fpu/softfloat: re-factor muladd

We can now add float16_muladd and use the common decompose and
canonicalize functions to have a single implementation for
float16/32/64 muladd functions.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Alex Bennée 2017-11-28 17:04:44 +00:00
parent cf07323d49
commit d446830a3a
3 changed files with 272 additions and 575 deletions

View File

@ -729,58 +729,6 @@ static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
} }
} }
/*----------------------------------------------------------------------------
| Takes three single-precision floating-point values `a', `b' and `c', one of
| which is a NaN, and returns the appropriate NaN result. If any of `a',
| `b' or `c' is a signaling NaN, the invalid exception is raised.
| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
| obviously c is a NaN, and whether to propagate c or some other NaN is
| implementation defined).
*----------------------------------------------------------------------------*/
static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
float32 c, flag infzero,
float_status *status)
{
flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
cIsQuietNaN, cIsSignalingNaN;
int which;
aIsQuietNaN = float32_is_quiet_nan(a, status);
aIsSignalingNaN = float32_is_signaling_nan(a, status);
bIsQuietNaN = float32_is_quiet_nan(b, status);
bIsSignalingNaN = float32_is_signaling_nan(b, status);
cIsQuietNaN = float32_is_quiet_nan(c, status);
cIsSignalingNaN = float32_is_signaling_nan(c, status);
if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
float_raise(float_flag_invalid, status);
}
which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
bIsQuietNaN, bIsSignalingNaN,
cIsQuietNaN, cIsSignalingNaN, infzero, status);
if (status->default_nan_mode) {
/* Note that this check is after pickNaNMulAdd so that function
* has an opportunity to set the Invalid flag.
*/
return float32_default_nan(status);
}
switch (which) {
case 0:
return float32_maybe_silence_nan(a, status);
case 1:
return float32_maybe_silence_nan(b, status);
case 2:
return float32_maybe_silence_nan(c, status);
case 3:
default:
return float32_default_nan(status);
}
}
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int float64_is_quiet_nan(float64 a_, float_status *status) int float64_is_quiet_nan(float64 a_, float_status *status)
{ {
@ -936,58 +884,6 @@ static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
} }
} }
/*----------------------------------------------------------------------------
| Takes three double-precision floating-point values `a', `b' and `c', one of
| which is a NaN, and returns the appropriate NaN result. If any of `a',
| `b' or `c' is a signaling NaN, the invalid exception is raised.
| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
| obviously c is a NaN, and whether to propagate c or some other NaN is
| implementation defined).
*----------------------------------------------------------------------------*/
static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
float64 c, flag infzero,
float_status *status)
{
flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
cIsQuietNaN, cIsSignalingNaN;
int which;
aIsQuietNaN = float64_is_quiet_nan(a, status);
aIsSignalingNaN = float64_is_signaling_nan(a, status);
bIsQuietNaN = float64_is_quiet_nan(b, status);
bIsSignalingNaN = float64_is_signaling_nan(b, status);
cIsQuietNaN = float64_is_quiet_nan(c, status);
cIsSignalingNaN = float64_is_signaling_nan(c, status);
if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
float_raise(float_flag_invalid, status);
}
which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
bIsQuietNaN, bIsSignalingNaN,
cIsQuietNaN, cIsSignalingNaN, infzero, status);
if (status->default_nan_mode) {
/* Note that this check is after pickNaNMulAdd so that function
* has an opportunity to set the Invalid flag.
*/
return float64_default_nan(status);
}
switch (which) {
case 0:
return float64_maybe_silence_nan(a, status);
case 1:
return float64_maybe_silence_nan(b, status);
case 2:
return float64_maybe_silence_nan(c, status);
case 3:
default:
return float64_default_nan(status);
}
}
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int floatx80_is_quiet_nan(floatx80 a_, float_status *status) int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
{ {

View File

@ -580,6 +580,40 @@ static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
return a; return a;
} }
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
bool inf_zero, float_status *s)
{
if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
s->float_exception_flags |= float_flag_invalid;
}
if (s->default_nan_mode) {
a.cls = float_class_dnan;
} else {
switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls),
is_qnan(b.cls), is_snan(b.cls),
is_qnan(c.cls), is_snan(c.cls),
inf_zero, s)) {
case 0:
break;
case 1:
a = b;
break;
case 2:
a = c;
break;
case 3:
a.cls = float_class_dnan;
return a;
default:
g_assert_not_reached();
}
a.cls = float_class_msnan;
}
return a;
}
/* /*
* Returns the result of adding or subtracting the values of the * Returns the result of adding or subtracting the values of the
* floating-point values `a' and `b'. The operation is performed * floating-point values `a' and `b'. The operation is performed
@ -816,6 +850,243 @@ float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
return float64_round_pack_canonical(pr, status); return float64_round_pack_canonical(pr, status);
} }
/*
* Returns the result of multiplying the floating-point values `a' and
* `b' then adding 'c', with no intermediate rounding step after the
* multiplication. The operation is performed according to the
* IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
* The flags argument allows the caller to select negation of the
* addend, the intermediate product, or the final result. (The
* difference between this and having the caller do a separate
* negation is that negating externally will flip the sign bit on
* NaNs.)
*/
static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
int flags, float_status *s)
{
bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
((1 << float_class_inf) | (1 << float_class_zero));
bool p_sign;
bool sign_flip = flags & float_muladd_negate_result;
FloatClass p_class;
uint64_t hi, lo;
int p_exp;
/* It is implementation-defined whether the cases of (0,inf,qnan)
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
* they return if they do), so we have to hand this information
* off to the target-specific pick-a-NaN routine.
*/
if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
return pick_nan_muladd(a, b, c, inf_zero, s);
}
if (inf_zero) {
s->float_exception_flags |= float_flag_invalid;
a.cls = float_class_dnan;
return a;
}
if (flags & float_muladd_negate_c) {
c.sign ^= 1;
}
p_sign = a.sign ^ b.sign;
if (flags & float_muladd_negate_product) {
p_sign ^= 1;
}
if (a.cls == float_class_inf || b.cls == float_class_inf) {
p_class = float_class_inf;
} else if (a.cls == float_class_zero || b.cls == float_class_zero) {
p_class = float_class_zero;
} else {
p_class = float_class_normal;
}
if (c.cls == float_class_inf) {
if (p_class == float_class_inf && p_sign != c.sign) {
s->float_exception_flags |= float_flag_invalid;
a.cls = float_class_dnan;
} else {
a.cls = float_class_inf;
a.sign = c.sign ^ sign_flip;
}
return a;
}
if (p_class == float_class_inf) {
a.cls = float_class_inf;
a.sign = p_sign ^ sign_flip;
return a;
}
if (p_class == float_class_zero) {
if (c.cls == float_class_zero) {
if (p_sign != c.sign) {
p_sign = s->float_rounding_mode == float_round_down;
}
c.sign = p_sign;
} else if (flags & float_muladd_halve_result) {
c.exp -= 1;
}
c.sign ^= sign_flip;
return c;
}
/* a & b should be normals now... */
assert(a.cls == float_class_normal &&
b.cls == float_class_normal);
p_exp = a.exp + b.exp;
/* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
* result.
*/
mul64To128(a.frac, b.frac, &hi, &lo);
/* binary point now at bit 124 */
/* check for overflow */
if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
shift128RightJamming(hi, lo, 1, &hi, &lo);
p_exp += 1;
}
/* + add/sub */
if (c.cls == float_class_zero) {
/* move binary point back to 62 */
shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
} else {
int exp_diff = p_exp - c.exp;
if (p_sign == c.sign) {
/* Addition */
if (exp_diff <= 0) {
shift128RightJamming(hi, lo,
DECOMPOSED_BINARY_POINT - exp_diff,
&hi, &lo);
lo += c.frac;
p_exp = c.exp;
} else {
uint64_t c_hi, c_lo;
/* shift c to the same binary point as the product (124) */
c_hi = c.frac >> 2;
c_lo = 0;
shift128RightJamming(c_hi, c_lo,
exp_diff,
&c_hi, &c_lo);
add128(hi, lo, c_hi, c_lo, &hi, &lo);
/* move binary point back to 62 */
shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
}
if (lo & DECOMPOSED_OVERFLOW_BIT) {
shift64RightJamming(lo, 1, &lo);
p_exp += 1;
}
} else {
/* Subtraction */
uint64_t c_hi, c_lo;
/* make C binary point match product at bit 124 */
c_hi = c.frac >> 2;
c_lo = 0;
if (exp_diff <= 0) {
shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
if (exp_diff == 0
&&
(hi > c_hi || (hi == c_hi && lo >= c_lo))) {
sub128(hi, lo, c_hi, c_lo, &hi, &lo);
} else {
sub128(c_hi, c_lo, hi, lo, &hi, &lo);
p_sign ^= 1;
p_exp = c.exp;
}
} else {
shift128RightJamming(c_hi, c_lo,
exp_diff,
&c_hi, &c_lo);
sub128(hi, lo, c_hi, c_lo, &hi, &lo);
}
if (hi == 0 && lo == 0) {
a.cls = float_class_zero;
a.sign = s->float_rounding_mode == float_round_down;
a.sign ^= sign_flip;
return a;
} else {
int shift;
if (hi != 0) {
shift = clz64(hi);
} else {
shift = clz64(lo) + 64;
}
/* Normalizing to a binary point of 124 is the
correct adjust for the exponent. However since we're
shifting, we might as well put the binary point back
at 62 where we really want it. Therefore shift as
if we're leaving 1 bit at the top of the word, but
adjust the exponent as if we're leaving 3 bits. */
shift -= 1;
if (shift >= 64) {
lo = lo << (shift - 64);
} else {
hi = (hi << shift) | (lo >> (64 - shift));
lo = hi | ((lo << shift) != 0);
}
p_exp -= shift - 2;
}
}
}
if (flags & float_muladd_halve_result) {
p_exp -= 1;
}
/* finally prepare our result */
a.cls = float_class_normal;
a.sign = p_sign ^ sign_flip;
a.exp = p_exp;
a.frac = lo;
return a;
}
float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
int flags, float_status *status)
{
FloatParts pa = float16_unpack_canonical(a, status);
FloatParts pb = float16_unpack_canonical(b, status);
FloatParts pc = float16_unpack_canonical(c, status);
FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
return float16_round_pack_canonical(pr, status);
}
float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
int flags, float_status *status)
{
FloatParts pa = float32_unpack_canonical(a, status);
FloatParts pb = float32_unpack_canonical(b, status);
FloatParts pc = float32_unpack_canonical(c, status);
FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
return float32_round_pack_canonical(pr, status);
}
float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
int flags, float_status *status)
{
FloatParts pa = float64_unpack_canonical(a, status);
FloatParts pb = float64_unpack_canonical(b, status);
FloatParts pc = float64_unpack_canonical(c, status);
FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
return float64_round_pack_canonical(pr, status);
}
/* /*
* Returns the result of dividing the floating-point value `a' by the * Returns the result of dividing the floating-point value `a' by the
* corresponding value `b'. The operation is performed according to * corresponding value `b'. The operation is performed according to
@ -2817,231 +3088,6 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
} }
/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication. The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/
float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
float_status *status)
{
flag aSign, bSign, cSign, zSign;
int aExp, bExp, cExp, pExp, zExp, expDiff;
uint32_t aSig, bSig, cSig;
flag pInf, pZero, pSign;
uint64_t pSig64, cSig64, zSig64;
uint32_t pSig;
int shiftcount;
flag signflip, infzero;
a = float32_squash_input_denormal(a, status);
b = float32_squash_input_denormal(b, status);
c = float32_squash_input_denormal(c, status);
aSig = extractFloat32Frac(a);
aExp = extractFloat32Exp(a);
aSign = extractFloat32Sign(a);
bSig = extractFloat32Frac(b);
bExp = extractFloat32Exp(b);
bSign = extractFloat32Sign(b);
cSig = extractFloat32Frac(c);
cExp = extractFloat32Exp(c);
cSign = extractFloat32Sign(c);
infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
(aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
/* It is implementation-defined whether the cases of (0,inf,qnan)
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
* they return if they do), so we have to hand this information
* off to the target-specific pick-a-NaN routine.
*/
if (((aExp == 0xff) && aSig) ||
((bExp == 0xff) && bSig) ||
((cExp == 0xff) && cSig)) {
return propagateFloat32MulAddNaN(a, b, c, infzero, status);
}
if (infzero) {
float_raise(float_flag_invalid, status);
return float32_default_nan(status);
}
if (flags & float_muladd_negate_c) {
cSign ^= 1;
}
signflip = (flags & float_muladd_negate_result) ? 1 : 0;
/* Work out the sign and type of the product */
pSign = aSign ^ bSign;
if (flags & float_muladd_negate_product) {
pSign ^= 1;
}
pInf = (aExp == 0xff) || (bExp == 0xff);
pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
if (cExp == 0xff) {
if (pInf && (pSign ^ cSign)) {
/* addition of opposite-signed infinities => InvalidOperation */
float_raise(float_flag_invalid, status);
return float32_default_nan(status);
}
/* Otherwise generate an infinity of the same sign */
return packFloat32(cSign ^ signflip, 0xff, 0);
}
if (pInf) {
return packFloat32(pSign ^ signflip, 0xff, 0);
}
if (pZero) {
if (cExp == 0) {
if (cSig == 0) {
/* Adding two exact zeroes */
if (pSign == cSign) {
zSign = pSign;
} else if (status->float_rounding_mode == float_round_down) {
zSign = 1;
} else {
zSign = 0;
}
return packFloat32(zSign ^ signflip, 0, 0);
}
/* Exact zero plus a denorm */
if (status->flush_to_zero) {
float_raise(float_flag_output_denormal, status);
return packFloat32(cSign ^ signflip, 0, 0);
}
}
/* Zero plus something non-zero : just return the something */
if (flags & float_muladd_halve_result) {
if (cExp == 0) {
normalizeFloat32Subnormal(cSig, &cExp, &cSig);
}
/* Subtract one to halve, and one again because roundAndPackFloat32
* wants one less than the true exponent.
*/
cExp -= 2;
cSig = (cSig | 0x00800000) << 7;
return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
}
return packFloat32(cSign ^ signflip, cExp, cSig);
}
if (aExp == 0) {
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
}
if (bExp == 0) {
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
}
/* Calculate the actual result a * b + c */
/* Multiply first; this is easy. */
/* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
* because we want the true exponent, not the "one-less-than"
* flavour that roundAndPackFloat32() takes.
*/
pExp = aExp + bExp - 0x7e;
aSig = (aSig | 0x00800000) << 7;
bSig = (bSig | 0x00800000) << 8;
pSig64 = (uint64_t)aSig * bSig;
if ((int64_t)(pSig64 << 1) >= 0) {
pSig64 <<= 1;
pExp--;
}
zSign = pSign ^ signflip;
/* Now pSig64 is the significand of the multiply, with the explicit bit in
* position 62.
*/
if (cExp == 0) {
if (!cSig) {
/* Throw out the special case of c being an exact zero now */
shift64RightJamming(pSig64, 32, &pSig64);
pSig = pSig64;
if (flags & float_muladd_halve_result) {
pExp--;
}
return roundAndPackFloat32(zSign, pExp - 1,
pSig, status);
}
normalizeFloat32Subnormal(cSig, &cExp, &cSig);
}
cSig64 = (uint64_t)cSig << (62 - 23);
cSig64 |= LIT64(0x4000000000000000);
expDiff = pExp - cExp;
if (pSign == cSign) {
/* Addition */
if (expDiff > 0) {
/* scale c to match p */
shift64RightJamming(cSig64, expDiff, &cSig64);
zExp = pExp;
} else if (expDiff < 0) {
/* scale p to match c */
shift64RightJamming(pSig64, -expDiff, &pSig64);
zExp = cExp;
} else {
/* no scaling needed */
zExp = cExp;
}
/* Add significands and make sure explicit bit ends up in posn 62 */
zSig64 = pSig64 + cSig64;
if ((int64_t)zSig64 < 0) {
shift64RightJamming(zSig64, 1, &zSig64);
} else {
zExp--;
}
} else {
/* Subtraction */
if (expDiff > 0) {
shift64RightJamming(cSig64, expDiff, &cSig64);
zSig64 = pSig64 - cSig64;
zExp = pExp;
} else if (expDiff < 0) {
shift64RightJamming(pSig64, -expDiff, &pSig64);
zSig64 = cSig64 - pSig64;
zExp = cExp;
zSign ^= 1;
} else {
zExp = pExp;
if (cSig64 < pSig64) {
zSig64 = pSig64 - cSig64;
} else if (pSig64 < cSig64) {
zSig64 = cSig64 - pSig64;
zSign ^= 1;
} else {
/* Exact zero */
zSign = signflip;
if (status->float_rounding_mode == float_round_down) {
zSign ^= 1;
}
return packFloat32(zSign, 0, 0);
}
}
--zExp;
/* Normalize to put the explicit bit back into bit 62. */
shiftcount = countLeadingZeros64(zSig64) - 1;
zSig64 <<= shiftcount;
zExp -= shiftcount;
}
if (flags & float_muladd_halve_result) {
zExp--;
}
shift64RightJamming(zSig64, 32, &zSig64);
return roundAndPackFloat32(zSign, zExp, zSig64, status);
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'. | Returns the square root of the single-precision floating-point value `a'.
@ -4265,252 +4311,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
} }
/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication. The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/
float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
float_status *status)
{
flag aSign, bSign, cSign, zSign;
int aExp, bExp, cExp, pExp, zExp, expDiff;
uint64_t aSig, bSig, cSig;
flag pInf, pZero, pSign;
uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
int shiftcount;
flag signflip, infzero;
a = float64_squash_input_denormal(a, status);
b = float64_squash_input_denormal(b, status);
c = float64_squash_input_denormal(c, status);
aSig = extractFloat64Frac(a);
aExp = extractFloat64Exp(a);
aSign = extractFloat64Sign(a);
bSig = extractFloat64Frac(b);
bExp = extractFloat64Exp(b);
bSign = extractFloat64Sign(b);
cSig = extractFloat64Frac(c);
cExp = extractFloat64Exp(c);
cSign = extractFloat64Sign(c);
infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
(aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
/* It is implementation-defined whether the cases of (0,inf,qnan)
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
* they return if they do), so we have to hand this information
* off to the target-specific pick-a-NaN routine.
*/
if (((aExp == 0x7ff) && aSig) ||
((bExp == 0x7ff) && bSig) ||
((cExp == 0x7ff) && cSig)) {
return propagateFloat64MulAddNaN(a, b, c, infzero, status);
}
if (infzero) {
float_raise(float_flag_invalid, status);
return float64_default_nan(status);
}
if (flags & float_muladd_negate_c) {
cSign ^= 1;
}
signflip = (flags & float_muladd_negate_result) ? 1 : 0;
/* Work out the sign and type of the product */
pSign = aSign ^ bSign;
if (flags & float_muladd_negate_product) {
pSign ^= 1;
}
pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
if (cExp == 0x7ff) {
if (pInf && (pSign ^ cSign)) {
/* addition of opposite-signed infinities => InvalidOperation */
float_raise(float_flag_invalid, status);
return float64_default_nan(status);
}
/* Otherwise generate an infinity of the same sign */
return packFloat64(cSign ^ signflip, 0x7ff, 0);
}
if (pInf) {
return packFloat64(pSign ^ signflip, 0x7ff, 0);
}
if (pZero) {
if (cExp == 0) {
if (cSig == 0) {
/* Adding two exact zeroes */
if (pSign == cSign) {
zSign = pSign;
} else if (status->float_rounding_mode == float_round_down) {
zSign = 1;
} else {
zSign = 0;
}
return packFloat64(zSign ^ signflip, 0, 0);
}
/* Exact zero plus a denorm */
if (status->flush_to_zero) {
float_raise(float_flag_output_denormal, status);
return packFloat64(cSign ^ signflip, 0, 0);
}
}
/* Zero plus something non-zero : just return the something */
if (flags & float_muladd_halve_result) {
if (cExp == 0) {
normalizeFloat64Subnormal(cSig, &cExp, &cSig);
}
/* Subtract one to halve, and one again because roundAndPackFloat64
* wants one less than the true exponent.
*/
cExp -= 2;
cSig = (cSig | 0x0010000000000000ULL) << 10;
return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
}
return packFloat64(cSign ^ signflip, cExp, cSig);
}
if (aExp == 0) {
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
}
if (bExp == 0) {
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
}
/* Calculate the actual result a * b + c */
/* Multiply first; this is easy. */
/* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
* because we want the true exponent, not the "one-less-than"
* flavour that roundAndPackFloat64() takes.
*/
pExp = aExp + bExp - 0x3fe;
aSig = (aSig | LIT64(0x0010000000000000))<<10;
bSig = (bSig | LIT64(0x0010000000000000))<<11;
mul64To128(aSig, bSig, &pSig0, &pSig1);
if ((int64_t)(pSig0 << 1) >= 0) {
shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
pExp--;
}
zSign = pSign ^ signflip;
/* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
* bit in position 126.
*/
if (cExp == 0) {
if (!cSig) {
/* Throw out the special case of c being an exact zero now */
shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
if (flags & float_muladd_halve_result) {
pExp--;
}
return roundAndPackFloat64(zSign, pExp - 1,
pSig1, status);
}
normalizeFloat64Subnormal(cSig, &cExp, &cSig);
}
/* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
* significand of the addend, with the explicit bit in position 126.
*/
cSig0 = cSig << (126 - 64 - 52);
cSig1 = 0;
cSig0 |= LIT64(0x4000000000000000);
expDiff = pExp - cExp;
if (pSign == cSign) {
/* Addition */
if (expDiff > 0) {
/* scale c to match p */
shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
zExp = pExp;
} else if (expDiff < 0) {
/* scale p to match c */
shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
zExp = cExp;
} else {
/* no scaling needed */
zExp = cExp;
}
/* Add significands and make sure explicit bit ends up in posn 126 */
add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
if ((int64_t)zSig0 < 0) {
shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
} else {
zExp--;
}
shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
if (flags & float_muladd_halve_result) {
zExp--;
}
return roundAndPackFloat64(zSign, zExp, zSig1, status);
} else {
/* Subtraction */
if (expDiff > 0) {
shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
zExp = pExp;
} else if (expDiff < 0) {
shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
zExp = cExp;
zSign ^= 1;
} else {
zExp = pExp;
if (lt128(cSig0, cSig1, pSig0, pSig1)) {
sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
} else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
zSign ^= 1;
} else {
/* Exact zero */
zSign = signflip;
if (status->float_rounding_mode == float_round_down) {
zSign ^= 1;
}
return packFloat64(zSign, 0, 0);
}
}
--zExp;
/* Do the equivalent of normalizeRoundAndPackFloat64() but
* starting with the significand in a pair of uint64_t.
*/
if (zSig0) {
shiftcount = countLeadingZeros64(zSig0) - 1;
shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
if (zSig1) {
zSig0 |= 1;
}
zExp -= shiftcount;
} else {
shiftcount = countLeadingZeros64(zSig1);
if (shiftcount == 0) {
zSig0 = (zSig1 >> 1) | (zSig1 & 1);
zExp -= 63;
} else {
shiftcount--;
zSig0 = zSig1 << shiftcount;
zExp -= (shiftcount + 64);
}
}
if (flags & float_muladd_halve_result) {
zExp--;
}
return roundAndPackFloat64(zSign, zExp, zSig0, status);
}
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'. | Returns the square root of the double-precision floating-point value `a'.

View File

@ -240,6 +240,7 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
float16 float16_add(float16, float16, float_status *status); float16 float16_add(float16, float16, float_status *status);
float16 float16_sub(float16, float16, float_status *status); float16 float16_sub(float16, float16, float_status *status);
float16 float16_mul(float16, float16, float_status *status); float16 float16_mul(float16, float16, float_status *status);
float16 float16_muladd(float16, float16, float16, int, float_status *status);
float16 float16_div(float16, float16, float_status *status); float16 float16_div(float16, float16, float_status *status);
int float16_is_quiet_nan(float16, float_status *status); int float16_is_quiet_nan(float16, float_status *status);