lm32: EVR32 and uclinux BSP

This patch adds support for the following two BSPs:
 - LM32 EVR32 BSP (as used by RTEMS)
 - uclinux BSP by Theobroma Systems

Signed-off-by: Michael Walle <michael@walle.cc>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
This commit is contained in:
Michael Walle 2011-02-17 23:45:14 +01:00 committed by Edgar E. Iglesias
parent e5f799a267
commit d821732aba
3 changed files with 312 additions and 0 deletions

View File

@ -247,6 +247,9 @@ obj-ppc-y += xilinx_timer.o
obj-ppc-y += xilinx_uartlite.o
obj-ppc-y += xilinx_ethlite.o
# LM32 boards
obj-lm32-y += lm32_boards.o
# LM32 peripherals
obj-lm32-y += lm32_pic.o
obj-lm32-y += lm32_juart.o

View File

@ -0,0 +1,4 @@
# Default configuration for lm32-softmmu
CONFIG_PTIMER=y
CONFIG_PFLASH_CFI02=y

305
hw/lm32_boards.c Normal file
View File

@ -0,0 +1,305 @@
/*
* QEMU models for LatticeMico32 uclinux and evr32 boards.
*
* Copyright (c) 2010 Michael Walle <michael@walle.cc>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "sysbus.h"
#include "hw.h"
#include "net.h"
#include "flash.h"
#include "sysemu.h"
#include "devices.h"
#include "boards.h"
#include "loader.h"
#include "blockdev.h"
#include "elf.h"
#include "lm32_hwsetup.h"
#include "lm32.h"
typedef struct {
CPUState *env;
target_phys_addr_t bootstrap_pc;
target_phys_addr_t flash_base;
target_phys_addr_t hwsetup_base;
target_phys_addr_t initrd_base;
size_t initrd_size;
target_phys_addr_t cmdline_base;
} ResetInfo;
static void cpu_irq_handler(void *opaque, int irq, int level)
{
CPUState *env = opaque;
if (level) {
cpu_interrupt(env, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void main_cpu_reset(void *opaque)
{
ResetInfo *reset_info = opaque;
CPUState *env = reset_info->env;
cpu_reset(env);
/* init defaults */
env->pc = (uint32_t)reset_info->bootstrap_pc;
env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
reset_info->initrd_size);
env->eba = reset_info->flash_base;
env->deba = reset_info->flash_base;
}
static void lm32_evr_init(ram_addr_t ram_size_not_used,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
DriveInfo *dinfo;
ram_addr_t phys_ram;
ram_addr_t phys_flash;
qemu_irq *cpu_irq, irq[32];
ResetInfo *reset_info;
int i;
/* memory map */
target_phys_addr_t flash_base = 0x04000000;
size_t flash_sector_size = 256 * 1024;
size_t flash_size = 32 * 1024 * 1024;
target_phys_addr_t ram_base = 0x08000000;
size_t ram_size = 64 * 1024 * 1024;
target_phys_addr_t timer0_base = 0x80002000;
target_phys_addr_t uart0_base = 0x80006000;
target_phys_addr_t timer1_base = 0x8000a000;
int uart0_irq = 0;
int timer0_irq = 1;
int timer1_irq = 3;
reset_info = qemu_mallocz(sizeof(ResetInfo));
if (cpu_model == NULL) {
cpu_model = "lm32-full";
}
env = cpu_init(cpu_model);
reset_info->env = env;
reset_info->flash_base = flash_base;
phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, phys_flash,
dinfo ? dinfo->bdrv : NULL, flash_sector_size,
flash_size / flash_sector_size, 1, 2,
0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
env->pic_state = lm32_pic_init(*cpu_irq);
for (i = 0; i < 32; i++) {
irq[i] = qdev_get_gpio_in(env->pic_state, i);
}
sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
/* make sure juart isn't the first chardev */
env->juart_state = lm32_juart_init();
reset_info->bootstrap_pc = flash_base;
if (kernel_filename) {
uint64_t entry;
int kernel_size;
kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
1, ELF_MACHINE, 0);
reset_info->bootstrap_pc = entry;
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, ram_base,
ram_size);
reset_info->bootstrap_pc = ram_base;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
qemu_register_reset(main_cpu_reset, reset_info);
}
static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
DriveInfo *dinfo;
ram_addr_t phys_ram;
ram_addr_t phys_flash;
qemu_irq *cpu_irq, irq[32];
HWSetup *hw;
ResetInfo *reset_info;
int i;
/* memory map */
target_phys_addr_t flash_base = 0x04000000;
size_t flash_sector_size = 256 * 1024;
size_t flash_size = 32 * 1024 * 1024;
target_phys_addr_t ram_base = 0x08000000;
size_t ram_size = 64 * 1024 * 1024;
target_phys_addr_t uart0_base = 0x80000000;
target_phys_addr_t timer0_base = 0x80002000;
target_phys_addr_t timer1_base = 0x80010000;
target_phys_addr_t timer2_base = 0x80012000;
int uart0_irq = 0;
int timer0_irq = 1;
int timer1_irq = 20;
int timer2_irq = 21;
target_phys_addr_t hwsetup_base = 0x0bffe000;
target_phys_addr_t cmdline_base = 0x0bfff000;
target_phys_addr_t initrd_base = 0x08400000;
size_t initrd_max = 0x01000000;
reset_info = qemu_mallocz(sizeof(ResetInfo));
if (cpu_model == NULL) {
cpu_model = "lm32-full";
}
env = cpu_init(cpu_model);
reset_info->env = env;
reset_info->flash_base = flash_base;
phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, phys_flash,
dinfo ? dinfo->bdrv : NULL, flash_sector_size,
flash_size / flash_sector_size, 1, 2,
0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
env->pic_state = lm32_pic_init(*cpu_irq);
for (i = 0; i < 32; i++) {
irq[i] = qdev_get_gpio_in(env->pic_state, i);
}
sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
/* make sure juart isn't the first chardev */
env->juart_state = lm32_juart_init();
reset_info->bootstrap_pc = flash_base;
if (kernel_filename) {
uint64_t entry;
int kernel_size;
kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
1, ELF_MACHINE, 0);
reset_info->bootstrap_pc = entry;
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, ram_base,
ram_size);
reset_info->bootstrap_pc = ram_base;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
/* generate a rom with the hardware description */
hw = hwsetup_init();
hwsetup_add_cpu(hw, "LM32", 75000000);
hwsetup_add_flash(hw, "flash", flash_base, flash_size);
hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
hwsetup_add_trailer(hw);
hwsetup_create_rom(hw, hwsetup_base);
hwsetup_free(hw);
reset_info->hwsetup_base = hwsetup_base;
if (kernel_cmdline && strlen(kernel_cmdline)) {
pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
kernel_cmdline);
reset_info->cmdline_base = cmdline_base;
}
if (initrd_filename) {
size_t initrd_size;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
initrd_max);
reset_info->initrd_base = initrd_base;
reset_info->initrd_size = initrd_size;
}
qemu_register_reset(main_cpu_reset, reset_info);
}
static QEMUMachine lm32_evr_machine = {
.name = "lm32-evr",
.desc = "LatticeMico32 EVR32 eval system",
.init = lm32_evr_init,
.is_default = 1
};
static QEMUMachine lm32_uclinux_machine = {
.name = "lm32-uclinux",
.desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
.init = lm32_uclinux_init,
.is_default = 0
};
static void lm32_machine_init(void)
{
qemu_register_machine(&lm32_uclinux_machine);
qemu_register_machine(&lm32_evr_machine);
}
machine_init(lm32_machine_init);