omap_gpmc: Implement prefetch engine
This commit implements the prefetch engine feature of the GPMC which can be used for NAND devices. This includes both interrupt driven and DMA-filling modes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
eee0a1c67e
commit
d5c8cf993a
257
hw/omap_gpmc.c
257
hw/omap_gpmc.c
@ -35,6 +35,7 @@ struct omap_gpmc_s {
|
||||
uint8_t sysconfig;
|
||||
uint16_t irqst;
|
||||
uint16_t irqen;
|
||||
uint16_t lastirq;
|
||||
uint16_t timeout;
|
||||
uint16_t config;
|
||||
struct omap_gpmc_cs_file_s {
|
||||
@ -54,6 +55,8 @@ struct omap_gpmc_s {
|
||||
int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
|
||||
int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
|
||||
int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
|
||||
MemoryRegion iomem;
|
||||
uint8_t fifo[64];
|
||||
} prefetch;
|
||||
};
|
||||
|
||||
@ -76,9 +79,42 @@ static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
|
||||
return (f->config[0] >> 12) & 1;
|
||||
}
|
||||
|
||||
/* Extract the chip-select value from the prefetch config1 register */
|
||||
static int prefetch_cs(uint32_t config1)
|
||||
{
|
||||
return (config1 >> 24) & 7;
|
||||
}
|
||||
|
||||
static int prefetch_threshold(uint32_t config1)
|
||||
{
|
||||
return (config1 >> 8) & 0x7f;
|
||||
}
|
||||
|
||||
static void omap_gpmc_int_update(struct omap_gpmc_s *s)
|
||||
{
|
||||
qemu_set_irq(s->irq, s->irqen & s->irqst);
|
||||
/* The TRM is a bit unclear, but it seems to say that
|
||||
* the TERMINALCOUNTSTATUS bit is set only on the
|
||||
* transition when the prefetch engine goes from
|
||||
* active to inactive, whereas the FIFOEVENTSTATUS
|
||||
* bit is held high as long as the fifo has at
|
||||
* least THRESHOLD bytes available.
|
||||
* So we do the latter here, but TERMINALCOUNTSTATUS
|
||||
* is set elsewhere.
|
||||
*/
|
||||
if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
|
||||
s->irqst |= 1;
|
||||
}
|
||||
if ((s->irqen & s->irqst) != s->lastirq) {
|
||||
s->lastirq = s->irqen & s->irqst;
|
||||
qemu_set_irq(s->irq, s->lastirq);
|
||||
}
|
||||
}
|
||||
|
||||
static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
|
||||
{
|
||||
if (s->prefetch.config1 & 4) {
|
||||
qemu_set_irq(s->drq, value);
|
||||
}
|
||||
}
|
||||
|
||||
/* Access functions for when a NAND-like device is mapped into memory:
|
||||
@ -176,6 +212,161 @@ static const MemoryRegionOps omap_nand_ops = {
|
||||
.endianness = DEVICE_NATIVE_ENDIAN,
|
||||
};
|
||||
|
||||
static void fill_prefetch_fifo(struct omap_gpmc_s *s)
|
||||
{
|
||||
/* Fill the prefetch FIFO by reading data from NAND.
|
||||
* We do this synchronously, unlike the hardware which
|
||||
* will do this asynchronously. We refill when the
|
||||
* FIFO has THRESHOLD bytes free, and we always refill
|
||||
* as much data as possible starting at the top end
|
||||
* of the FIFO.
|
||||
* (We have to refill at THRESHOLD rather than waiting
|
||||
* for the FIFO to empty to allow for the case where
|
||||
* the FIFO size isn't an exact multiple of THRESHOLD
|
||||
* and we're doing DMA transfers.)
|
||||
* This means we never need to handle wrap-around in
|
||||
* the fifo-reading code, and the next byte of data
|
||||
* to read is always fifo[63 - fifopointer].
|
||||
*/
|
||||
int fptr;
|
||||
int cs = prefetch_cs(s->prefetch.config1);
|
||||
int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
|
||||
int bytes;
|
||||
/* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
|
||||
* and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
|
||||
* Instead believe the bit that says it is always a byte count.
|
||||
*/
|
||||
bytes = 64 - s->prefetch.fifopointer;
|
||||
if (bytes > s->prefetch.count) {
|
||||
bytes = s->prefetch.count;
|
||||
}
|
||||
s->prefetch.count -= bytes;
|
||||
s->prefetch.fifopointer += bytes;
|
||||
fptr = 64 - s->prefetch.fifopointer;
|
||||
/* Move the existing data in the FIFO so it sits just
|
||||
* before what we're about to read in
|
||||
*/
|
||||
while (fptr < (64 - bytes)) {
|
||||
s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
|
||||
fptr++;
|
||||
}
|
||||
while (fptr < 64) {
|
||||
if (is16bit) {
|
||||
uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
|
||||
s->prefetch.fifo[fptr++] = v & 0xff;
|
||||
s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
|
||||
} else {
|
||||
s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
|
||||
}
|
||||
}
|
||||
if (s->prefetch.startengine && (s->prefetch.count == 0)) {
|
||||
/* This was the final transfer: raise TERMINALCOUNTSTATUS */
|
||||
s->irqst |= 2;
|
||||
s->prefetch.startengine = 0;
|
||||
}
|
||||
/* If there are any bytes in the FIFO at this point then
|
||||
* we must raise a DMA request (either this is a final part
|
||||
* transfer, or we filled the FIFO in which case we certainly
|
||||
* have THRESHOLD bytes available)
|
||||
*/
|
||||
if (s->prefetch.fifopointer != 0) {
|
||||
omap_gpmc_dma_update(s, 1);
|
||||
}
|
||||
omap_gpmc_int_update(s);
|
||||
}
|
||||
|
||||
/* Access functions for a NAND-like device when the prefetch/postwrite
|
||||
* engine is enabled -- all addresses in the region behave alike:
|
||||
* data is read or written to the FIFO.
|
||||
*/
|
||||
static uint64_t omap_gpmc_prefetch_read(void *opaque, target_phys_addr_t addr,
|
||||
unsigned size)
|
||||
{
|
||||
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
|
||||
uint32_t data;
|
||||
if (s->prefetch.config1 & 1) {
|
||||
/* The TRM doesn't define the behaviour if you read from the
|
||||
* FIFO when the prefetch engine is in write mode. We choose
|
||||
* to always return zero.
|
||||
*/
|
||||
return 0;
|
||||
}
|
||||
/* Note that trying to read an empty fifo repeats the last byte */
|
||||
if (s->prefetch.fifopointer) {
|
||||
s->prefetch.fifopointer--;
|
||||
}
|
||||
data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
|
||||
if (s->prefetch.fifopointer ==
|
||||
(64 - prefetch_threshold(s->prefetch.config1))) {
|
||||
/* We've drained THRESHOLD bytes now. So deassert the
|
||||
* DMA request, then refill the FIFO (which will probably
|
||||
* assert it again.)
|
||||
*/
|
||||
omap_gpmc_dma_update(s, 0);
|
||||
fill_prefetch_fifo(s);
|
||||
}
|
||||
omap_gpmc_int_update(s);
|
||||
return data;
|
||||
}
|
||||
|
||||
static void omap_gpmc_prefetch_write(void *opaque, target_phys_addr_t addr,
|
||||
uint64_t value, unsigned size)
|
||||
{
|
||||
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
|
||||
int cs = prefetch_cs(s->prefetch.config1);
|
||||
if ((s->prefetch.config1 & 1) == 0) {
|
||||
/* The TRM doesn't define the behaviour of writing to the
|
||||
* FIFO when the prefetch engine is in read mode. We
|
||||
* choose to ignore the write.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
if (s->prefetch.count == 0) {
|
||||
/* The TRM doesn't define the behaviour of writing to the
|
||||
* FIFO if the transfer is complete. We choose to ignore.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
/* The only reason we do any data buffering in postwrite
|
||||
* mode is if we are talking to a 16 bit NAND device, in
|
||||
* which case we need to buffer the first byte of the
|
||||
* 16 bit word until the other byte arrives.
|
||||
*/
|
||||
int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
|
||||
if (is16bit) {
|
||||
/* fifopointer alternates between 64 (waiting for first
|
||||
* byte of word) and 63 (waiting for second byte)
|
||||
*/
|
||||
if (s->prefetch.fifopointer == 64) {
|
||||
s->prefetch.fifo[0] = value;
|
||||
s->prefetch.fifopointer--;
|
||||
} else {
|
||||
value = (value << 8) | s->prefetch.fifo[0];
|
||||
omap_nand_write(&s->cs_file[cs], 0, value, 2);
|
||||
s->prefetch.count--;
|
||||
s->prefetch.fifopointer = 64;
|
||||
}
|
||||
} else {
|
||||
/* Just write the byte : fifopointer remains 64 at all times */
|
||||
omap_nand_write(&s->cs_file[cs], 0, value, 1);
|
||||
s->prefetch.count--;
|
||||
}
|
||||
if (s->prefetch.count == 0) {
|
||||
/* Final transfer: raise TERMINALCOUNTSTATUS */
|
||||
s->irqst |= 2;
|
||||
s->prefetch.startengine = 0;
|
||||
}
|
||||
omap_gpmc_int_update(s);
|
||||
}
|
||||
|
||||
static const MemoryRegionOps omap_prefetch_ops = {
|
||||
.read = omap_gpmc_prefetch_read,
|
||||
.write = omap_gpmc_prefetch_write,
|
||||
.endianness = DEVICE_NATIVE_ENDIAN,
|
||||
.impl.min_access_size = 1,
|
||||
.impl.max_access_size = 1,
|
||||
};
|
||||
|
||||
static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
|
||||
{
|
||||
/* Return the MemoryRegion* to map/unmap for this chipselect */
|
||||
@ -183,6 +374,11 @@ static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
|
||||
if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
|
||||
return f->iomem;
|
||||
}
|
||||
if ((s->prefetch.config1 & 0x80) &&
|
||||
(prefetch_cs(s->prefetch.config1) == cs)) {
|
||||
/* The prefetch engine is enabled for this CS: map the FIFO */
|
||||
return &s->prefetch.iomem;
|
||||
}
|
||||
return &f->nandiomem;
|
||||
}
|
||||
|
||||
@ -510,24 +706,61 @@ static void omap_gpmc_write(void *opaque, target_phys_addr_t addr,
|
||||
break;
|
||||
|
||||
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
|
||||
s->prefetch.config1 = value & 0x7f8f7fbf;
|
||||
/* TODO: update interrupts, fifos, dmas */
|
||||
if (!s->prefetch.startengine) {
|
||||
uint32_t oldconfig1 = s->prefetch.config1;
|
||||
uint32_t changed;
|
||||
s->prefetch.config1 = value & 0x7f8f7fbf;
|
||||
changed = oldconfig1 ^ s->prefetch.config1;
|
||||
if (changed & (0x80 | 0x7000000)) {
|
||||
/* Turning the engine on or off, or mapping it somewhere else.
|
||||
* cs_map() and cs_unmap() check the prefetch config and
|
||||
* overall CSVALID bits, so it is sufficient to unmap-and-map
|
||||
* both the old cs and the new one.
|
||||
*/
|
||||
int oldcs = prefetch_cs(oldconfig1);
|
||||
int newcs = prefetch_cs(s->prefetch.config1);
|
||||
omap_gpmc_cs_unmap(s, oldcs);
|
||||
omap_gpmc_cs_map(s, oldcs);
|
||||
if (newcs != oldcs) {
|
||||
omap_gpmc_cs_unmap(s, newcs);
|
||||
omap_gpmc_cs_map(s, newcs);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
|
||||
s->prefetch.transfercount = value & 0x3fff;
|
||||
if (!s->prefetch.startengine) {
|
||||
s->prefetch.transfercount = value & 0x3fff;
|
||||
}
|
||||
break;
|
||||
|
||||
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
|
||||
s->prefetch.startengine = value & 1;
|
||||
if (s->prefetch.startengine) {
|
||||
if (s->prefetch.config1 & 1) {
|
||||
s->prefetch.fifopointer = 0x40;
|
||||
if (s->prefetch.startengine != (value & 1)) {
|
||||
s->prefetch.startengine = value & 1;
|
||||
if (s->prefetch.startengine) {
|
||||
/* Prefetch engine start */
|
||||
s->prefetch.count = s->prefetch.transfercount;
|
||||
if (s->prefetch.config1 & 1) {
|
||||
/* Write */
|
||||
s->prefetch.fifopointer = 64;
|
||||
} else {
|
||||
/* Read */
|
||||
s->prefetch.fifopointer = 0;
|
||||
fill_prefetch_fifo(s);
|
||||
}
|
||||
} else {
|
||||
s->prefetch.fifopointer = 0x00;
|
||||
/* Prefetch engine forcibly stopped. The TRM
|
||||
* doesn't define the behaviour if you do this.
|
||||
* We clear the prefetch count, which means that
|
||||
* we permit no more writes, and don't read any
|
||||
* more data from NAND. The CPU can still drain
|
||||
* the FIFO of unread data.
|
||||
*/
|
||||
s->prefetch.count = 0;
|
||||
}
|
||||
omap_gpmc_int_update(s);
|
||||
}
|
||||
/* TODO: start */
|
||||
break;
|
||||
|
||||
case 0x1f4: /* GPMC_ECC_CONFIG */
|
||||
@ -579,6 +812,7 @@ struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
|
||||
s->drq = drq;
|
||||
s->accept_256 = cpu_is_omap3630(mpu);
|
||||
s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
|
||||
s->lastirq = 0;
|
||||
omap_gpmc_reset(s);
|
||||
|
||||
/* We have to register a different IO memory handler for each
|
||||
@ -594,6 +828,9 @@ struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
|
||||
"omap-nand",
|
||||
256 * 1024 * 1024);
|
||||
}
|
||||
|
||||
memory_region_init_io(&s->prefetch.iomem, &omap_prefetch_ops, s,
|
||||
"omap-gpmc-prefetch", 256 * 1024 * 1024);
|
||||
return s;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user