cutils: Rewrite x86 buffer zero checking

Handle alignment of buffers, so that the vector paths
can be used more often.

Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <1473800239-13841-1-git-send-email-rth@twiddle.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Richard Henderson 2016-09-13 13:57:19 -07:00 committed by Paolo Bonzini
parent 670e56d3ed
commit d9911d14e0
1 changed files with 156 additions and 75 deletions

View File

@ -26,38 +26,6 @@
#include "qemu/cutils.h"
#include "qemu/bswap.h"
/* vector definitions */
extern void link_error(void);
#define ACCEL_BUFFER_ZERO(NAME, SIZE, VECTYPE, NONZERO) \
static bool NAME(const void *buf, size_t len) \
{ \
const void *end = buf + len; \
do { \
const VECTYPE *p = buf; \
VECTYPE t; \
__builtin_prefetch(buf + SIZE); \
barrier(); \
if (SIZE == sizeof(VECTYPE) * 4) { \
t = (p[0] | p[1]) | (p[2] | p[3]); \
} else if (SIZE == sizeof(VECTYPE) * 8) { \
t = p[0] | p[1]; \
t |= p[2] | p[3]; \
t |= p[4] | p[5]; \
t |= p[6] | p[7]; \
} else { \
link_error(); \
} \
if (unlikely(NONZERO(t))) { \
return false; \
} \
buf += SIZE; \
} while (buf < end); \
return true; \
}
static bool
buffer_zero_int(const void *buf, size_t len)
{
@ -96,47 +64,174 @@ buffer_zero_int(const void *buf, size_t len)
}
}
#if defined(CONFIG_AVX2_OPT) || (defined(CONFIG_CPUID_H) && defined(__SSE2__))
#include <cpuid.h>
#if defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
/* Do not use push_options pragmas unnecessarily, because clang
* does not support them.
*/
#ifndef __SSE2__
#ifdef CONFIG_AVX2_OPT
#pragma GCC push_options
#pragma GCC target("sse2")
#endif
#include <emmintrin.h>
#define SSE2_NONZERO(X) \
(_mm_movemask_epi8(_mm_cmpeq_epi8((X), _mm_setzero_si128())) != 0xFFFF)
ACCEL_BUFFER_ZERO(buffer_zero_sse2, 64, __m128i, SSE2_NONZERO)
#ifndef __SSE2__
/* Note that each of these vectorized functions require len >= 64. */
static bool
buffer_zero_sse2(const void *buf, size_t len)
{
__m128i t = _mm_loadu_si128(buf);
__m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
__m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
__m128i zero = _mm_setzero_si128();
/* Loop over 16-byte aligned blocks of 64. */
while (likely(p <= e)) {
__builtin_prefetch(p);
t = _mm_cmpeq_epi8(t, zero);
if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
return false;
}
t = p[-4] | p[-3] | p[-2] | p[-1];
p += 4;
}
/* Finish the aligned tail. */
t |= e[-3];
t |= e[-2];
t |= e[-1];
/* Finish the unaligned tail. */
t |= _mm_loadu_si128(buf + len - 16);
return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
}
#ifdef CONFIG_AVX2_OPT
#pragma GCC pop_options
#endif
#ifdef CONFIG_AVX2_OPT
/* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8,
* the includes have to be within the corresponding push_options region, and
* therefore the regions themselves have to be ordered with increasing ISA.
*/
#pragma GCC push_options
#pragma GCC target("sse4")
#include <smmintrin.h>
#define SSE4_NONZERO(X) !_mm_testz_si128((X), (X))
ACCEL_BUFFER_ZERO(buffer_zero_sse4, 64, __m128i, SSE4_NONZERO)
#pragma GCC pop_options
static bool
buffer_zero_sse4(const void *buf, size_t len)
{
__m128i t = _mm_loadu_si128(buf);
__m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
__m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
/* Loop over 16-byte aligned blocks of 64. */
while (likely(p <= e)) {
__builtin_prefetch(p);
if (unlikely(!_mm_testz_si128(t, t))) {
return false;
}
t = p[-4] | p[-3] | p[-2] | p[-1];
p += 4;
}
/* Finish the aligned tail. */
t |= e[-3];
t |= e[-2];
t |= e[-1];
/* Finish the unaligned tail. */
t |= _mm_loadu_si128(buf + len - 16);
return _mm_testz_si128(t, t);
}
#pragma GCC pop_options
#pragma GCC push_options
#pragma GCC target("avx2")
#include <immintrin.h>
#define AVX2_NONZERO(X) !_mm256_testz_si256((X), (X))
ACCEL_BUFFER_ZERO(buffer_zero_avx2, 128, __m256i, AVX2_NONZERO)
static bool
buffer_zero_avx2(const void *buf, size_t len)
{
/* Begin with an unaligned head of 32 bytes. */
__m256i t = _mm256_loadu_si256(buf);
__m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
__m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
if (likely(p <= e)) {
/* Loop over 32-byte aligned blocks of 128. */
do {
__builtin_prefetch(p);
if (unlikely(!_mm256_testz_si256(t, t))) {
return false;
}
t = p[-4] | p[-3] | p[-2] | p[-1];
p += 4;
} while (p <= e);
} else {
t |= _mm256_loadu_si256(buf + 32);
if (len <= 128) {
goto last2;
}
}
/* Finish the last block of 128 unaligned. */
t |= _mm256_loadu_si256(buf + len - 4 * 32);
t |= _mm256_loadu_si256(buf + len - 3 * 32);
last2:
t |= _mm256_loadu_si256(buf + len - 2 * 32);
t |= _mm256_loadu_si256(buf + len - 1 * 32);
return _mm256_testz_si256(t, t);
}
#pragma GCC pop_options
#endif /* CONFIG_AVX2_OPT */
/* Note that for test_buffer_is_zero_next_accel, the most preferred
* ISA must have the least significant bit.
*/
#define CACHE_AVX2 1
#define CACHE_SSE4 2
#define CACHE_SSE2 4
/* Make sure that these variables are appropriately initialized when
* SSE2 is enabled on the compiler command-line, but the compiler is
* too old to support <cpuid.h>.
*/
#ifdef CONFIG_AVX2_OPT
# define INIT_CACHE 0
# define INIT_ACCEL buffer_zero_int
#else
# ifndef __SSE2__
# error "ISA selection confusion"
# endif
# define INIT_CACHE CACHE_SSE2
# define INIT_ACCEL buffer_zero_sse2
#endif
#define CACHE_AVX2 2
#define CACHE_AVX1 4
#define CACHE_SSE4 8
#define CACHE_SSE2 16
static unsigned cpuid_cache = INIT_CACHE;
static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
static unsigned cpuid_cache;
static void init_accel(unsigned cache)
{
bool (*fn)(const void *, size_t) = buffer_zero_int;
if (cache & CACHE_SSE2) {
fn = buffer_zero_sse2;
}
#ifdef CONFIG_AVX2_OPT
if (cache & CACHE_SSE4) {
fn = buffer_zero_sse4;
}
if (cache & CACHE_AVX2) {
fn = buffer_zero_avx2;
}
#endif
buffer_accel = fn;
}
#ifdef CONFIG_AVX2_OPT
#include <cpuid.h>
static void __attribute__((constructor)) init_cpuid_cache(void)
{
int max = __get_cpuid_max(0, NULL);
@ -154,24 +249,21 @@ static void __attribute__((constructor)) init_cpuid_cache(void)
}
/* We must check that AVX is not just available, but usable. */
if ((c & bit_OSXSAVE) && (c & bit_AVX)) {
__asm("xgetbv" : "=a"(a), "=d"(d) : "c"(0));
if ((a & 6) == 6) {
cache |= CACHE_AVX1;
if (max >= 7) {
__cpuid_count(7, 0, a, b, c, d);
if (b & bit_AVX2) {
cache |= CACHE_AVX2;
}
}
if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
int bv;
__asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0));
__cpuid_count(7, 0, a, b, c, d);
if ((bv & 6) == 6 && (b & bit_AVX2)) {
cache |= CACHE_AVX2;
}
}
#endif
}
cpuid_cache = cache;
init_accel(cache);
}
#endif /* CONFIG_AVX2_OPT */
#define HAVE_NEXT_ACCEL
bool test_buffer_is_zero_next_accel(void)
{
/* If no bits set, we just tested buffer_zero_int, and there
@ -181,31 +273,20 @@ bool test_buffer_is_zero_next_accel(void)
}
/* Disable the accelerator we used before and select a new one. */
cpuid_cache &= cpuid_cache - 1;
init_accel(cpuid_cache);
return true;
}
static bool select_accel_fn(const void *buf, size_t len)
{
uintptr_t ibuf = (uintptr_t)buf;
#ifdef CONFIG_AVX2_OPT
if (len % 128 == 0 && ibuf % 32 == 0 && (cpuid_cache & CACHE_AVX2)) {
return buffer_zero_avx2(buf, len);
}
if (len % 64 == 0 && ibuf % 16 == 0 && (cpuid_cache & CACHE_SSE4)) {
return buffer_zero_sse4(buf, len);
}
#endif
if (len % 64 == 0 && ibuf % 16 == 0 && (cpuid_cache & CACHE_SSE2)) {
return buffer_zero_sse2(buf, len);
if (likely(len >= 64)) {
return buffer_accel(buf, len);
}
return buffer_zero_int(buf, len);
}
#else
#define select_accel_fn buffer_zero_int
#endif
#ifndef HAVE_NEXT_ACCEL
bool test_buffer_is_zero_next_accel(void)
{
return false;