEXACT )
to uint64: 1 (INEXACT )
from single: f32(0x1.00000000000000000000p+1:0x40000000)
to double: f64(0x1.00000000000000000000p+1:0x004000000000000000) (OK)
to int32: 2 (OK)
to int64: 2 (OK)
to uint32: 2 (OK)
to uint64: 2 (OK)
from single: f32(0x1.5bf0a800000000000000p+1:0x402df854)
to double: f64(0x1.5bf0a800000000000000p+1:0x004005bf0a80000000) (INEXACT )
to int32: 2 (INEXACT )
to int64: 2 (INEXACT )
to uint32: 2 (INEXACT )
to uint64: 2 (INEXACT )
from single: f32(0x1.921fb600000000000000p+1:0x40490fdb)
to double: f64(0x1.921fb600000000000000p+1:0x00400921fb60000000) (INEXACT )
to int32: 3 (INEXACT )
to int64: 3 (INEXACT )
to uint32: 3 (INEXACT )
to uint64: 3 (INEXACT )
from single: f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
to double: f64(0x1.ffbe0000000000000000p+15:0x0040effbe000000000) (INEXACT )
to int32: 65503 (OK)
to int64: 65503 (OK)
to uint32: 65503 (OK)
to uint64: 65503 (OK)
from single: f32(0x1.ffc00000000000000000p+15:0x477fe000)
to double: f64(0x1.ffc00000000000000000p+15:0x0040effc0000000000) (INEXACT )
to int32: 65504 (OK)
to int64: 65504 (OK)
to uint32: 65504 (OK)
to uint64: 65504 (OK)
from single: f32(0x1.ffc20000000000000000p+15:0x477fe100)
to double: f64(0x1.ffc20000000000000000p+15:0x0040effc2000000000) (INEXACT )
to int32: 65505 (OK)
to int64: 65505 (OK)
to uint32: 65505 (OK)
to uint64: 65505 (OK)
from single: f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
to double: f64(0x1.ffbf0000000000000000p+16:0x0040fffbf000000000) (INEXACT )
to int32: 131007 (OK)
to int64: 131007 (OK)
to uint32: 131007 (OK)
to uint64: 131007 (OK)
from single: f32(0x1.ffc00000000000000000p+16:0x47ffe000)
to double: f64(0x1.ffc00000000000000000p+16:0x0040fffc0000000000) (INEXACT )
to int32: 131008 (OK)
to int64: 131008 (OK)
to uint32: 131008 (OK)
to uint64: 131008 (OK)
from single: f32(0x1.ffc10000000000000000p+16:0x47ffe080)
to double: f64(0x1.ffc10000000000000000p+16:0x0040fffc1000000000) (INEXACT )
to int32: 131009 (OK)
to int64: 131009 (OK)
to uint32: 131009 (OK)
to uint64: 131009 (OK)
from single: f32(0x1.c0bab600000000000000p+99:0x71605d5b)
to double: f64(0x1.c0bab600000000000000p+99:0x00462c0bab60000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
to double: f64(0x1.fffffe00000000000000p+127:0x0047efffffe0000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(inf:0x7f800000)
to double: f64(inf:0x007ff0000000000000) (OK)
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
### Rounding upwards
from single: f32(-nan:0xffa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0xffc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-inf:0xff800000)
to double: f64(-inf:0x00fff0000000000000) (OK)
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
to double: f64(-0x1.fffffe00000000000000p+127:0x00c7efffffe0000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
to double: f64(-0x1.1874b200000000000000p+103:0x00c661874b20000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
to double: f64(-0x1.c0bab600000000000000p+99:0x00c62c0bab60000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.31f75000000000000000p-40:0xab98fba8)
to double: f64(-0x1.31f75000000000000000p-40:0x00bd731f7500000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.50544400000000000000p-66:0x9ea82a22)
to double: f64(-0x1.50544400000000000000p-66:0x00bbd5054440000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.00000000000000000000p-126:0x80800000)
to double: f64(-0x1.00000000000000000000p-126:0x00b810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(0x0.00000000000000000000p+0:0000000000)
to double: f64(0x0.00000000000000000000p+0:00000000000000000000) (OK)
to int32: 0 (OK)
to int64: 0 (OK)
to uint32: 0 (OK)
to uint64: 0 (OK)
from single: f32(0x1.00000000000000000000p-126:0x00800000)
to double: f64(0x1.00000000000000000000p-126:0x003810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p-25:0x33000000)
to double: f64(0x1.00000000000000000000p-25:0x003e60000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ffffe600000000000000p-25:0x337ffff3)
to double: f64(0x1.ffffe600000000000000p-25:0x003e6ffffe60000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ff801a00000000000000p-15:0x387fc00d)
to double: f64(0x1.ff801a00000000000000p-15:0x003f0ff801a0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000c00000000000000p-14:0x38800006)
to double: f64(0x1.00000c00000000000000p-14:0x003f100000c0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p+0:0x3f800000)
to double: f64(0x1.00000000000000000000p+0:0x003ff0000000000000) (OK)
to int32: 1 (OK)
to int64: 1 (OK)
to uint32: 1 (OK)
to uint64: 1 (OK)
from single: f32(0x1.00400000000000000000p+0:0x3f802000)
to double: f64(0x1.00400000000000000000p+0:0x003ff0040000000000) (INEXACT )
to int32: 1 (INEXACT )
to int64: 1 (INEXACT )
to uint32: 1 (INEXACT )
to uint64: 1 (INEXACT )
from single: f32(0x1.00000000000000000000p+1:0x40000000)
to double: f64(0x1.00000000000000000000p+1:0x004000000000000000) (OK)
to int32: 2 (OK)
to int64: 2 (OK)
to uint32: 2 (OK)
to uint64: 2 (OK)
from single: f32(0x1.5bf0a800000000000000p+1:0x402df854)
to double: f64(0x1.5bf0a800000000000000p+1:0x004005bf0a80000000) (INEXACT )
to int32: 2 (INEXACT )
to int64: 2 (INEXACT )
to uint32: 2 (INEXACT )
to uint64: 2 (INEXACT )
from single: f32(0x1.921fb600000000000000p+1:0x40490fdb)
to double: f64(0x1.921fb600000000000000p+1:0x00400921fb60000000) (INEXACT )
to int32: 3 (INEXACT )
to int64: 3 (INEXACT )
to uint32: 3 (INEXACT )
to uint64: 3 (INEXACT )
from single: f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
to double: f64(0x1.ffbe0000000000000000p+15:0x0040effbe000000000) (INEXACT )
to int32: 65503 (OK)
to int64: 65503 (OK)
to uint32: 65503 (OK)
to uint64: 65503 (OK)
from single: f32(0x1.ffc00000000000000000p+15:0x477fe000)
to double: f64(0x1.ffc00000000000000000p+15:0x0040effc0000000000) (INEXACT )
to int32: 65504 (OK)
to int64: 65504 (OK)
to uint32: 65504 (OK)
to uint64: 65504 (OK)
from single: f32(0x1.ffc20000000000000000p+15:0x477fe100)
to double: f64(0x1.ffc20000000000000000p+15:0x0040effc2000000000) (INEXACT )
to int32: 65505 (OK)
to int64: 65505 (OK)
to uint32: 65505 (OK)
to uint64: 65505 (OK)
from single: f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
to double: f64(0x1.ffbf0000000000000000p+16:0x0040fffbf000000000) (INEXACT )
to int32: 131007 (OK)
to int64: 131007 (OK)
to uint32: 131007 (OK)
to uint64: 131007 (OK)
from single: f32(0x1.ffc00000000000000000p+16:0x47ffe000)
to double: f64(0x1.ffc00000000000000000p+16:0x0040fffc0000000000) (INEXACT )
to int32: 131008 (OK)
to int64: 131008 (OK)
to uint32: 131008 (OK)
to uint64: 131008 (OK)
from single: f32(0x1.ffc10000000000000000p+16:0x47ffe080)
to double: f64(0x1.ffc10000000000000000p+16:0x0040fffc1000000000) (INEXACT )
to int32: 131009 (OK)
to int64: 131009 (OK)
to uint32: 131009 (OK)
to uint64: 131009 (OK)
from single: f32(0x1.c0bab600000000000000p+99:0x71605d5b)
to double: f64(0x1.c0bab600000000000000p+99:0x00462c0bab60000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
to double: f64(0x1.fffffe00000000000000p+127:0x0047efffffe0000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(inf:0x7f800000)
to double: f64(inf:0x007ff0000000000000) (OK)
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
### Rounding downwards
from single: f32(-nan:0xffa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0xffc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-inf:0xff800000)
to double: f64(-inf:0x00fff0000000000000) (OK)
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
to double: f64(-0x1.fffffe00000000000000p+127:0x00c7efffffe0000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
to double: f64(-0x1.1874b200000000000000p+103:0x00c661874b20000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
to double: f64(-0x1.c0bab600000000000000p+99:0x00c62c0bab60000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.31f75000000000000000p-40:0xab98fba8)
to double: f64(-0x1.31f75000000000000000p-40:0x00bd731f7500000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.50544400000000000000p-66:0x9ea82a22)
to double: f64(-0x1.50544400000000000000p-66:0x00bbd5054440000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.00000000000000000000p-126:0x80800000)
to double: f64(-0x1.00000000000000000000p-126:0x00b810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(0x0.00000000000000000000p+0:0000000000)
to double: f64(0x0.00000000000000000000p+0:00000000000000000000) (OK)
to int32: 0 (OK)
to int64: 0 (OK)
to uint32: 0 (OK)
to uint64: 0 (OK)
from single: f32(0x1.00000000000000000000p-126:0x00800000)
to double: f64(0x1.00000000000000000000p-126:0x003810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p-25:0x33000000)
to double: f64(0x1.00000000000000000000p-25:0x003e60000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ffffe600000000000000p-25:0x337ffff3)
to double: f64(0x1.ffffe600000000000000p-25:0x003e6ffffe60000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ff801a00000000000000p-15:0x387fc00d)
to double: f64(0x1.ff801a00000000000000p-15:0x003f0ff801a0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000c00000000000000p-14:0x38800006)
to double: f64(0x1.00000c00000000000000p-14:0x003f100000c0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p+0:0x3f800000)
to double: f64(0x1.00000000000000000000p+0:0x003ff0000000000000) (OK)
to int32: 1 (OK)
to int64: 1 (OK)
to uint32: 1 (OK)
to uint64: 1 (OK)
from single: f32(0x1.00400000000000000000p+0:0x3f802000)
to double: f64(0x1.00400000000000000000p+0:0x003ff0040000000000) (INEXACT )
to int32: 1 (INEXACT )
to int64: 1 (INEXACT )
to uint32: 1 (INEXACT )
to uint64: 1 (INEXACT )
from single: f32(0x1.00000000000000000000p+1:0x40000000)
to double: f64(0x1.00000000000000000000p+1:0x004000000000000000) (OK)
to int32: 2 (OK)
to int64: 2 (OK)
to uint32: 2 (OK)
to uint64: 2 (OK)
from single: f32(0x1.5bf0a800000000000000p+1:0x402df854)
to double: f64(0x1.5bf0a800000000000000p+1:0x004005bf0a80000000) (INEXACT )
to int32: 2 (INEXACT )
to int64: 2 (INEXACT )
to uint32: 2 (INEXACT )
to uint64: 2 (INEXACT )
from single: f32(0x1.921fb600000000000000p+1:0x40490fdb)
to double: f64(0x1.921fb600000000000000p+1:0x00400921fb60000000) (INEXACT )
to int32: 3 (INEXACT )
to int64: 3 (INEXACT )
to uint32: 3 (INEXACT )
to uint64: 3 (INEXACT )
from single: f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
to double: f64(0x1.ffbe0000000000000000p+15:0x0040effbe000000000) (INEXACT )
to int32: 65503 (OK)
to int64: 65503 (OK)
to uint32: 65503 (OK)
to uint64: 65503 (OK)
from single: f32(0x1.ffc00000000000000000p+15:0x477fe000)
to double: f64(0x1.ffc00000000000000000p+15:0x0040effc0000000000) (INEXACT )
to int32: 65504 (OK)
to int64: 65504 (OK)
to uint32: 65504 (OK)
to uint64: 65504 (OK)
from single: f32(0x1.ffc20000000000000000p+15:0x477fe100)
to double: f64(0x1.ffc20000000000000000p+15:0x0040effc2000000000) (INEXACT )
to int32: 65505 (OK)
to int64: 65505 (OK)
to uint32: 65505 (OK)
to uint64: 65505 (OK)
from single: f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
to double: f64(0x1.ffbf0000000000000000p+16:0x0040fffbf000000000) (INEXACT )
to int32: 131007 (OK)
to int64: 131007 (OK)
to uint32: 131007 (OK)
to uint64: 131007 (OK)
from single: f32(0x1.ffc00000000000000000p+16:0x47ffe000)
to double: f64(0x1.ffc00000000000000000p+16:0x0040fffc0000000000) (INEXACT )
to int32: 131008 (OK)
to int64: 131008 (OK)
to uint32: 131008 (OK)
to uint64: 131008 (OK)
from single: f32(0x1.ffc10000000000000000p+16:0x47ffe080)
to double: f64(0x1.ffc10000000000000000p+16:0x0040fffc1000000000) (INEXACT )
to int32: 131009 (OK)
to int64: 131009 (OK)
to uint32: 131009 (OK)
to uint64: 131009 (OK)
from single: f32(0x1.c0bab600000000000000p+99:0x71605d5b)
to double: f64(0x1.c0bab600000000000000p+99:0x00462c0bab60000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
to double: f64(0x1.fffffe00000000000000p+127:0x0047efffffe0000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(inf:0x7f800000)
to double: f64(inf:0x007ff0000000000000) (OK)
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
### Rounding to zero
from single: f32(-nan:0xffa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0xffc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-inf:0xff800000)
to double: f64(-inf:0x00fff0000000000000) (OK)
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
to double: f64(-0x1.fffffe00000000000000p+127:0x00c7efffffe0000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
to double: f64(-0x1.1874b200000000000000p+103:0x00c661874b20000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
to double: f64(-0x1.c0bab600000000000000p+99:0x00c62c0bab60000000) (INEXACT )
to int32: -2147483648 (INVALID)
to int64: -9223372036854775808 (INVALID)
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.31f75000000000000000p-40:0xab98fba8)
to double: f64(-0x1.31f75000000000000000p-40:0x00bd731f7500000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.50544400000000000000p-66:0x9ea82a22)
to double: f64(-0x1.50544400000000000000p-66:0x00bbd5054440000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(-0x1.00000000000000000000p-126:0x80800000)
to double: f64(-0x1.00000000000000000000p-126:0x00b810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INVALID)
to uint64: 0 (INVALID)
from single: f32(0x0.00000000000000000000p+0:0000000000)
to double: f64(0x0.00000000000000000000p+0:00000000000000000000) (OK)
to int32: 0 (OK)
to int64: 0 (OK)
to uint32: 0 (OK)
to uint64: 0 (OK)
from single: f32(0x1.00000000000000000000p-126:0x00800000)
to double: f64(0x1.00000000000000000000p-126:0x003810000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p-25:0x33000000)
to double: f64(0x1.00000000000000000000p-25:0x003e60000000000000) (OK)
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ffffe600000000000000p-25:0x337ffff3)
to double: f64(0x1.ffffe600000000000000p-25:0x003e6ffffe60000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.ff801a00000000000000p-15:0x387fc00d)
to double: f64(0x1.ff801a00000000000000p-15:0x003f0ff801a0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000c00000000000000p-14:0x38800006)
to double: f64(0x1.00000c00000000000000p-14:0x003f100000c0000000) (INEXACT )
to int32: 0 (INEXACT )
to int64: 0 (INEXACT )
to uint32: 0 (INEXACT )
to uint64: 0 (INEXACT )
from single: f32(0x1.00000000000000000000p+0:0x3f800000)
to double: f64(0x1.00000000000000000000p+0:0x003ff0000000000000) (OK)
to int32: 1 (OK)
to int64: 1 (OK)
to uint32: 1 (OK)
to uint64: 1 (OK)
from single: f32(0x1.00400000000000000000p+0:0x3f802000)
to double: f64(0x1.00400000000000000000p+0:0x003ff0040000000000) (INEXACT )
to int32: 1 (INEXACT )
to int64: 1 (INEXACT )
to uint32: 1 (INEXACT )
to uint64: 1 (INEXACT )
from single: f32(0x1.00000000000000000000p+1:0x40000000)
to double: f64(0x1.00000000000000000000p+1:0x004000000000000000) (OK)
to int32: 2 (OK)
to int64: 2 (OK)
to uint32: 2 (OK)
to uint64: 2 (OK)
from single: f32(0x1.5bf0a800000000000000p+1:0x402df854)
to double: f64(0x1.5bf0a800000000000000p+1:0x004005bf0a80000000) (INEXACT )
to int32: 2 (INEXACT )
to int64: 2 (INEXACT )
to uint32: 2 (INEXACT )
to uint64: 2 (INEXACT )
from single: f32(0x1.921fb600000000000000p+1:0x40490fdb)
to double: f64(0x1.921fb600000000000000p+1:0x00400921fb60000000) (INEXACT )
to int32: 3 (INEXACT )
to int64: 3 (INEXACT )
to uint32: 3 (INEXACT )
to uint64: 3 (INEXACT )
from single: f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
to double: f64(0x1.ffbe0000000000000000p+15:0x0040effbe000000000) (INEXACT )
to int32: 65503 (OK)
to int64: 65503 (OK)
to uint32: 65503 (OK)
to uint64: 65503 (OK)
from single: f32(0x1.ffc00000000000000000p+15:0x477fe000)
to double: f64(0x1.ffc00000000000000000p+15:0x0040effc0000000000) (INEXACT )
to int32: 65504 (OK)
to int64: 65504 (OK)
to uint32: 65504 (OK)
to uint64: 65504 (OK)
from single: f32(0x1.ffc20000000000000000p+15:0x477fe100)
to double: f64(0x1.ffc20000000000000000p+15:0x0040effc2000000000) (INEXACT )
to int32: 65505 (OK)
to int64: 65505 (OK)
to uint32: 65505 (OK)
to uint64: 65505 (OK)
from single: f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
to double: f64(0x1.ffbf0000000000000000p+16:0x0040fffbf000000000) (INEXACT )
to int32: 131007 (OK)
to int64: 131007 (OK)
to uint32: 131007 (OK)
to uint64: 131007 (OK)
from single: f32(0x1.ffc00000000000000000p+16:0x47ffe000)
to double: f64(0x1.ffc00000000000000000p+16:0x0040fffc0000000000) (INEXACT )
to int32: 131008 (OK)
to int64: 131008 (OK)
to uint32: 131008 (OK)
to uint64: 131008 (OK)
from single: f32(0x1.ffc10000000000000000p+16:0x47ffe080)
to double: f64(0x1.ffc10000000000000000p+16:0x0040fffc1000000000) (INEXACT )
to int32: 131009 (OK)
to int64: 131009 (OK)
to uint32: 131009 (OK)
to uint64: 131009 (OK)
from single: f32(0x1.c0bab600000000000000p+99:0x71605d5b)
to double: f64(0x1.c0bab600000000000000p+99:0x00462c0bab60000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
to double: f64(0x1.fffffe00000000000000p+127:0x0047efffffe0000000) (INEXACT )
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(inf:0x7f800000)
to double: f64(inf:0x007ff0000000000000) (OK)
to int32: 2147483647 (INVALID)
to int64: 9223372036854775807 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fc00000)
to double: f64(-nan:0x00ffffffffffffffff) (OK)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)
from single: f32(-nan:0x7fa00000)
to double: f64(-nan:0x00ffffffffffffffff) (INVALID)
to int32: -1 (INVALID)
to int64: -1 (INVALID)
to uint32: -1 (INVALID)
to uint64: -1 (INVALID)

View File

@ -0,0 +1,768 @@
### Rounding to nearest
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=INVALID (0/0)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/1)
op : f32(-inf:0xff800000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/2)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(-nan:0xffffffff) flags=OK (1/0)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=OK (1/1)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=OK (1/2)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(inf:0x7f800000) flags=OK (2/0)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-inf:0xff800000)
res: f32(-inf:0xff800000) flags=OK (2/1)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(inf:0x7f800000) flags=OK (2/2)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (3/0)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (3/1)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (3/2)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (4/0)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(-0x1.1874b200000000000000p+103:0xf30c3a59) flags=INEXACT (4/1)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) flags=INEXACT (4/2)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(0x1.0c27fa00000000000000p+60:0x5d8613fd) flags=INEXACT (5/0)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) flags=INEXACT (5/1)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(0x1.26c46200000000000000p+34:0x50936231) flags=INEXACT (5/2)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(0x1.91f94000000000000000p-106:0x0ac8fca0) flags=INEXACT (6/0)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(-0x1.31f75000000000000000p-40:0xab98fba8) flags=INEXACT (6/1)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544400000000000000p-66:0x9ea82a22) flags=INEXACT (6/2)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=UNDERFLOW INEXACT (7/0)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544400000000000000p-66:0x9ea82a22) flags=INEXACT (7/1)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (7/2)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (8/0)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (8/1)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(-0x0.00000000000000000000p+0:0x80000000) flags=UNDERFLOW INEXACT (8/2)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=OK (9/0)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=UNDERFLOW INEXACT (9/1)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (9/2)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.ffffe600000000000000p-25:0x337ffff3) flags=INEXACT (10/0)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.ffffe600000000000000p-50:0x26fffff3) flags=INEXACT (10/1)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=INEXACT (10/2)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801a00000000000000p-15:0x387fc00d) flags=INEXACT (11/0)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.0007fe00000000000000p-25:0x330003ff) flags=INEXACT (11/1)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0001f200000000000000p-24:0x338000f9) flags=INEXACT (11/2)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00000c00000000000000p-14:0x38800006) flags=INEXACT (12/0)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0ffbf400000000000000p-24:0x3387fdfa) flags=INEXACT (12/1)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801c00000000000000p-15:0x387fc00e) flags=INEXACT (12/2)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00000000000000000000p+0:0x3f800000) flags=INEXACT (13/0)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ffc01800000000000000p-14:0x38ffe00c) flags=INEXACT (13/1)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.ffc01800000000000000p-14:0x38ffe00c) flags=INEXACT (13/2)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.00440000000000000000p+0:0x3f802200) flags=INEXACT (14/0)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00440000000000000000p+0:0x3f802200) flags=INEXACT (14/1)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00040200000000000000p+0:0x3f800201) flags=INEXACT (14/2)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/0)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.80400000000000000000p+1:0x40402000) flags=INEXACT (15/1)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/2)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.2e185400000000000000p+2:0x40970c2a) flags=INEXACT (16/0)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.9c00a800000000000000p+2:0x40ce0054) flags=INEXACT (16/1)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.2e23d200000000000000p+2:0x409711e9) flags=INEXACT (16/2)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.12804200000000000000p+3:0x41094021) flags=INEXACT (17/0)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.51458000000000000000p+3:0x4128a2c0) flags=INEXACT (17/1)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.200c0400000000000000p+3:0x41100602) flags=INEXACT (17/2)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ffcf1400000000000000p+15:0x477fe78a) flags=INEXACT (18/0)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.91ed3c00000000000000p+17:0x4848f69e) flags=INEXACT (18/1)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.5bc56000000000000000p+17:0x482de2b0) flags=INEXACT (18/2)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.08edf000000000000000p+18:0x488476f8) flags=INEXACT (19/0)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.ff7e0800000000000000p+31:0x4f7fbf04) flags=INEXACT (19/1)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.08ee7a00000000000000p+18:0x4884773d) flags=INEXACT (19/2)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800800000000000000p+31:0x4f7fc004) flags=INEXACT (20/0)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ff840800000000000000p+31:0x4f7fc204) flags=INEXACT (20/1)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820800000000000000p+31:0x4f7fc104) flags=INEXACT (20/2)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff860800000000000000p+31:0x4f7fc304) flags=INEXACT (21/0)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820800000000000000p+32:0x4fffc104) flags=INEXACT (21/1)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800800000000000000p+32:0x4fffc004) flags=INEXACT (21/2)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff830800000000000000p+32:0x4fffc184) flags=INEXACT (22/0)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff7f8800000000000000p+33:0x507fbfc4) flags=INEXACT (22/1)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff840800000000000000p+32:0x4fffc204) flags=INEXACT (22/2)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.ff800800000000000000p+33:0x507fc004) flags=INEXACT (23/0)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff820800000000000000p+33:0x507fc104) flags=INEXACT (23/1)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff810800000000000000p+33:0x507fc084) flags=INEXACT (23/2)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(0x1.c0bab600000000000000p+99:0x71605d5b) flags=INEXACT (24/0)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.c0838000000000000000p+116:0x79e041c0) flags=INEXACT (24/1)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.c0829e00000000000000p+116:0x79e0414f) flags=INEXACT (24/2)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (25/0)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (25/1)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (25/2)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(inf:0x7f800000) flags=OK (26/0)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(inf:0x7f800000) flags=OK (26/1)
op : f32(inf:0x7f800000) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(inf:0x7f800000) flags=OK (26/2)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=OK (27/0)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(-nan:0xffffffff) flags=OK (27/1)
op : f32(-nan:0x7fc00000) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=OK (27/2)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/0)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=INVALID (28/1)
op : f32(-nan:0x7fa00000) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/2)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/0)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/1)
op : f32(-nan:0xffa00000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/2)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/0)
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/1)
op : f32(-nan:0xffc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/2)
# LP184149
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-1:0x3f000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=OK (31/0)
op : f32(0x1.00000000000000000000p-149:0x00000001) * f32(0x1.00000000000000000000p-149:0x00000001) + f32(0x1.00000000000000000000p-149:0x00000001)
res: f32(0x1.00000000000000000000p-149:0x00000001) flags=UNDERFLOW INEXACT (32/0)
### Rounding upwards
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=INVALID (0/0)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/1)
op : f32(-inf:0xff800000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/2)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(-nan:0xffffffff) flags=OK (1/0)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=OK (1/1)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=OK (1/2)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(inf:0x7f800000) flags=OK (2/0)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-inf:0xff800000)
res: f32(-inf:0xff800000) flags=OK (2/1)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(inf:0x7f800000) flags=OK (2/2)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (3/0)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (3/1)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (3/2)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (4/0)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(-0x1.1874b000000000000000p+103:0xf30c3a58) flags=INEXACT (4/1)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab400000000000000p+99:0xf1605d5a) flags=INEXACT (4/2)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(0x1.0c27fa00000000000000p+60:0x5d8613fd) flags=INEXACT (5/0)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab400000000000000p+99:0xf1605d5a) flags=INEXACT (5/1)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(0x1.26c46200000000000000p+34:0x50936231) flags=INEXACT (5/2)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(0x1.91f94000000000000000p-106:0x0ac8fca0) flags=INEXACT (6/0)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(-0x1.31f74e00000000000000p-40:0xab98fba7) flags=INEXACT (6/1)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544200000000000000p-66:0x9ea82a21) flags=INEXACT (6/2)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x1.00000000000000000000p-149:0x00000001) flags=UNDERFLOW INEXACT (7/0)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544400000000000000p-66:0x9ea82a22) flags=INEXACT (7/1)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (7/2)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (8/0)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (8/1)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(-0x0.00000000000000000000p+0:0x80000000) flags=UNDERFLOW INEXACT (8/2)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=OK (9/0)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x1.00000000000000000000p-149:0x00000001) flags=UNDERFLOW INEXACT (9/1)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (9/2)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.ffffe800000000000000p-25:0x337ffff4) flags=INEXACT (10/0)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.ffffe800000000000000p-50:0x26fffff4) flags=INEXACT (10/1)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000200000000000000p-25:0x33000001) flags=INEXACT (10/2)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801c00000000000000p-15:0x387fc00e) flags=INEXACT (11/0)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00080000000000000000p-25:0x33000400) flags=INEXACT (11/1)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0001f400000000000000p-24:0x338000fa) flags=INEXACT (11/2)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00000e00000000000000p-14:0x38800007) flags=INEXACT (12/0)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0ffbf600000000000000p-24:0x3387fdfb) flags=INEXACT (12/1)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801c00000000000000p-15:0x387fc00e) flags=INEXACT (12/2)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00000200000000000000p+0:0x3f800001) flags=INEXACT (13/0)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ffc01a00000000000000p-14:0x38ffe00d) flags=INEXACT (13/1)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.ffc01a00000000000000p-14:0x38ffe00d) flags=INEXACT (13/2)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.00440200000000000000p+0:0x3f802201) flags=INEXACT (14/0)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00440200000000000000p+0:0x3f802201) flags=INEXACT (14/1)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00040200000000000000p+0:0x3f800201) flags=INEXACT (14/2)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/0)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.80400000000000000000p+1:0x40402000) flags=INEXACT (15/1)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/2)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.2e185400000000000000p+2:0x40970c2a) flags=INEXACT (16/0)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.9c00a800000000000000p+2:0x40ce0054) flags=INEXACT (16/1)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.2e23d400000000000000p+2:0x409711ea) flags=INEXACT (16/2)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.12804200000000000000p+3:0x41094021) flags=INEXACT (17/0)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.51458200000000000000p+3:0x4128a2c1) flags=INEXACT (17/1)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.200c0600000000000000p+3:0x41100603) flags=INEXACT (17/2)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ffcf1600000000000000p+15:0x477fe78b) flags=INEXACT (18/0)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.91ed3c00000000000000p+17:0x4848f69e) flags=INEXACT (18/1)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.5bc56200000000000000p+17:0x482de2b1) flags=INEXACT (18/2)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.08edf000000000000000p+18:0x488476f8) flags=INEXACT (19/0)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.ff7e0a00000000000000p+31:0x4f7fbf05) flags=INEXACT (19/1)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.08ee7a00000000000000p+18:0x4884773d) flags=INEXACT (19/2)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800a00000000000000p+31:0x4f7fc005) flags=INEXACT (20/0)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ff840800000000000000p+31:0x4f7fc204) flags=INEXACT (20/1)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820800000000000000p+31:0x4f7fc104) flags=INEXACT (20/2)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff860800000000000000p+31:0x4f7fc304) flags=INEXACT (21/0)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820800000000000000p+32:0x4fffc104) flags=INEXACT (21/1)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800a00000000000000p+32:0x4fffc005) flags=INEXACT (21/2)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff830800000000000000p+32:0x4fffc184) flags=INEXACT (22/0)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff7f8a00000000000000p+33:0x507fbfc5) flags=INEXACT (22/1)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff840800000000000000p+32:0x4fffc204) flags=INEXACT (22/2)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.ff800a00000000000000p+33:0x507fc005) flags=INEXACT (23/0)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff820800000000000000p+33:0x507fc104) flags=INEXACT (23/1)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff810800000000000000p+33:0x507fc084) flags=INEXACT (23/2)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(0x1.c0bab800000000000000p+99:0x71605d5c) flags=INEXACT (24/0)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.c0838000000000000000p+116:0x79e041c0) flags=INEXACT (24/1)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.c082a000000000000000p+116:0x79e04150) flags=INEXACT (24/2)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (25/0)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (25/1)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(inf:0x7f800000) flags=OVERFLOW INEXACT (25/2)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(inf:0x7f800000) flags=OK (26/0)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(inf:0x7f800000) flags=OK (26/1)
op : f32(inf:0x7f800000) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(inf:0x7f800000) flags=OK (26/2)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=OK (27/0)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(-nan:0xffffffff) flags=OK (27/1)
op : f32(-nan:0x7fc00000) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=OK (27/2)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/0)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=INVALID (28/1)
op : f32(-nan:0x7fa00000) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/2)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/0)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/1)
op : f32(-nan:0xffa00000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/2)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/0)
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/1)
op : f32(-nan:0xffc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/2)
# LP184149
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-1:0x3f000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=OK (31/0)
op : f32(0x1.00000000000000000000p-149:0x00000001) * f32(0x1.00000000000000000000p-149:0x00000001) + f32(0x1.00000000000000000000p-149:0x00000001)
res: f32(0x1.00000000000000000000p-148:0x00000002) flags=UNDERFLOW INEXACT (32/0)
### Rounding downwards
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=INVALID (0/0)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/1)
op : f32(-inf:0xff800000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/2)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(-nan:0xffffffff) flags=OK (1/0)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=OK (1/1)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=OK (1/2)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(inf:0x7f800000) flags=OK (2/0)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-inf:0xff800000)
res: f32(-inf:0xff800000) flags=OK (2/1)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(inf:0x7f800000) flags=OK (2/2)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (3/0)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (3/1)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (3/2)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (4/0)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(-0x1.1874b200000000000000p+103:0xf30c3a59) flags=INEXACT (4/1)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) flags=INEXACT (4/2)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(0x1.0c27f800000000000000p+60:0x5d8613fc) flags=INEXACT (5/0)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) flags=INEXACT (5/1)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(0x1.26c46000000000000000p+34:0x50936230) flags=INEXACT (5/2)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(0x1.91f93e00000000000000p-106:0x0ac8fc9f) flags=INEXACT (6/0)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(-0x1.31f75000000000000000p-40:0xab98fba8) flags=INEXACT (6/1)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544400000000000000p-66:0x9ea82a22) flags=INEXACT (6/2)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=UNDERFLOW INEXACT (7/0)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544400000000000000p-66:0x9ea82a22) flags=INEXACT (7/1)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (7/2)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (8/0)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (8/1)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(-0x1.00000000000000000000p-149:0x80000001) flags=UNDERFLOW INEXACT (8/2)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=OK (9/0)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=UNDERFLOW INEXACT (9/1)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (9/2)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.ffffe600000000000000p-25:0x337ffff3) flags=INEXACT (10/0)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.ffffe600000000000000p-50:0x26fffff3) flags=INEXACT (10/1)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=INEXACT (10/2)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801a00000000000000p-15:0x387fc00d) flags=INEXACT (11/0)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.0007fe00000000000000p-25:0x330003ff) flags=INEXACT (11/1)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0001f200000000000000p-24:0x338000f9) flags=INEXACT (11/2)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00000c00000000000000p-14:0x38800006) flags=INEXACT (12/0)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0ffbf400000000000000p-24:0x3387fdfa) flags=INEXACT (12/1)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801a00000000000000p-15:0x387fc00d) flags=INEXACT (12/2)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00000000000000000000p+0:0x3f800000) flags=INEXACT (13/0)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ffc01800000000000000p-14:0x38ffe00c) flags=INEXACT (13/1)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.ffc01800000000000000p-14:0x38ffe00c) flags=INEXACT (13/2)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.00440000000000000000p+0:0x3f802200) flags=INEXACT (14/0)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00440000000000000000p+0:0x3f802200) flags=INEXACT (14/1)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00040000000000000000p+0:0x3f800200) flags=INEXACT (14/2)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/0)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.80400000000000000000p+1:0x40402000) flags=INEXACT (15/1)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/2)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.2e185400000000000000p+2:0x40970c2a) flags=INEXACT (16/0)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.9c00a800000000000000p+2:0x40ce0054) flags=INEXACT (16/1)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.2e23d200000000000000p+2:0x409711e9) flags=INEXACT (16/2)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.12804000000000000000p+3:0x41094020) flags=INEXACT (17/0)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.51458000000000000000p+3:0x4128a2c0) flags=INEXACT (17/1)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.200c0400000000000000p+3:0x41100602) flags=INEXACT (17/2)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ffcf1400000000000000p+15:0x477fe78a) flags=INEXACT (18/0)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.91ed3a00000000000000p+17:0x4848f69d) flags=INEXACT (18/1)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.5bc56000000000000000p+17:0x482de2b0) flags=INEXACT (18/2)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.08edee00000000000000p+18:0x488476f7) flags=INEXACT (19/0)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.ff7e0800000000000000p+31:0x4f7fbf04) flags=INEXACT (19/1)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.08ee7800000000000000p+18:0x4884773c) flags=INEXACT (19/2)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800800000000000000p+31:0x4f7fc004) flags=INEXACT (20/0)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ff840600000000000000p+31:0x4f7fc203) flags=INEXACT (20/1)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820600000000000000p+31:0x4f7fc103) flags=INEXACT (20/2)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff860600000000000000p+31:0x4f7fc303) flags=INEXACT (21/0)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820600000000000000p+32:0x4fffc103) flags=INEXACT (21/1)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800800000000000000p+32:0x4fffc004) flags=INEXACT (21/2)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff830600000000000000p+32:0x4fffc183) flags=INEXACT (22/0)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff7f8800000000000000p+33:0x507fbfc4) flags=INEXACT (22/1)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff840600000000000000p+32:0x4fffc203) flags=INEXACT (22/2)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.ff800800000000000000p+33:0x507fc004) flags=INEXACT (23/0)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff820600000000000000p+33:0x507fc103) flags=INEXACT (23/1)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff810600000000000000p+33:0x507fc083) flags=INEXACT (23/2)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(0x1.c0bab600000000000000p+99:0x71605d5b) flags=INEXACT (24/0)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.c0837e00000000000000p+116:0x79e041bf) flags=INEXACT (24/1)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.c0829e00000000000000p+116:0x79e0414f) flags=INEXACT (24/2)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (25/0)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (25/1)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (25/2)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(inf:0x7f800000) flags=OK (26/0)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(inf:0x7f800000) flags=OK (26/1)
op : f32(inf:0x7f800000) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(inf:0x7f800000) flags=OK (26/2)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=OK (27/0)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(-nan:0xffffffff) flags=OK (27/1)
op : f32(-nan:0x7fc00000) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=OK (27/2)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/0)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=INVALID (28/1)
op : f32(-nan:0x7fa00000) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/2)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/0)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/1)
op : f32(-nan:0xffa00000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/2)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/0)
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/1)
op : f32(-nan:0xffc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/2)
# LP184149
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-1:0x3f000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=OK (31/0)
op : f32(0x1.00000000000000000000p-149:0x00000001) * f32(0x1.00000000000000000000p-149:0x00000001) + f32(0x1.00000000000000000000p-149:0x00000001)
res: f32(0x1.00000000000000000000p-149:0x00000001) flags=UNDERFLOW INEXACT (32/0)
### Rounding to zero
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=INVALID (0/0)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/1)
op : f32(-inf:0xff800000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (0/2)
op : f32(-nan:0xffc00000) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(-nan:0xffffffff) flags=OK (1/0)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=OK (1/1)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-nan:0xffc00000) + f32(-inf:0xff800000)
res: f32(-nan:0xffffffff) flags=OK (1/2)
op : f32(-inf:0xff800000) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(inf:0x7f800000) flags=OK (2/0)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-inf:0xff800000)
res: f32(-inf:0xff800000) flags=OK (2/1)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-inf:0xff800000) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(inf:0x7f800000) flags=OK (2/2)
op : f32(-0x1.fffffe00000000000000p+127:0xff7fffff) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (3/0)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.fffffe00000000000000p+127:0xff7fffff)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (3/1)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.fffffe00000000000000p+127:0xff7fffff) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (3/2)
op : f32(-0x1.1874b200000000000000p+103:0xf30c3a59) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (4/0)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.1874b200000000000000p+103:0xf30c3a59)
res: f32(-0x1.1874b000000000000000p+103:0xf30c3a58) flags=INEXACT (4/1)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.1874b200000000000000p+103:0xf30c3a59) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab400000000000000p+99:0xf1605d5a) flags=INEXACT (4/2)
op : f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(0x1.0c27f800000000000000p+60:0x5d8613fc) flags=INEXACT (5/0)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.c0bab600000000000000p+99:0xf1605d5b)
res: f32(-0x1.c0bab400000000000000p+99:0xf1605d5a) flags=INEXACT (5/1)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.c0bab600000000000000p+99:0xf1605d5b) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(0x1.26c46000000000000000p+34:0x50936230) flags=INEXACT (5/2)
op : f32(-0x1.31f75000000000000000p-40:0xab98fba8) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(0x1.91f93e00000000000000p-106:0x0ac8fc9f) flags=INEXACT (6/0)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(-0x1.31f75000000000000000p-40:0xab98fba8)
res: f32(-0x1.31f74e00000000000000p-40:0xab98fba7) flags=INEXACT (6/1)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(-0x1.31f75000000000000000p-40:0xab98fba8) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544200000000000000p-66:0x9ea82a21) flags=INEXACT (6/2)
op : f32(-0x1.50544400000000000000p-66:0x9ea82a22) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=UNDERFLOW INEXACT (7/0)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(-0x1.50544400000000000000p-66:0x9ea82a22)
res: f32(-0x1.50544400000000000000p-66:0x9ea82a22) flags=INEXACT (7/1)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(-0x1.50544400000000000000p-66:0x9ea82a22) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (7/2)
op : f32(-0x1.00000000000000000000p-126:0x80800000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (8/0)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(-0x1.00000000000000000000p-126:0x80800000)
res: f32(-0x1.00000000000000000000p-126:0x80800000) flags=OK (8/1)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(-0x1.00000000000000000000p-126:0x80800000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(-0x0.00000000000000000000p+0:0x80000000) flags=UNDERFLOW INEXACT (8/2)
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=OK (9/0)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=UNDERFLOW INEXACT (9/1)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x0.00000000000000000000p+0:0000000000) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.00000000000000000000p-126:0x00800000) flags=OK (9/2)
op : f32(0x1.00000000000000000000p-126:0x00800000) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.ffffe600000000000000p-25:0x337ffff3) flags=INEXACT (10/0)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.00000000000000000000p-126:0x00800000)
res: f32(0x1.ffffe600000000000000p-50:0x26fffff3) flags=INEXACT (10/1)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.00000000000000000000p-126:0x00800000) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.00000000000000000000p-25:0x33000000) flags=INEXACT (10/2)
op : f32(0x1.00000000000000000000p-25:0x33000000) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801a00000000000000p-15:0x387fc00d) flags=INEXACT (11/0)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000000000000000000p-25:0x33000000)
res: f32(0x1.0007fe00000000000000p-25:0x330003ff) flags=INEXACT (11/1)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000000000000000000p-25:0x33000000) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0001f200000000000000p-24:0x338000f9) flags=INEXACT (11/2)
op : f32(0x1.ffffe600000000000000p-25:0x337ffff3) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00000c00000000000000p-14:0x38800006) flags=INEXACT (12/0)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.ffffe600000000000000p-25:0x337ffff3)
res: f32(0x1.0ffbf400000000000000p-24:0x3387fdfa) flags=INEXACT (12/1)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.ffffe600000000000000p-25:0x337ffff3) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ff801a00000000000000p-15:0x387fc00d) flags=INEXACT (12/2)
op : f32(0x1.ff801a00000000000000p-15:0x387fc00d) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00000000000000000000p+0:0x3f800000) flags=INEXACT (13/0)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.ff801a00000000000000p-15:0x387fc00d)
res: f32(0x1.ffc01800000000000000p-14:0x38ffe00c) flags=INEXACT (13/1)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.ff801a00000000000000p-15:0x387fc00d) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.ffc01800000000000000p-14:0x38ffe00c) flags=INEXACT (13/2)
op : f32(0x1.00000c00000000000000p-14:0x38800006) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.00440000000000000000p+0:0x3f802200) flags=INEXACT (14/0)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000c00000000000000p-14:0x38800006)
res: f32(0x1.00440000000000000000p+0:0x3f802200) flags=INEXACT (14/1)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000c00000000000000p-14:0x38800006) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.00040000000000000000p+0:0x3f800200) flags=INEXACT (14/2)
op : f32(0x1.00000000000000000000p+0:0x3f800000) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/0)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.00000000000000000000p+0:0x3f800000)
res: f32(0x1.80400000000000000000p+1:0x40402000) flags=INEXACT (15/1)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.00000000000000000000p+0:0x3f800000) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.80200000000000000000p+1:0x40401000) flags=INEXACT (15/2)
op : f32(0x1.00400000000000000000p+0:0x3f802000) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.2e185400000000000000p+2:0x40970c2a) flags=INEXACT (16/0)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.00400000000000000000p+0:0x3f802000)
res: f32(0x1.9c00a800000000000000p+2:0x40ce0054) flags=INEXACT (16/1)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.00400000000000000000p+0:0x3f802000) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.2e23d200000000000000p+2:0x409711e9) flags=INEXACT (16/2)
op : f32(0x1.00000000000000000000p+1:0x40000000) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.12804000000000000000p+3:0x41094020) flags=INEXACT (17/0)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.00000000000000000000p+1:0x40000000)
res: f32(0x1.51458000000000000000p+3:0x4128a2c0) flags=INEXACT (17/1)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.00000000000000000000p+1:0x40000000) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.200c0400000000000000p+3:0x41100602) flags=INEXACT (17/2)
op : f32(0x1.5bf0a800000000000000p+1:0x402df854) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ffcf1400000000000000p+15:0x477fe78a) flags=INEXACT (18/0)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.5bf0a800000000000000p+1:0x402df854)
res: f32(0x1.91ed3a00000000000000p+17:0x4848f69d) flags=INEXACT (18/1)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.5bf0a800000000000000p+1:0x402df854) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.5bc56000000000000000p+17:0x482de2b0) flags=INEXACT (18/2)
op : f32(0x1.921fb600000000000000p+1:0x40490fdb) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.08edee00000000000000p+18:0x488476f7) flags=INEXACT (19/0)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.921fb600000000000000p+1:0x40490fdb)
res: f32(0x1.ff7e0800000000000000p+31:0x4f7fbf04) flags=INEXACT (19/1)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.921fb600000000000000p+1:0x40490fdb) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.08ee7800000000000000p+18:0x4884773c) flags=INEXACT (19/2)
op : f32(0x1.ffbe0000000000000000p+15:0x477fdf00) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800800000000000000p+31:0x4f7fc004) flags=INEXACT (20/0)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbe0000000000000000p+15:0x477fdf00)
res: f32(0x1.ff840600000000000000p+31:0x4f7fc203) flags=INEXACT (20/1)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbe0000000000000000p+15:0x477fdf00) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820600000000000000p+31:0x4f7fc103) flags=INEXACT (20/2)
op : f32(0x1.ffc00000000000000000p+15:0x477fe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff860600000000000000p+31:0x4f7fc303) flags=INEXACT (21/0)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+15:0x477fe000)
res: f32(0x1.ff820600000000000000p+32:0x4fffc103) flags=INEXACT (21/1)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+15:0x477fe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff800800000000000000p+32:0x4fffc004) flags=INEXACT (21/2)
op : f32(0x1.ffc20000000000000000p+15:0x477fe100) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff830600000000000000p+32:0x4fffc183) flags=INEXACT (22/0)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc20000000000000000p+15:0x477fe100)
res: f32(0x1.ff7f8800000000000000p+33:0x507fbfc4) flags=INEXACT (22/1)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc20000000000000000p+15:0x477fe100) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff840600000000000000p+32:0x4fffc203) flags=INEXACT (22/2)
op : f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.ff800800000000000000p+33:0x507fc004) flags=INEXACT (23/0)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.ffbf0000000000000000p+16:0x47ffdf80)
res: f32(0x1.ff820600000000000000p+33:0x507fc103) flags=INEXACT (23/1)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.ffbf0000000000000000p+16:0x47ffdf80) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.ff810600000000000000p+33:0x507fc083) flags=INEXACT (23/2)
op : f32(0x1.ffc00000000000000000p+16:0x47ffe000) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(0x1.c0bab600000000000000p+99:0x71605d5b) flags=INEXACT (24/0)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.ffc00000000000000000p+16:0x47ffe000)
res: f32(0x1.c0837e00000000000000p+116:0x79e041bf) flags=INEXACT (24/1)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.ffc00000000000000000p+16:0x47ffe000) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.c0829e00000000000000p+116:0x79e0414f) flags=INEXACT (24/2)
op : f32(0x1.ffc10000000000000000p+16:0x47ffe080) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (25/0)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(0x1.ffc10000000000000000p+16:0x47ffe080)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (25/1)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(0x1.ffc10000000000000000p+16:0x47ffe080) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(0x1.fffffe00000000000000p+127:0x7f7fffff) flags=OVERFLOW INEXACT (25/2)
op : f32(0x1.c0bab600000000000000p+99:0x71605d5b) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(inf:0x7f800000) flags=OK (26/0)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(0x1.c0bab600000000000000p+99:0x71605d5b)
res: f32(inf:0x7f800000) flags=OK (26/1)
op : f32(inf:0x7f800000) * f32(0x1.c0bab600000000000000p+99:0x71605d5b) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(inf:0x7f800000) flags=OK (26/2)
op : f32(0x1.fffffe00000000000000p+127:0x7f7fffff) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=OK (27/0)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(0x1.fffffe00000000000000p+127:0x7f7fffff)
res: f32(-nan:0xffffffff) flags=OK (27/1)
op : f32(-nan:0x7fc00000) * f32(0x1.fffffe00000000000000p+127:0x7f7fffff) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=OK (27/2)
op : f32(inf:0x7f800000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/0)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(inf:0x7f800000)
res: f32(-nan:0xffffffff) flags=INVALID (28/1)
op : f32(-nan:0x7fa00000) * f32(inf:0x7f800000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (28/2)
op : f32(-nan:0x7fc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/0)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0x7fc00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/1)
op : f32(-nan:0xffa00000) * f32(-nan:0x7fc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (29/2)
op : f32(-nan:0x7fa00000) * f32(-nan:0xffa00000) + f32(-nan:0xffc00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/0)
op : f32(-nan:0xffa00000) * f32(-nan:0xffc00000) + f32(-nan:0x7fa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/1)
op : f32(-nan:0xffc00000) * f32(-nan:0x7fa00000) + f32(-nan:0xffa00000)
res: f32(-nan:0xffffffff) flags=INVALID (30/2)
# LP184149
op : f32(0x0.00000000000000000000p+0:0000000000) * f32(0x1.00000000000000000000p-1:0x3f000000) + f32(0x0.00000000000000000000p+0:0000000000)
res: f32(0x0.00000000000000000000p+0:0000000000) flags=OK (31/0)
op : f32(0x1.00000000000000000000p-149:0x00000001) * f32(0x1.00000000000000000000p-149:0x00000001) + f32(0x1.00000000000000000000p-149:0x00000001)
res: f32(0x1.00000000000000000000p-149:0x00000001) flags=UNDERFLOW INEXACT (32/0)

370
tests/tcg/hexagon/fpstuff.c Normal file
View File

@ -0,0 +1,370 @@
/*
* Copyright(c) 2020-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This test checks various FP operations performed on Hexagon
*/
#include <stdio.h>
const int FPINVF_BIT = 1; /* Invalid */
const int FPINVF = 1 << FPINVF_BIT;
const int FPDBZF_BIT = 2; /* Divide by zero */
const int FPDBZF = 1 << FPDBZF_BIT;
const int FPOVFF_BIT = 3; /* Overflow */
const int FPOVFF = 1 << FPOVFF_BIT;
const int FPUNFF_BIT = 4; /* Underflow */
const int FPUNFF = 1 << FPUNFF_BIT;
const int FPINPF_BIT = 5; /* Inexact */
const int FPINPF = 1 << FPINPF_BIT;
const int SF_ZERO = 0x00000000;
const int SF_NaN = 0x7fc00000;
const int SF_NaN_special = 0x7f800001;
const int SF_ANY = 0x3f800000;
const int SF_HEX_NAN = 0xffffffff;
const long long DF_NaN = 0x7ff8000000000000ULL;
const long long DF_ANY = 0x3f80000000000000ULL;
const long long DF_HEX_NAN = 0xffffffffffffffffULL;
int err;
#define CLEAR_FPSTATUS \
"r2 = usr\n\t" \
"r2 = clrbit(r2, #1)\n\t" \
"r2 = clrbit(r2, #2)\n\t" \
"r2 = clrbit(r2, #3)\n\t" \
"r2 = clrbit(r2, #4)\n\t" \
"r2 = clrbit(r2, #5)\n\t" \
"usr = r2\n\t"
static void check_fpstatus_bit(int usr, int expect, int flag, const char *n)
{
int bit = 1 << flag;
if ((usr & bit) != (expect & bit)) {
printf("ERROR %s: usr = %d, expect = %d\n", n,
(usr >> flag) & 1, (expect >> flag) & 1);
err++;
}
}
static void check_fpstatus(int usr, int expect)
{
check_fpstatus_bit(usr, expect, FPINVF_BIT, "Invalid");
check_fpstatus_bit(usr, expect, FPDBZF_BIT, "Div by zero");
check_fpstatus_bit(usr, expect, FPOVFF_BIT, "Overflow");
check_fpstatus_bit(usr, expect, FPUNFF_BIT, "Underflow");
check_fpstatus_bit(usr, expect, FPINPF_BIT, "Inexact");
}
static void check32(int val, int expect)
{
if (val != expect) {
printf("ERROR: 0x%x != 0x%x\n", val, expect);
err++;
}
}
static void check64(unsigned long long val, unsigned long long expect)
{
if (val != expect) {
printf("ERROR: 0x%llx != 0x%llx\n", val, expect);
err++;
}
}
static void check_compare_exception(void)
{
int cmp;
int usr;
/* Check that FP compares are quiet (don't raise any execptions) */
asm (CLEAR_FPSTATUS
"p0 = sfcmp.eq(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = sfcmp.gt(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = sfcmp.ge(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.eq(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.gt(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.ge(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
}
static void check_sfminmax(void)
{
int minmax;
int usr;
/*
* Execute sfmin/sfmax instructions with one operand as NaN
* Check that
* Result is the other operand
* Invalid bit in USR is not set
*/
asm (CLEAR_FPSTATUS
"%0 = sfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check64(minmax, SF_ANY);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = sfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check64(minmax, SF_ANY);
check_fpstatus(usr, 0);
/*
* Execute sfmin/sfmax instructions with both operands NaN
* Check that
* Result is SF_HEX_NAN
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = sfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_NaN)
: "r2", "usr");
check64(minmax, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = sfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_NaN)
: "r2", "usr");
check64(minmax, SF_HEX_NAN);
check_fpstatus(usr, 0);
}
static void check_dfminmax(void)
{
unsigned long long minmax;
int usr;
/*
* Execute dfmin/dfmax instructions with one operand as NaN
* Check that
* Result is the other operand
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "usr");
check64(minmax, DF_ANY);
check_fpstatus(usr, FPINVF);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "usr");
check64(minmax, DF_ANY);
check_fpstatus(usr, FPINVF);
/*
* Execute dfmin/dfmax instructions with both operands NaN
* Check that
* Result is DF_HEX_NAN
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_NaN), "r"(DF_NaN)
: "r2", "usr");
check64(minmax, DF_HEX_NAN);
check_fpstatus(usr, FPINVF);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_NaN), "r"(DF_NaN)
: "r2", "usr");
check64(minmax, DF_HEX_NAN);
check_fpstatus(usr, FPINVF);
}
static void check_canonical_NaN(void)
{
int sf_result;
unsigned long long df_result;
int usr;
/* Check that each FP instruction properly returns SF_HEX_NAN/DF_HEX_NAN */
asm(CLEAR_FPSTATUS
"%0 = sfadd(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = sfsub(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 += sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"p0 = !cmp.eq(r0, r0)\n\t"
"%0 += sfmpy(%2, %3, p0):scale\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr", "p0");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 -= sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 += sfmpy(%2, %3):lib\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 -= sfmpy(%2, %3):lib\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = convert_df2sf(%2)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(DF_NaN)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = dfadd(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "usr");
check64(df_result, DF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = dfsub(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(DF_NaN), "r"(DF_ANY)
: "r2", "usr");
check64(df_result, DF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2df(%2)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(SF_NaN)
: "r2", "usr");
check64(df_result, DF_HEX_NAN);
check_fpstatus(usr, 0);
}
int main()
{
check_compare_exception();
check_sfminmax();
check_dfminmax();
check_canonical_NaN();
puts(err ? "FAIL" : "PASS");
return err ? 1 : 0;
}

View File

@ -0,0 +1,328 @@
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
/*
* Make sure that the :mem_noshuf packet attribute is honored.
* This is important when the addresses overlap.
* The store instruction in slot 1 effectively executes first,
* followed by the load instruction in slot 0.
*/
#define MEM_NOSHUF32(NAME, ST_TYPE, LD_TYPE, ST_OP, LD_OP) \
static inline unsigned int NAME(ST_TYPE * p, LD_TYPE * q, ST_TYPE x) \
{ \
unsigned int ret; \
asm volatile("{\n\t" \
" " #ST_OP "(%1) = %3\n\t" \
" %0 = " #LD_OP "(%2)\n\t" \
"}:mem_noshuf\n" \
: "=r"(ret) \
: "r"(p), "r"(q), "r"(x) \
: "memory"); \
return ret; \
}
#define MEM_NOSHUF64(NAME, ST_TYPE, LD_TYPE, ST_OP, LD_OP) \
static inline unsigned long long NAME(ST_TYPE * p, LD_TYPE * q, ST_TYPE x) \
{ \
unsigned long long ret; \
asm volatile("{\n\t" \
" " #ST_OP "(%1) = %3\n\t" \
" %0 = " #LD_OP "(%2)\n\t" \
"}:mem_noshuf\n" \
: "=r"(ret) \
: "r"(p), "r"(q), "r"(x) \
: "memory"); \
return ret; \
}
/* Store byte combinations */
MEM_NOSHUF32(mem_noshuf_sb_lb, signed char, signed char, memb, memb)
MEM_NOSHUF32(mem_noshuf_sb_lub, signed char, unsigned char, memb, memub)
MEM_NOSHUF32(mem_noshuf_sb_lh, signed char, signed short, memb, memh)
MEM_NOSHUF32(mem_noshuf_sb_luh, signed char, unsigned short, memb, memuh)
MEM_NOSHUF32(mem_noshuf_sb_lw, signed char, signed int, memb, memw)
MEM_NOSHUF64(mem_noshuf_sb_ld, signed char, signed long long, memb, memd)
/* Store half combinations */
MEM_NOSHUF32(mem_noshuf_sh_lb, signed short, signed char, memh, memb)
MEM_NOSHUF32(mem_noshuf_sh_lub, signed short, unsigned char, memh, memub)
MEM_NOSHUF32(mem_noshuf_sh_lh, signed short, signed short, memh, memh)
MEM_NOSHUF32(mem_noshuf_sh_luh, signed short, unsigned short, memh, memuh)
MEM_NOSHUF32(mem_noshuf_sh_lw, signed short, signed int, memh, memw)
MEM_NOSHUF64(mem_noshuf_sh_ld, signed short, signed long long, memh, memd)
/* Store word combinations */
MEM_NOSHUF32(mem_noshuf_sw_lb, signed int, signed char, memw, memb)
MEM_NOSHUF32(mem_noshuf_sw_lub, signed int, unsigned char, memw, memub)
MEM_NOSHUF32(mem_noshuf_sw_lh, signed int, signed short, memw, memh)
MEM_NOSHUF32(mem_noshuf_sw_luh, signed int, unsigned short, memw, memuh)
MEM_NOSHUF32(mem_noshuf_sw_lw, signed int, signed int, memw, memw)
MEM_NOSHUF64(mem_noshuf_sw_ld, signed int, signed long long, memw, memd)
/* Store double combinations */
MEM_NOSHUF32(mem_noshuf_sd_lb, long long, signed char, memd, memb)
MEM_NOSHUF32(mem_noshuf_sd_lub, long long, unsigned char, memd, memub)
MEM_NOSHUF32(mem_noshuf_sd_lh, long long, signed short, memd, memh)
MEM_NOSHUF32(mem_noshuf_sd_luh, long long, unsigned short, memd, memuh)
MEM_NOSHUF32(mem_noshuf_sd_lw, long long, signed int, memd, memw)
MEM_NOSHUF64(mem_noshuf_sd_ld, long long, signed long long, memd, memd)
static inline unsigned int cancel_sw_lb(int pred, int *p, signed char *q, int x)
{
unsigned int ret;
asm volatile("p0 = cmp.eq(%4, #0)\n\t"
"{\n\t"
" if (!p0) memw(%1) = %3\n\t"
" %0 = memb(%2)\n\t"
"}:mem_noshuf\n"
: "=r"(ret)
: "r"(p), "r"(q), "r"(x), "r"(pred)
: "p0", "memory");
return ret;
}
static inline
unsigned long long cancel_sw_ld(int pred, int *p, long long *q, int x)
{
long long ret;
asm volatile("p0 = cmp.eq(%4, #0)\n\t"
"{\n\t"
" if (!p0) memw(%1) = %3\n\t"
" %0 = memd(%2)\n\t"
"}:mem_noshuf\n"
: "=r"(ret)
: "r"(p), "r"(q), "r"(x), "r"(pred)
: "p0", "memory");
return ret;
}
typedef union {
signed long long d[2];
unsigned long long ud[2];
signed int w[4];
unsigned int uw[4];
signed short h[8];
unsigned short uh[8];
signed char b[16];
unsigned char ub[16];
} Memory;
int err;
static void check32(int n, int expect)
{
if (n != expect) {
printf("ERROR: 0x%08x != 0x%08x\n", n, expect);
err++;
}
}
static void check64(long long n, long long expect)
{
if (n != expect) {
printf("ERROR: 0x%08llx != 0x%08llx\n", n, expect);
err++;
}
}
int main()
{
Memory n;
unsigned int res32;
unsigned long long res64;
/*
* Store byte combinations
*/
n.w[0] = ~0;
res32 = mem_noshuf_sb_lb(&n.b[0], &n.b[0], 0x87);
check32(res32, 0xffffff87);
n.w[0] = ~0;
res32 = mem_noshuf_sb_lub(&n.b[0], &n.ub[0], 0x87);
check32(res32, 0x00000087);
n.w[0] = ~0;
res32 = mem_noshuf_sb_lh(&n.b[0], &n.h[0], 0x87);
check32(res32, 0xffffff87);
n.w[0] = ~0;
res32 = mem_noshuf_sb_luh(&n.b[0], &n.uh[0], 0x87);
check32(res32, 0x0000ff87);
n.w[0] = ~0;
res32 = mem_noshuf_sb_lw(&n.b[0], &n.w[0], 0x87);
check32(res32, 0xffffff87);
n.d[0] = ~0LL;
res64 = mem_noshuf_sb_ld(&n.b[0], &n.d[0], 0x87);
check64(res64, 0xffffffffffffff87LL);
/*
* Store half combinations
*/
n.w[0] = ~0;
res32 = mem_noshuf_sh_lb(&n.h[0], &n.b[0], 0x8787);
check32(res32, 0xffffff87);
n.w[0] = ~0;
res32 = mem_noshuf_sh_lub(&n.h[0], &n.ub[1], 0x8f87);
check32(res32, 0x0000008f);
n.w[0] = ~0;
res32 = mem_noshuf_sh_lh(&n.h[0], &n.h[0], 0x8a87);
check32(res32, 0xffff8a87);
n.w[0] = ~0;
res32 = mem_noshuf_sh_luh(&n.h[0], &n.uh[0], 0x8a87);
check32(res32, 0x8a87);
n.w[0] = ~0;
res32 = mem_noshuf_sh_lw(&n.h[1], &n.w[0], 0x8a87);
check32(res32, 0x8a87ffff);
n.w[0] = ~0;
res64 = mem_noshuf_sh_ld(&n.h[1], &n.d[0], 0x8a87);
check64(res64, 0xffffffff8a87ffffLL);
/*
* Store word combinations
*/
n.w[0] = ~0;
res32 = mem_noshuf_sw_lb(&n.w[0], &n.b[0], 0x12345687);
check32(res32, 0xffffff87);
n.w[0] = ~0;
res32 = mem_noshuf_sw_lub(&n.w[0], &n.ub[0], 0x12345687);
check32(res32, 0x00000087);
n.w[0] = ~0;
res32 = mem_noshuf_sw_lh(&n.w[0], &n.h[0], 0x1234f678);
check32(res32, 0xfffff678);
n.w[0] = ~0;
res32 = mem_noshuf_sw_luh(&n.w[0], &n.uh[0], 0x12345678);
check32(res32, 0x00005678);
n.w[0] = ~0;
res32 = mem_noshuf_sw_lw(&n.w[0], &n.w[0], 0x12345678);
check32(res32, 0x12345678);
n.d[0] = ~0LL;
res64 = mem_noshuf_sw_ld(&n.w[0], &n.d[0], 0x12345678);
check64(res64, 0xffffffff12345678LL);
/*
* Store double combinations
*/
n.d[0] = ~0LL;
res32 = mem_noshuf_sd_lb(&n.d[0], &n.b[1], 0x123456789abcdef0);
check32(res32, 0xffffffde);
n.d[0] = ~0LL;
res32 = mem_noshuf_sd_lub(&n.d[0], &n.ub[1], 0x123456789abcdef0);
check32(res32, 0x000000de);
n.d[0] = ~0LL;
res32 = mem_noshuf_sd_lh(&n.d[0], &n.h[1], 0x123456789abcdef0);
check32(res32, 0xffff9abc);
n.d[0] = ~0LL;
res32 = mem_noshuf_sd_luh(&n.d[0], &n.uh[1], 0x123456789abcdef0);
check32(res32, 0x00009abc);
n.d[0] = ~0LL;
res32 = mem_noshuf_sd_lw(&n.d[0], &n.w[1], 0x123456789abcdef0);
check32(res32, 0x12345678);
n.d[0] = ~0LL;
res64 = mem_noshuf_sd_ld(&n.d[0], &n.d[0], 0x123456789abcdef0);
check64(res64, 0x123456789abcdef0LL);
/*
* Predicated word stores
*/
n.w[0] = ~0;
res32 = cancel_sw_lb(0, &n.w[0], &n.b[0], 0x12345678);
check32(res32, 0xffffffff);
n.w[0] = ~0;
res32 = cancel_sw_lb(1, &n.w[0], &n.b[0], 0x12345687);
check32(res32, 0xffffff87);
/*
* Predicated double stores
*/
n.d[0] = ~0LL;
res64 = cancel_sw_ld(0, &n.w[0], &n.d[0], 0x12345678);
check64(res64, 0xffffffffffffffffLL);
n.d[0] = ~0LL;
res64 = cancel_sw_ld(1, &n.w[0], &n.d[0], 0x12345678);
check64(res64, 0xffffffff12345678LL);
n.d[0] = ~0LL;
res64 = cancel_sw_ld(0, &n.w[1], &n.d[0], 0x12345678);
check64(res64, 0xffffffffffffffffLL);
n.d[0] = ~0LL;
res64 = cancel_sw_ld(1, &n.w[1], &n.d[0], 0x12345678);
check64(res64, 0x12345678ffffffffLL);
/*
* No overlap tests
*/
n.w[0] = ~0;
res32 = mem_noshuf_sb_lb(&n.b[1], &n.b[0], 0x87);
check32(res32, 0xffffffff);
n.w[0] = ~0;
res32 = mem_noshuf_sb_lb(&n.b[0], &n.b[1], 0x87);
check32(res32, 0xffffffff);
n.w[0] = ~0;
res32 = mem_noshuf_sh_lh(&n.h[1], &n.h[0], 0x8787);
check32(res32, 0xffffffff);
n.w[0] = ~0;
res32 = mem_noshuf_sh_lh(&n.h[0], &n.h[1], 0x8787);
check32(res32, 0xffffffff);
n.d[0] = ~0LL;
res32 = mem_noshuf_sw_lw(&n.w[0], &n.w[1], 0x12345678);
check32(res32, 0xffffffff);
n.d[0] = ~0LL;
res32 = mem_noshuf_sw_lw(&n.w[1], &n.w[0], 0x12345678);
check32(res32, 0xffffffff);
n.d[0] = ~0LL;
n.d[1] = ~0LL;
res64 = mem_noshuf_sd_ld(&n.d[1], &n.d[0], 0x123456789abcdef0LL);
check64(res64, 0xffffffffffffffffLL);
n.d[0] = ~0LL;
n.d[1] = ~0LL;
res64 = mem_noshuf_sd_ld(&n.d[0], &n.d[1], 0x123456789abcdef0LL);
check64(res64, 0xffffffffffffffffLL);
puts(err ? "FAIL" : "PASS");
return err;
}

Some files were not shown because too many files have changed in this diff Show More