fpu/softfloat: re-factor round_to_int
We can now add float16_round_to_int and use the common round_decomposed and canonicalize functions to have a single implementation for float16/32/64 round_to_int functions. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
d446830a3a
commit
dbe4d53a59
319
fpu/softfloat.c
319
fpu/softfloat.c
@ -560,6 +560,25 @@ static bool is_qnan(FloatClass c)
|
||||
return c == float_class_qnan;
|
||||
}
|
||||
|
||||
static FloatParts return_nan(FloatParts a, float_status *s)
|
||||
{
|
||||
switch (a.cls) {
|
||||
case float_class_snan:
|
||||
s->float_exception_flags |= float_flag_invalid;
|
||||
a.cls = float_class_msnan;
|
||||
/* fall through */
|
||||
case float_class_qnan:
|
||||
if (s->default_nan_mode) {
|
||||
a.cls = float_class_dnan;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
|
||||
{
|
||||
if (is_snan(a.cls) || is_snan(b.cls)) {
|
||||
@ -1175,6 +1194,132 @@ float64 float64_div(float64 a, float64 b, float_status *status)
|
||||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Rounds the floating-point value `a' to an integer, and returns the
|
||||
* result as a floating-point value. The operation is performed
|
||||
* according to the IEC/IEEE Standard for Binary Floating-Point
|
||||
* Arithmetic.
|
||||
*/
|
||||
|
||||
static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s)
|
||||
{
|
||||
if (is_nan(a.cls)) {
|
||||
return return_nan(a, s);
|
||||
}
|
||||
|
||||
switch (a.cls) {
|
||||
case float_class_zero:
|
||||
case float_class_inf:
|
||||
case float_class_qnan:
|
||||
/* already "integral" */
|
||||
break;
|
||||
case float_class_normal:
|
||||
if (a.exp >= DECOMPOSED_BINARY_POINT) {
|
||||
/* already integral */
|
||||
break;
|
||||
}
|
||||
if (a.exp < 0) {
|
||||
bool one;
|
||||
/* all fractional */
|
||||
s->float_exception_flags |= float_flag_inexact;
|
||||
switch (rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
one = false;
|
||||
break;
|
||||
case float_round_up:
|
||||
one = !a.sign;
|
||||
break;
|
||||
case float_round_down:
|
||||
one = a.sign;
|
||||
break;
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
if (one) {
|
||||
a.frac = DECOMPOSED_IMPLICIT_BIT;
|
||||
a.exp = 0;
|
||||
} else {
|
||||
a.cls = float_class_zero;
|
||||
}
|
||||
} else {
|
||||
uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
|
||||
uint64_t frac_lsbm1 = frac_lsb >> 1;
|
||||
uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
|
||||
uint64_t rnd_mask = rnd_even_mask >> 1;
|
||||
uint64_t inc;
|
||||
|
||||
switch (rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
inc = frac_lsbm1;
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
inc = 0;
|
||||
break;
|
||||
case float_round_up:
|
||||
inc = a.sign ? 0 : rnd_mask;
|
||||
break;
|
||||
case float_round_down:
|
||||
inc = a.sign ? rnd_mask : 0;
|
||||
break;
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
if (a.frac & rnd_mask) {
|
||||
s->float_exception_flags |= float_flag_inexact;
|
||||
a.frac += inc;
|
||||
a.frac &= ~rnd_mask;
|
||||
if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
|
||||
a.frac >>= 1;
|
||||
a.exp++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
float16 float16_round_to_int(float16 a, float_status *s)
|
||||
{
|
||||
FloatParts pa = float16_unpack_canonical(a, s);
|
||||
FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
|
||||
return float16_round_pack_canonical(pr, s);
|
||||
}
|
||||
|
||||
float32 float32_round_to_int(float32 a, float_status *s)
|
||||
{
|
||||
FloatParts pa = float32_unpack_canonical(a, s);
|
||||
FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
|
||||
return float32_round_pack_canonical(pr, s);
|
||||
}
|
||||
|
||||
float64 float64_round_to_int(float64 a, float_status *s)
|
||||
{
|
||||
FloatParts pa = float64_unpack_canonical(a, s);
|
||||
FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
|
||||
return float64_round_pack_canonical(pr, s);
|
||||
}
|
||||
|
||||
float64 float64_trunc_to_int(float64 a, float_status *s)
|
||||
{
|
||||
FloatParts pa = float64_unpack_canonical(a, s);
|
||||
FloatParts pr = round_to_int(pa, float_round_to_zero, s);
|
||||
return float64_round_pack_canonical(pr, s);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
||||
@ -2905,87 +3050,6 @@ float128 float32_to_float128(float32 a, float_status *status)
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Rounds the single-precision floating-point value `a' to an integer, and
|
||||
| returns the result as a single-precision floating-point value. The
|
||||
| operation is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 float32_round_to_int(float32 a, float_status *status)
|
||||
{
|
||||
flag aSign;
|
||||
int aExp;
|
||||
uint32_t lastBitMask, roundBitsMask;
|
||||
uint32_t z;
|
||||
a = float32_squash_input_denormal(a, status);
|
||||
|
||||
aExp = extractFloat32Exp( a );
|
||||
if ( 0x96 <= aExp ) {
|
||||
if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
|
||||
return propagateFloat32NaN(a, a, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( aExp <= 0x7E ) {
|
||||
if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
|
||||
status->float_exception_flags |= float_flag_inexact;
|
||||
aSign = extractFloat32Sign( a );
|
||||
switch (status->float_rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
|
||||
return packFloat32( aSign, 0x7F, 0 );
|
||||
}
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
if (aExp == 0x7E) {
|
||||
return packFloat32(aSign, 0x7F, 0);
|
||||
}
|
||||
break;
|
||||
case float_round_down:
|
||||
return make_float32(aSign ? 0xBF800000 : 0);
|
||||
case float_round_up:
|
||||
return make_float32(aSign ? 0x80000000 : 0x3F800000);
|
||||
}
|
||||
return packFloat32( aSign, 0, 0 );
|
||||
}
|
||||
lastBitMask = 1;
|
||||
lastBitMask <<= 0x96 - aExp;
|
||||
roundBitsMask = lastBitMask - 1;
|
||||
z = float32_val(a);
|
||||
switch (status->float_rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
z += lastBitMask>>1;
|
||||
if ((z & roundBitsMask) == 0) {
|
||||
z &= ~lastBitMask;
|
||||
}
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
z += lastBitMask >> 1;
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
break;
|
||||
case float_round_up:
|
||||
if (!extractFloat32Sign(make_float32(z))) {
|
||||
z += roundBitsMask;
|
||||
}
|
||||
break;
|
||||
case float_round_down:
|
||||
if (extractFloat32Sign(make_float32(z))) {
|
||||
z += roundBitsMask;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
z &= ~ roundBitsMask;
|
||||
if (z != float32_val(a)) {
|
||||
status->float_exception_flags |= float_flag_inexact;
|
||||
}
|
||||
return make_float32(z);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the remainder of the single-precision floating-point value `a'
|
||||
| with respect to the corresponding value `b'. The operation is performed
|
||||
@ -4129,99 +4193,6 @@ float128 float64_to_float128(float64 a, float_status *status)
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Rounds the double-precision floating-point value `a' to an integer, and
|
||||
| returns the result as a double-precision floating-point value. The
|
||||
| operation is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 float64_round_to_int(float64 a, float_status *status)
|
||||
{
|
||||
flag aSign;
|
||||
int aExp;
|
||||
uint64_t lastBitMask, roundBitsMask;
|
||||
uint64_t z;
|
||||
a = float64_squash_input_denormal(a, status);
|
||||
|
||||
aExp = extractFloat64Exp( a );
|
||||
if ( 0x433 <= aExp ) {
|
||||
if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
|
||||
return propagateFloat64NaN(a, a, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( aExp < 0x3FF ) {
|
||||
if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
|
||||
status->float_exception_flags |= float_flag_inexact;
|
||||
aSign = extractFloat64Sign( a );
|
||||
switch (status->float_rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
|
||||
return packFloat64( aSign, 0x3FF, 0 );
|
||||
}
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
if (aExp == 0x3FE) {
|
||||
return packFloat64(aSign, 0x3ff, 0);
|
||||
}
|
||||
break;
|
||||
case float_round_down:
|
||||
return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
|
||||
case float_round_up:
|
||||
return make_float64(
|
||||
aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
|
||||
}
|
||||
return packFloat64( aSign, 0, 0 );
|
||||
}
|
||||
lastBitMask = 1;
|
||||
lastBitMask <<= 0x433 - aExp;
|
||||
roundBitsMask = lastBitMask - 1;
|
||||
z = float64_val(a);
|
||||
switch (status->float_rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
z += lastBitMask >> 1;
|
||||
if ((z & roundBitsMask) == 0) {
|
||||
z &= ~lastBitMask;
|
||||
}
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
z += lastBitMask >> 1;
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
break;
|
||||
case float_round_up:
|
||||
if (!extractFloat64Sign(make_float64(z))) {
|
||||
z += roundBitsMask;
|
||||
}
|
||||
break;
|
||||
case float_round_down:
|
||||
if (extractFloat64Sign(make_float64(z))) {
|
||||
z += roundBitsMask;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
z &= ~ roundBitsMask;
|
||||
if (z != float64_val(a)) {
|
||||
status->float_exception_flags |= float_flag_inexact;
|
||||
}
|
||||
return make_float64(z);
|
||||
|
||||
}
|
||||
|
||||
float64 float64_trunc_to_int(float64 a, float_status *status)
|
||||
{
|
||||
int oldmode;
|
||||
float64 res;
|
||||
oldmode = status->float_rounding_mode;
|
||||
status->float_rounding_mode = float_round_to_zero;
|
||||
res = float64_round_to_int(a, status);
|
||||
status->float_rounding_mode = oldmode;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the remainder of the double-precision floating-point value `a'
|
||||
|
@ -237,6 +237,7 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
|
||||
| Software half-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float16 float16_round_to_int(float16, float_status *status);
|
||||
float16 float16_add(float16, float16, float_status *status);
|
||||
float16 float16_sub(float16, float16, float_status *status);
|
||||
float16 float16_mul(float16, float16, float_status *status);
|
||||
|
Loading…
Reference in New Issue
Block a user