softfloat-native: remove
Remove softfloat-native support, all targets are now using softfloat instead. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
This commit is contained in:
parent
c31da136a0
commit
cf67c6bad5
@ -71,8 +71,7 @@ all: $(PROGS) stap
|
||||
# cpu emulator library
|
||||
libobj-y = exec.o translate-all.o cpu-exec.o translate.o
|
||||
libobj-y += tcg/tcg.o
|
||||
libobj-$(CONFIG_SOFTFLOAT) += fpu/softfloat.o
|
||||
libobj-$(CONFIG_NOSOFTFLOAT) += fpu/softfloat-native.o
|
||||
libobj-y += fpu/softfloat.o
|
||||
libobj-y += op_helper.o helper.o
|
||||
ifeq ($(TARGET_BASE_ARCH), i386)
|
||||
libobj-y += cpuid.o
|
||||
|
2
configure
vendored
2
configure
vendored
@ -3385,8 +3385,6 @@ if test ! -z "$gdb_xml_files" ; then
|
||||
echo "TARGET_XML_FILES=$list" >> $config_target_mak
|
||||
fi
|
||||
|
||||
echo "CONFIG_SOFTFLOAT=y" >> $config_target_mak
|
||||
|
||||
if test "$target_user_only" = "yes" -a "$bflt" = "yes"; then
|
||||
echo "TARGET_HAS_BFLT=y" >> $config_target_mak
|
||||
fi
|
||||
|
@ -123,8 +123,7 @@ typedef union {
|
||||
endian ! */
|
||||
typedef union {
|
||||
float64 d;
|
||||
#if defined(HOST_WORDS_BIGENDIAN) \
|
||||
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
|
||||
#if defined(HOST_WORDS_BIGENDIAN)
|
||||
struct {
|
||||
uint32_t upper;
|
||||
uint32_t lower;
|
||||
@ -148,7 +147,6 @@ typedef union {
|
||||
} CPU_LDoubleU;
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_SOFTFLOAT)
|
||||
typedef union {
|
||||
float128 q;
|
||||
#if defined(HOST_WORDS_BIGENDIAN)
|
||||
@ -175,7 +173,6 @@ typedef union {
|
||||
} ll;
|
||||
#endif
|
||||
} CPU_QuadU;
|
||||
#endif
|
||||
|
||||
/* CPU memory access without any memory or io remapping */
|
||||
|
||||
|
@ -1,540 +0,0 @@
|
||||
/* Native implementation of soft float functions. Only a single status
|
||||
context is supported */
|
||||
#include "softfloat.h"
|
||||
#include <math.h>
|
||||
#if defined(CONFIG_SOLARIS)
|
||||
#include <fenv.h>
|
||||
#endif
|
||||
|
||||
void set_float_rounding_mode(int val STATUS_PARAM)
|
||||
{
|
||||
STATUS(float_rounding_mode) = val;
|
||||
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) || \
|
||||
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
||||
fpsetround(val);
|
||||
#else
|
||||
fesetround(val);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
void set_floatx80_rounding_precision(int val STATUS_PARAM)
|
||||
{
|
||||
STATUS(floatx80_rounding_precision) = val;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_BSD) || \
|
||||
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
||||
#define lrint(d) ((int32_t)rint(d))
|
||||
#define llrint(d) ((int64_t)rint(d))
|
||||
#define lrintf(f) ((int32_t)rint(f))
|
||||
#define llrintf(f) ((int64_t)rint(f))
|
||||
#define sqrtf(f) ((float)sqrt(f))
|
||||
#define remainderf(fa, fb) ((float)remainder(fa, fb))
|
||||
#define rintf(f) ((float)rint(f))
|
||||
#if !defined(__sparc__) && \
|
||||
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
||||
extern long double rintl(long double);
|
||||
extern long double scalbnl(long double, int);
|
||||
|
||||
long long
|
||||
llrintl(long double x) {
|
||||
return ((long long) rintl(x));
|
||||
}
|
||||
|
||||
long
|
||||
lrintl(long double x) {
|
||||
return ((long) rintl(x));
|
||||
}
|
||||
|
||||
long double
|
||||
ldexpl(long double x, int n) {
|
||||
return (scalbnl(x, n));
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_ARCH_PPC)
|
||||
|
||||
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
|
||||
static double qemu_rint(double x)
|
||||
{
|
||||
double y = 4503599627370496.0;
|
||||
if (fabs(x) >= y)
|
||||
return x;
|
||||
if (x < 0)
|
||||
y = -y;
|
||||
y = (x + y) - y;
|
||||
if (y == 0.0)
|
||||
y = copysign(y, x);
|
||||
return y;
|
||||
}
|
||||
|
||||
#define rint qemu_rint
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32(int v STATUS_PARAM)
|
||||
{
|
||||
return (float32)v;
|
||||
}
|
||||
|
||||
float32 uint32_to_float32(unsigned int v STATUS_PARAM)
|
||||
{
|
||||
return (float32)v;
|
||||
}
|
||||
|
||||
float64 int32_to_float64(int v STATUS_PARAM)
|
||||
{
|
||||
return (float64)v;
|
||||
}
|
||||
|
||||
float64 uint32_to_float64(unsigned int v STATUS_PARAM)
|
||||
{
|
||||
return (float64)v;
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80(int v STATUS_PARAM)
|
||||
{
|
||||
return (floatx80)v;
|
||||
}
|
||||
#endif
|
||||
float32 int64_to_float32( int64_t v STATUS_PARAM)
|
||||
{
|
||||
return (float32)v;
|
||||
}
|
||||
float32 uint64_to_float32( uint64_t v STATUS_PARAM)
|
||||
{
|
||||
return (float32)v;
|
||||
}
|
||||
float64 int64_to_float64( int64_t v STATUS_PARAM)
|
||||
{
|
||||
return (float64)v;
|
||||
}
|
||||
float64 uint64_to_float64( uint64_t v STATUS_PARAM)
|
||||
{
|
||||
return (float64)v;
|
||||
}
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
|
||||
{
|
||||
return (floatx80)v;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* XXX: this code implements the x86 behaviour, not the IEEE one. */
|
||||
#if HOST_LONG_BITS == 32
|
||||
static inline int long_to_int32(long a)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#else
|
||||
static inline int long_to_int32(long a)
|
||||
{
|
||||
if (a != (int32_t)a)
|
||||
a = 0x80000000;
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 a STATUS_PARAM)
|
||||
{
|
||||
return long_to_int32(lrintf(a));
|
||||
}
|
||||
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
|
||||
{
|
||||
return (int)a;
|
||||
}
|
||||
int64_t float32_to_int64( float32 a STATUS_PARAM)
|
||||
{
|
||||
return llrintf(a);
|
||||
}
|
||||
|
||||
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
|
||||
{
|
||||
return (int64_t)a;
|
||||
}
|
||||
|
||||
float64 float32_to_float64( float32 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
|
||||
unsigned int float32_to_uint32( float32 a STATUS_PARAM)
|
||||
{
|
||||
int64_t v;
|
||||
unsigned int res;
|
||||
|
||||
v = llrintf(a);
|
||||
if (v < 0) {
|
||||
res = 0;
|
||||
} else if (v > 0xffffffff) {
|
||||
res = 0xffffffff;
|
||||
} else {
|
||||
res = v;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
|
||||
{
|
||||
int64_t v;
|
||||
unsigned int res;
|
||||
|
||||
v = (int64_t)a;
|
||||
if (v < 0) {
|
||||
res = 0;
|
||||
} else if (v > 0xffffffff) {
|
||||
res = 0xffffffff;
|
||||
} else {
|
||||
res = v;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 a STATUS_PARAM)
|
||||
{
|
||||
return rintf(a);
|
||||
}
|
||||
|
||||
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return remainderf(a, b);
|
||||
}
|
||||
|
||||
float32 float32_sqrt( float32 a STATUS_PARAM)
|
||||
{
|
||||
return sqrtf(a);
|
||||
}
|
||||
int float32_compare( float32 a, float32 b STATUS_PARAM )
|
||||
{
|
||||
if (a < b) {
|
||||
return float_relation_less;
|
||||
} else if (a == b) {
|
||||
return float_relation_equal;
|
||||
} else if (a > b) {
|
||||
return float_relation_greater;
|
||||
} else {
|
||||
return float_relation_unordered;
|
||||
}
|
||||
}
|
||||
int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
|
||||
{
|
||||
if (isless(a, b)) {
|
||||
return float_relation_less;
|
||||
} else if (a == b) {
|
||||
return float_relation_equal;
|
||||
} else if (isgreater(a, b)) {
|
||||
return float_relation_greater;
|
||||
} else {
|
||||
return float_relation_unordered;
|
||||
}
|
||||
}
|
||||
int float32_is_signaling_nan( float32 a1)
|
||||
{
|
||||
float32u u;
|
||||
uint32_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
}
|
||||
|
||||
int float32_is_quiet_nan( float32 a1 )
|
||||
{
|
||||
float32u u;
|
||||
uint64_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
return ( 0xFF800000 < ( a<<1 ) );
|
||||
}
|
||||
|
||||
int float32_is_any_nan( float32 a1 )
|
||||
{
|
||||
float32u u;
|
||||
uint32_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
return (a & ~(1 << 31)) > 0x7f800000U;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 a STATUS_PARAM)
|
||||
{
|
||||
return long_to_int32(lrint(a));
|
||||
}
|
||||
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
|
||||
{
|
||||
return (int)a;
|
||||
}
|
||||
int64_t float64_to_int64( float64 a STATUS_PARAM)
|
||||
{
|
||||
return llrint(a);
|
||||
}
|
||||
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
|
||||
{
|
||||
return (int64_t)a;
|
||||
}
|
||||
float32 float64_to_float32( float64 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
|
||||
unsigned int float64_to_uint32( float64 a STATUS_PARAM)
|
||||
{
|
||||
int64_t v;
|
||||
unsigned int res;
|
||||
|
||||
v = llrint(a);
|
||||
if (v < 0) {
|
||||
res = 0;
|
||||
} else if (v > 0xffffffff) {
|
||||
res = 0xffffffff;
|
||||
} else {
|
||||
res = v;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
|
||||
{
|
||||
int64_t v;
|
||||
unsigned int res;
|
||||
|
||||
v = (int64_t)a;
|
||||
if (v < 0) {
|
||||
res = 0;
|
||||
} else if (v > 0xffffffff) {
|
||||
res = 0xffffffff;
|
||||
} else {
|
||||
res = v;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
|
||||
{
|
||||
int64_t v;
|
||||
|
||||
v = llrint(a + (float64)INT64_MIN);
|
||||
|
||||
return v - INT64_MIN;
|
||||
}
|
||||
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
|
||||
{
|
||||
int64_t v;
|
||||
|
||||
v = (int64_t)(a + (float64)INT64_MIN);
|
||||
|
||||
return v - INT64_MIN;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#if defined(__sun__) && \
|
||||
(defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
|
||||
static inline float64 trunc(float64 x)
|
||||
{
|
||||
return x < 0 ? -floor(-x) : floor(x);
|
||||
}
|
||||
#endif
|
||||
float64 float64_trunc_to_int( float64 a STATUS_PARAM )
|
||||
{
|
||||
return trunc(a);
|
||||
}
|
||||
|
||||
float64 float64_round_to_int( float64 a STATUS_PARAM )
|
||||
{
|
||||
return rint(a);
|
||||
}
|
||||
|
||||
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return remainder(a, b);
|
||||
}
|
||||
|
||||
float64 float64_sqrt( float64 a STATUS_PARAM)
|
||||
{
|
||||
return sqrt(a);
|
||||
}
|
||||
int float64_compare( float64 a, float64 b STATUS_PARAM )
|
||||
{
|
||||
if (a < b) {
|
||||
return float_relation_less;
|
||||
} else if (a == b) {
|
||||
return float_relation_equal;
|
||||
} else if (a > b) {
|
||||
return float_relation_greater;
|
||||
} else {
|
||||
return float_relation_unordered;
|
||||
}
|
||||
}
|
||||
int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
|
||||
{
|
||||
if (isless(a, b)) {
|
||||
return float_relation_less;
|
||||
} else if (a == b) {
|
||||
return float_relation_equal;
|
||||
} else if (isgreater(a, b)) {
|
||||
return float_relation_greater;
|
||||
} else {
|
||||
return float_relation_unordered;
|
||||
}
|
||||
}
|
||||
int float64_is_signaling_nan( float64 a1)
|
||||
{
|
||||
float64u u;
|
||||
uint64_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
int float64_is_quiet_nan( float64 a1 )
|
||||
{
|
||||
float64u u;
|
||||
uint64_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
|
||||
return ( LIT64( 0xFFF0000000000000 ) < (uint64_t) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
int float64_is_any_nan( float64 a1 )
|
||||
{
|
||||
float64u u;
|
||||
uint64_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
|
||||
return (a & ~(1ULL << 63)) > LIT64 (0x7FF0000000000000 );
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return long_to_int32(lrintl(a));
|
||||
}
|
||||
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return (int)a;
|
||||
}
|
||||
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return llrintl(a);
|
||||
}
|
||||
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return (int64_t)a;
|
||||
}
|
||||
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return rintl(a);
|
||||
}
|
||||
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return remainderl(a, b);
|
||||
}
|
||||
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return sqrtl(a);
|
||||
}
|
||||
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
|
||||
{
|
||||
if (a < b) {
|
||||
return float_relation_less;
|
||||
} else if (a == b) {
|
||||
return float_relation_equal;
|
||||
} else if (a > b) {
|
||||
return float_relation_greater;
|
||||
} else {
|
||||
return float_relation_unordered;
|
||||
}
|
||||
}
|
||||
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
||||
{
|
||||
if (isless(a, b)) {
|
||||
return float_relation_less;
|
||||
} else if (a == b) {
|
||||
return float_relation_equal;
|
||||
} else if (isgreater(a, b)) {
|
||||
return float_relation_greater;
|
||||
} else {
|
||||
return float_relation_unordered;
|
||||
}
|
||||
}
|
||||
int floatx80_is_signaling_nan( floatx80 a1)
|
||||
{
|
||||
floatx80u u;
|
||||
uint64_t aLow;
|
||||
u.f = a1;
|
||||
|
||||
aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( u.i.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (uint64_t) ( aLow<<1 )
|
||||
&& ( u.i.low == aLow );
|
||||
}
|
||||
|
||||
int floatx80_is_quiet_nan( floatx80 a1 )
|
||||
{
|
||||
floatx80u u;
|
||||
u.f = a1;
|
||||
return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (uint64_t) ( u.i.low<<1 );
|
||||
}
|
||||
|
||||
int floatx80_is_any_nan( floatx80 a1 )
|
||||
{
|
||||
floatx80u u;
|
||||
u.f = a1;
|
||||
return ((u.i.high & 0x7FFF) == 0x7FFF) && ( u.i.low<<1 );
|
||||
}
|
||||
|
||||
#endif
|
@ -1,531 +0,0 @@
|
||||
/* Native implementation of soft float functions */
|
||||
#include <math.h>
|
||||
|
||||
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
|
||||
|| defined(CONFIG_SOLARIS)
|
||||
#include <ieeefp.h>
|
||||
#define fabsf(f) ((float)fabs(f))
|
||||
#else
|
||||
#include <fenv.h>
|
||||
#endif
|
||||
|
||||
#if defined(__OpenBSD__) || defined(__NetBSD__)
|
||||
#include <sys/param.h>
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Define some C99-7.12.3 classification macros and
|
||||
* some C99-.12.4 for Solaris systems OS less than 10,
|
||||
* or Solaris 10 systems running GCC 3.x or less.
|
||||
* Solaris 10 with GCC4 does not need these macros as they
|
||||
* are defined in <iso/math_c99.h> with a compiler directive
|
||||
*/
|
||||
#if defined(CONFIG_SOLARIS) && \
|
||||
((CONFIG_SOLARIS_VERSION <= 9 ) || \
|
||||
((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
|
||||
|| (defined(__OpenBSD__) && (OpenBSD < 200811))
|
||||
/*
|
||||
* C99 7.12.3 classification macros
|
||||
* and
|
||||
* C99 7.12.14 comparison macros
|
||||
*
|
||||
* ... do not work on Solaris 10 using GNU CC 3.4.x.
|
||||
* Try to workaround the missing / broken C99 math macros.
|
||||
*/
|
||||
#if defined(__OpenBSD__)
|
||||
#define unordered(x, y) (isnan(x) || isnan(y))
|
||||
#endif
|
||||
|
||||
#ifdef __NetBSD__
|
||||
#ifndef isgreater
|
||||
#define isgreater(x, y) __builtin_isgreater(x, y)
|
||||
#endif
|
||||
#ifndef isgreaterequal
|
||||
#define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
|
||||
#endif
|
||||
#ifndef isless
|
||||
#define isless(x, y) __builtin_isless(x, y)
|
||||
#endif
|
||||
#ifndef islessequal
|
||||
#define islessequal(x, y) __builtin_islessequal(x, y)
|
||||
#endif
|
||||
#ifndef isunordered
|
||||
#define isunordered(x, y) __builtin_isunordered(x, y)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#define isnormal(x) (fpclass(x) >= FP_NZERO)
|
||||
#define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y)))
|
||||
#define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y)))
|
||||
#define isless(x, y) ((!unordered(x, y)) && ((x) < (y)))
|
||||
#define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y)))
|
||||
#define isunordered(x,y) unordered(x, y)
|
||||
#endif
|
||||
|
||||
#if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
|
||||
|
||||
#ifndef isnan
|
||||
# define isnan(x) \
|
||||
(sizeof (x) == sizeof (long double) ? isnan_ld (x) \
|
||||
: sizeof (x) == sizeof (double) ? isnan_d (x) \
|
||||
: isnan_f (x))
|
||||
static inline int isnan_f (float x) { return x != x; }
|
||||
static inline int isnan_d (double x) { return x != x; }
|
||||
static inline int isnan_ld (long double x) { return x != x; }
|
||||
#endif
|
||||
|
||||
#ifndef isinf
|
||||
# define isinf(x) \
|
||||
(sizeof (x) == sizeof (long double) ? isinf_ld (x) \
|
||||
: sizeof (x) == sizeof (double) ? isinf_d (x) \
|
||||
: isinf_f (x))
|
||||
static inline int isinf_f (float x) { return isnan (x - x); }
|
||||
static inline int isinf_d (double x) { return isnan (x - x); }
|
||||
static inline int isinf_ld (long double x) { return isnan (x - x); }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
typedef float float32;
|
||||
typedef double float64;
|
||||
#ifdef FLOATX80
|
||||
typedef long double floatx80;
|
||||
#endif
|
||||
|
||||
typedef union {
|
||||
float32 f;
|
||||
uint32_t i;
|
||||
} float32u;
|
||||
typedef union {
|
||||
float64 f;
|
||||
uint64_t i;
|
||||
} float64u;
|
||||
#ifdef FLOATX80
|
||||
typedef union {
|
||||
floatx80 f;
|
||||
struct {
|
||||
uint64_t low;
|
||||
uint16_t high;
|
||||
} i;
|
||||
} floatx80u;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
|
||||
|| defined(CONFIG_SOLARIS)
|
||||
#if defined(__OpenBSD__)
|
||||
#define FE_RM FP_RM
|
||||
#define FE_RP FP_RP
|
||||
#define FE_RZ FP_RZ
|
||||
#endif
|
||||
enum {
|
||||
float_round_nearest_even = FP_RN,
|
||||
float_round_down = FP_RM,
|
||||
float_round_up = FP_RP,
|
||||
float_round_to_zero = FP_RZ
|
||||
};
|
||||
#else
|
||||
enum {
|
||||
float_round_nearest_even = FE_TONEAREST,
|
||||
float_round_down = FE_DOWNWARD,
|
||||
float_round_up = FE_UPWARD,
|
||||
float_round_to_zero = FE_TOWARDZERO
|
||||
};
|
||||
#endif
|
||||
|
||||
typedef struct float_status {
|
||||
int float_rounding_mode;
|
||||
#ifdef FLOATX80
|
||||
int floatx80_rounding_precision;
|
||||
#endif
|
||||
} float_status;
|
||||
|
||||
void set_float_rounding_mode(int val STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
void set_floatx80_rounding_precision(int val STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int STATUS_PARAM);
|
||||
float32 uint32_to_float32( unsigned int STATUS_PARAM);
|
||||
float64 int32_to_float64( int STATUS_PARAM);
|
||||
float64 uint32_to_float64( unsigned int STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int STATUS_PARAM);
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int STATUS_PARAM);
|
||||
#endif
|
||||
float32 int64_to_float32( int64_t STATUS_PARAM);
|
||||
float32 uint64_to_float32( uint64_t STATUS_PARAM);
|
||||
float64 int64_to_float64( int64_t STATUS_PARAM);
|
||||
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( int64_t STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion constants.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float32_zero (0.0)
|
||||
#define float32_one (1.0)
|
||||
#define float32_ln2 (0.6931471)
|
||||
#define float32_pi (3.1415926)
|
||||
#define float32_half (0.5)
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 STATUS_PARAM);
|
||||
int float32_to_int32_round_to_zero( float32 STATUS_PARAM);
|
||||
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
|
||||
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
|
||||
int64_t float32_to_int64( float32 STATUS_PARAM);
|
||||
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM);
|
||||
float64 float32_to_float64( float32 STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 STATUS_PARAM);
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 STATUS_PARAM);
|
||||
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a - b;
|
||||
}
|
||||
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a * b;
|
||||
}
|
||||
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a / b;
|
||||
}
|
||||
float32 float32_rem( float32, float32 STATUS_PARAM);
|
||||
float32 float32_sqrt( float32 STATUS_PARAM);
|
||||
INLINE int float32_eq_quiet( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b && a >= b;
|
||||
}
|
||||
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return islessequal(a, b);
|
||||
}
|
||||
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return isless(a, b);
|
||||
}
|
||||
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return isunordered(a, b);
|
||||
}
|
||||
INLINE int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return isunordered(a, b);
|
||||
}
|
||||
int float32_compare( float32, float32 STATUS_PARAM );
|
||||
int float32_compare_quiet( float32, float32 STATUS_PARAM );
|
||||
int float32_is_signaling_nan( float32 );
|
||||
int float32_is_quiet_nan( float32 );
|
||||
int float32_is_any_nan( float32 );
|
||||
|
||||
INLINE float32 float32_abs(float32 a)
|
||||
{
|
||||
return fabsf(a);
|
||||
}
|
||||
|
||||
INLINE float32 float32_chs(float32 a)
|
||||
{
|
||||
return -a;
|
||||
}
|
||||
|
||||
INLINE float32 float32_is_infinity(float32 a)
|
||||
{
|
||||
return fpclassify(a) == FP_INFINITE;
|
||||
}
|
||||
|
||||
INLINE float32 float32_is_neg(float32 a)
|
||||
{
|
||||
float32u u;
|
||||
u.f = a;
|
||||
return u.i >> 31;
|
||||
}
|
||||
|
||||
INLINE float32 float32_is_zero(float32 a)
|
||||
{
|
||||
return fpclassify(a) == FP_ZERO;
|
||||
}
|
||||
|
||||
INLINE float32 float32_scalbn(float32 a, int n STATUS_PARAM)
|
||||
{
|
||||
return scalbnf(a, n);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion constants.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float64_zero (0.0)
|
||||
#define float64_one (1.0)
|
||||
#define float64_ln2 (0.693147180559945)
|
||||
#define float64_pi (3.141592653589793)
|
||||
#define float64_half (0.5)
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 STATUS_PARAM );
|
||||
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
|
||||
unsigned int float64_to_uint32( float64 STATUS_PARAM );
|
||||
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
|
||||
int64_t float64_to_int64( float64 STATUS_PARAM );
|
||||
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
|
||||
uint64_t float64_to_uint64( float64 STATUS_PARAM );
|
||||
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
|
||||
float32 float64_to_float32( float64 STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 STATUS_PARAM );
|
||||
float64 float64_trunc_to_int( float64 STATUS_PARAM );
|
||||
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a - b;
|
||||
}
|
||||
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a * b;
|
||||
}
|
||||
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a / b;
|
||||
}
|
||||
float64 float64_rem( float64, float64 STATUS_PARAM );
|
||||
float64 float64_sqrt( float64 STATUS_PARAM );
|
||||
INLINE int float64_eq_quiet( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b && a >= b;
|
||||
}
|
||||
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return islessequal(a, b);
|
||||
}
|
||||
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return isless(a, b);
|
||||
|
||||
}
|
||||
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return isunordered(a, b);
|
||||
}
|
||||
INLINE int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return isunordered(a, b);
|
||||
}
|
||||
int float64_compare( float64, float64 STATUS_PARAM );
|
||||
int float64_compare_quiet( float64, float64 STATUS_PARAM );
|
||||
int float64_is_signaling_nan( float64 );
|
||||
int float64_is_any_nan( float64 );
|
||||
int float64_is_quiet_nan( float64 );
|
||||
|
||||
INLINE float64 float64_abs(float64 a)
|
||||
{
|
||||
return fabs(a);
|
||||
}
|
||||
|
||||
INLINE float64 float64_chs(float64 a)
|
||||
{
|
||||
return -a;
|
||||
}
|
||||
|
||||
INLINE float64 float64_is_infinity(float64 a)
|
||||
{
|
||||
return fpclassify(a) == FP_INFINITE;
|
||||
}
|
||||
|
||||
INLINE float64 float64_is_neg(float64 a)
|
||||
{
|
||||
float64u u;
|
||||
u.f = a;
|
||||
return u.i >> 63;
|
||||
}
|
||||
|
||||
INLINE float64 float64_is_zero(float64 a)
|
||||
{
|
||||
return fpclassify(a) == FP_ZERO;
|
||||
}
|
||||
|
||||
INLINE float64 float64_scalbn(float64 a, int n STATUS_PARAM)
|
||||
{
|
||||
return scalbn(a, n);
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion constants.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define floatx80_zero (0.0L)
|
||||
#define floatx80_one (1.0L)
|
||||
#define floatx80_ln2 (0.69314718055994530943L)
|
||||
#define floatx80_pi (3.14159265358979323851L)
|
||||
#define floatx80_half (0.5L)
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 STATUS_PARAM );
|
||||
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
|
||||
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
|
||||
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
|
||||
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
|
||||
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
|
||||
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a - b;
|
||||
}
|
||||
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a * b;
|
||||
}
|
||||
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a / b;
|
||||
}
|
||||
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
|
||||
INLINE int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b && a >= b;
|
||||
}
|
||||
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return islessequal(a, b);
|
||||
}
|
||||
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return isless(a, b);
|
||||
|
||||
}
|
||||
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return isunordered(a, b);
|
||||
}
|
||||
INLINE int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return isunordered(a, b);
|
||||
}
|
||||
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
|
||||
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
|
||||
int floatx80_is_signaling_nan( floatx80 );
|
||||
int floatx80_is_quiet_nan( floatx80 );
|
||||
int floatx80_is_any_nan( floatx80 );
|
||||
|
||||
INLINE floatx80 floatx80_abs(floatx80 a)
|
||||
{
|
||||
return fabsl(a);
|
||||
}
|
||||
|
||||
INLINE floatx80 floatx80_chs(floatx80 a)
|
||||
{
|
||||
return -a;
|
||||
}
|
||||
|
||||
INLINE floatx80 floatx80_is_infinity(floatx80 a)
|
||||
{
|
||||
return fpclassify(a) == FP_INFINITE;
|
||||
}
|
||||
|
||||
INLINE floatx80 floatx80_is_neg(floatx80 a)
|
||||
{
|
||||
floatx80u u;
|
||||
u.f = a;
|
||||
return u.i.high >> 15;
|
||||
}
|
||||
|
||||
INLINE floatx80 floatx80_is_zero(floatx80 a)
|
||||
{
|
||||
return fpclassify(a) == FP_ZERO;
|
||||
}
|
||||
|
||||
INLINE floatx80 floatx80_scalbn(floatx80 a, int n STATUS_PARAM)
|
||||
{
|
||||
return scalbnl(a, n);
|
||||
}
|
||||
|
||||
#endif
|
@ -81,16 +81,9 @@ typedef int64_t int64;
|
||||
| input or output the `floatx80' type will be defined. The same applies to
|
||||
| the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#ifdef CONFIG_SOFTFLOAT
|
||||
/* bit exact soft float support */
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
#else
|
||||
/* native float support */
|
||||
#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
|
||||
#define FLOATX80
|
||||
#endif
|
||||
#endif /* !CONFIG_SOFTFLOAT */
|
||||
|
||||
#define STATUS_PARAM , float_status *status
|
||||
#define STATUS(field) status->field
|
||||
@ -106,7 +99,6 @@ enum {
|
||||
float_relation_unordered = 2
|
||||
};
|
||||
|
||||
#ifdef CONFIG_SOFTFLOAT
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
@ -699,10 +691,4 @@ INLINE int float128_is_any_nan(float128 a)
|
||||
|
||||
#endif
|
||||
|
||||
#else /* CONFIG_SOFTFLOAT */
|
||||
|
||||
#include "softfloat-native.h"
|
||||
|
||||
#endif /* !CONFIG_SOFTFLOAT */
|
||||
|
||||
#endif /* !SOFTFLOAT_H */
|
||||
|
Loading…
Reference in New Issue
Block a user