added flags computation optimization

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@34 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2003-03-19 00:00:28 +00:00
parent ca735206e0
commit dc99065b5f
13 changed files with 3767 additions and 88 deletions

View File

@ -33,7 +33,7 @@ LIBS+=-ldl -lm
# profiling code
ifdef TARGET_GPROF
LDFLAGS+=-p
CFLAGS+=-p
main.o: CFLAGS+=-p
endif
OBJS= elfload.o main.o thunk.o syscall.o

8
TODO
View File

@ -1,9 +1,7 @@
- optimize translated cache chaining (DLL PLT like system)
- improved 16 bit support
- optimize inverse flags propagation (easy by generating intermediate
micro operation array).
- optimize translated cache chaining (DLL PLT-like system)
- 64 bit syscalls
- signals
- threads
- make it self runnable (use same trick as ld.so : include its own relocator and libc)
- improved 16 bit support
- fix FPU exceptions (in particular: gen_op_fpush not before mem load)
- tests

237
dis-asm.h Normal file
View File

@ -0,0 +1,237 @@
/* Interface between the opcode library and its callers.
Written by Cygnus Support, 1993.
The opcode library (libopcodes.a) provides instruction decoders for
a large variety of instruction sets, callable with an identical
interface, for making instruction-processing programs more independent
of the instruction set being processed. */
#ifndef DIS_ASM_H
#define DIS_ASM_H
#include <stdio.h>
#include "bfd.h"
typedef int (*fprintf_ftype) PARAMS((FILE*, const char*, ...));
enum dis_insn_type {
dis_noninsn, /* Not a valid instruction */
dis_nonbranch, /* Not a branch instruction */
dis_branch, /* Unconditional branch */
dis_condbranch, /* Conditional branch */
dis_jsr, /* Jump to subroutine */
dis_condjsr, /* Conditional jump to subroutine */
dis_dref, /* Data reference instruction */
dis_dref2 /* Two data references in instruction */
};
/* This struct is passed into the instruction decoding routine,
and is passed back out into each callback. The various fields are used
for conveying information from your main routine into your callbacks,
for passing information into the instruction decoders (such as the
addresses of the callback functions), or for passing information
back from the instruction decoders to their callers.
It must be initialized before it is first passed; this can be done
by hand, or using one of the initialization macros below. */
typedef struct disassemble_info {
fprintf_ftype fprintf_func;
FILE *stream;
PTR application_data;
/* Target description. We could replace this with a pointer to the bfd,
but that would require one. There currently isn't any such requirement
so to avoid introducing one we record these explicitly. */
/* The bfd_flavour. This can be bfd_target_unknown_flavour. */
enum bfd_flavour flavour;
/* The bfd_arch value. */
enum bfd_architecture arch;
/* The bfd_mach value. */
unsigned long mach;
/* Endianness (for bi-endian cpus). Mono-endian cpus can ignore this. */
enum bfd_endian endian;
/* An array of pointers to symbols either at the location being disassembled
or at the start of the function being disassembled. The array is sorted
so that the first symbol is intended to be the one used. The others are
present for any misc. purposes. This is not set reliably, but if it is
not NULL, it is correct. */
asymbol **symbols;
/* Number of symbols in array. */
int num_symbols;
/* For use by the disassembler.
The top 16 bits are reserved for public use (and are documented here).
The bottom 16 bits are for the internal use of the disassembler. */
unsigned long flags;
#define INSN_HAS_RELOC 0x80000000
PTR private_data;
/* Function used to get bytes to disassemble. MEMADDR is the
address of the stuff to be disassembled, MYADDR is the address to
put the bytes in, and LENGTH is the number of bytes to read.
INFO is a pointer to this struct.
Returns an errno value or 0 for success. */
int (*read_memory_func)
PARAMS ((bfd_vma memaddr, bfd_byte *myaddr, int length,
struct disassemble_info *info));
/* Function which should be called if we get an error that we can't
recover from. STATUS is the errno value from read_memory_func and
MEMADDR is the address that we were trying to read. INFO is a
pointer to this struct. */
void (*memory_error_func)
PARAMS ((int status, bfd_vma memaddr, struct disassemble_info *info));
/* Function called to print ADDR. */
void (*print_address_func)
PARAMS ((bfd_vma addr, struct disassemble_info *info));
/* Function called to determine if there is a symbol at the given ADDR.
If there is, the function returns 1, otherwise it returns 0.
This is used by ports which support an overlay manager where
the overlay number is held in the top part of an address. In
some circumstances we want to include the overlay number in the
address, (normally because there is a symbol associated with
that address), but sometimes we want to mask out the overlay bits. */
int (* symbol_at_address_func)
PARAMS ((bfd_vma addr, struct disassemble_info * info));
/* These are for buffer_read_memory. */
bfd_byte *buffer;
bfd_vma buffer_vma;
int buffer_length;
/* This variable may be set by the instruction decoder. It suggests
the number of bytes objdump should display on a single line. If
the instruction decoder sets this, it should always set it to
the same value in order to get reasonable looking output. */
int bytes_per_line;
/* the next two variables control the way objdump displays the raw data */
/* For example, if bytes_per_line is 8 and bytes_per_chunk is 4, the */
/* output will look like this:
00: 00000000 00000000
with the chunks displayed according to "display_endian". */
int bytes_per_chunk;
enum bfd_endian display_endian;
/* Results from instruction decoders. Not all decoders yet support
this information. This info is set each time an instruction is
decoded, and is only valid for the last such instruction.
To determine whether this decoder supports this information, set
insn_info_valid to 0, decode an instruction, then check it. */
char insn_info_valid; /* Branch info has been set. */
char branch_delay_insns; /* How many sequential insn's will run before
a branch takes effect. (0 = normal) */
char data_size; /* Size of data reference in insn, in bytes */
enum dis_insn_type insn_type; /* Type of instruction */
bfd_vma target; /* Target address of branch or dref, if known;
zero if unknown. */
bfd_vma target2; /* Second target address for dref2 */
} disassemble_info;
/* Standard disassemblers. Disassemble one instruction at the given
target address. Return number of bytes processed. */
typedef int (*disassembler_ftype)
PARAMS((bfd_vma, disassemble_info *));
extern int print_insn_big_mips PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_little_mips PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_i386 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_m68k PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_z8001 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_z8002 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_h8300 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_h8300h PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_h8300s PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_h8500 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_alpha PARAMS ((bfd_vma, disassemble_info*));
extern disassembler_ftype arc_get_disassembler PARAMS ((int, int));
extern int print_insn_big_arm PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_little_arm PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_sparc PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_big_a29k PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_little_a29k PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_i960 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_sh PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_shl PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_hppa PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_m32r PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_m88k PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_mn10200 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_mn10300 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_ns32k PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_big_powerpc PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_little_powerpc PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_rs6000 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_w65 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_d10v PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_v850 PARAMS ((bfd_vma, disassemble_info*));
extern int print_insn_tic30 PARAMS ((bfd_vma, disassemble_info*));
/* Fetch the disassembler for a given BFD, if that support is available. */
extern disassembler_ftype disassembler PARAMS ((bfd *));
/* This block of definitions is for particular callers who read instructions
into a buffer before calling the instruction decoder. */
/* Here is a function which callers may wish to use for read_memory_func.
It gets bytes from a buffer. */
extern int buffer_read_memory
PARAMS ((bfd_vma, bfd_byte *, int, struct disassemble_info *));
/* This function goes with buffer_read_memory.
It prints a message using info->fprintf_func and info->stream. */
extern void perror_memory PARAMS ((int, bfd_vma, struct disassemble_info *));
/* Just print the address in hex. This is included for completeness even
though both GDB and objdump provide their own (to print symbolic
addresses). */
extern void generic_print_address
PARAMS ((bfd_vma, struct disassemble_info *));
/* Always true. */
extern int generic_symbol_at_address
PARAMS ((bfd_vma, struct disassemble_info *));
/* Macro to initialize a disassemble_info struct. This should be called
by all applications creating such a struct. */
#define INIT_DISASSEMBLE_INFO(INFO, STREAM, FPRINTF_FUNC) \
(INFO).flavour = bfd_target_unknown_flavour, \
(INFO).arch = bfd_arch_unknown, \
(INFO).mach = 0, \
(INFO).endian = BFD_ENDIAN_UNKNOWN, \
INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC)
/* Call this macro to initialize only the internal variables for the
disassembler. Architecture dependent things such as byte order, or machine
variant are not touched by this macro. This makes things much easier for
GDB which must initialize these things seperatly. */
#define INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) \
(INFO).fprintf_func = (FPRINTF_FUNC), \
(INFO).stream = (STREAM), \
(INFO).symbols = NULL, \
(INFO).num_symbols = 0, \
(INFO).buffer = NULL, \
(INFO).buffer_vma = 0, \
(INFO).buffer_length = 0, \
(INFO).read_memory_func = buffer_read_memory, \
(INFO).memory_error_func = perror_memory, \
(INFO).print_address_func = generic_print_address, \
(INFO).symbol_at_address_func = generic_symbol_at_address, \
(INFO).flags = 0, \
(INFO).bytes_per_line = 0, \
(INFO).bytes_per_chunk = 0, \
(INFO).display_endian = BFD_ENDIAN_UNKNOWN, \
(INFO).insn_info_valid = 0
#endif /* ! defined (DIS_ASM_H) */

79
dis-buf.c Normal file
View File

@ -0,0 +1,79 @@
/* Disassemble from a buffer, for GNU.
Copyright (C) 1993, 1994 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "dis-asm.h"
#include <errno.h>
/* Get LENGTH bytes from info's buffer, at target address memaddr.
Transfer them to myaddr. */
int
buffer_read_memory (memaddr, myaddr, length, info)
bfd_vma memaddr;
bfd_byte *myaddr;
int length;
struct disassemble_info *info;
{
if (memaddr < info->buffer_vma
|| memaddr + length > info->buffer_vma + info->buffer_length)
/* Out of bounds. Use EIO because GDB uses it. */
return EIO;
memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length);
return 0;
}
/* Print an error message. We can assume that this is in response to
an error return from buffer_read_memory. */
void
perror_memory (status, memaddr, info)
int status;
bfd_vma memaddr;
struct disassemble_info *info;
{
if (status != EIO)
/* Can't happen. */
(*info->fprintf_func) (info->stream, "Unknown error %d\n", status);
else
/* Actually, address between memaddr and memaddr + len was
out of bounds. */
(*info->fprintf_func) (info->stream,
"Address 0x%x is out of bounds.\n", memaddr);
}
/* This could be in a separate file, to save miniscule amounts of space
in statically linked executables. */
/* Just print the address is hex. This is included for completeness even
though both GDB and objdump provide their own (to print symbolic
addresses). */
void
generic_print_address (addr, info)
bfd_vma addr;
struct disassemble_info *info;
{
(*info->fprintf_func) (info->stream, "0x%x", addr);
}
/* Just return the given address. */
int
generic_symbol_at_address (addr, info)
bfd_vma addr;
struct disassemble_info * info;
{
return 1;
}

210
dyngen.c
View File

@ -28,7 +28,7 @@
#include "thunk.h"
/* all dynamically generated functions begin with this code */
#define OP_PREFIX "op"
#define OP_PREFIX "op_"
int elf_must_swap(Elf32_Ehdr *h)
{
@ -201,7 +201,7 @@ int strstart(const char *str, const char *val, const char **ptr)
/* generate op code */
void gen_code(const char *name, unsigned long offset, unsigned long size,
FILE *outfile, uint8_t *text, void *relocs, int nb_relocs, int reloc_sh_type,
Elf32_Sym *symtab, char *strtab)
Elf32_Sym *symtab, char *strtab, int gen_switch)
{
int copy_size = 0;
uint8_t *p_start, *p_end;
@ -258,8 +258,6 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
} else {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
@ -274,8 +272,6 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
} else {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
@ -289,31 +285,57 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
error("inconsistent argument numbering in %s", name);
}
/* output C code */
fprintf(outfile, "extern void %s();\n", name);
fprintf(outfile, "static inline void gen_%s(", name);
if (nb_args == 0) {
fprintf(outfile, "void");
} else {
for(i = 0; i < nb_args; i++) {
if (i != 0)
fprintf(outfile, ", ");
fprintf(outfile, "long param%d", i + 1);
}
}
fprintf(outfile, ")\n");
fprintf(outfile, "{\n");
fprintf(outfile, " memcpy(gen_code_ptr, &%s, %d);\n", name, copy_size);
if (gen_switch) {
/* patch relocations */
switch(e_machine) {
case EM_386:
{
/* output C code */
fprintf(outfile, "case INDEX_%s: {\n", name);
if (nb_args > 0) {
fprintf(outfile, " long ");
for(i = 0; i < nb_args; i++) {
if (i != 0)
fprintf(outfile, ", ");
fprintf(outfile, "param%d", i + 1);
}
fprintf(outfile, ";\n");
}
fprintf(outfile, " extern void %s();\n", name);
if (reloc_sh_type == SHT_REL) {
Elf32_Rel *rel;
char name[256];
int type;
long addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (!strstart(sym_name, "__op_param", &p)) {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
} else {
Elf32_Rela *rel;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (!strstart(sym_name, "__op_param", &p)) {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
}
fprintf(outfile, " memcpy(gen_code_ptr, &%s, %d);\n", name, copy_size);
for(i = 0; i < nb_args; i++) {
fprintf(outfile, " param%d = *opparam_ptr++;\n", i + 1);
}
/* patch relocations */
switch(e_machine) {
case EM_386:
{
Elf32_Rel *rel;
char name[256];
int type;
long addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
@ -336,20 +358,38 @@ void gen_code(const char *name, unsigned long offset, unsigned long size,
error("unsupported i386 relocation (%d)", type);
}
}
}
}
break;
default:
error("unsupported CPU for relocations (%d)", e_machine);
}
fprintf(outfile, " gen_code_ptr += %d;\n", copy_size);
fprintf(outfile, "}\n");
fprintf(outfile, "break;\n\n");
} else {
fprintf(outfile, "static inline void gen_%s(", name);
if (nb_args == 0) {
fprintf(outfile, "void");
} else {
for(i = 0; i < nb_args; i++) {
if (i != 0)
fprintf(outfile, ", ");
fprintf(outfile, "long param%d", i + 1);
}
}
break;
default:
error("unsupported CPU for relocations (%d)", e_machine);
fprintf(outfile, ")\n");
fprintf(outfile, "{\n");
for(i = 0; i < nb_args; i++) {
fprintf(outfile, " *gen_opparam_ptr++ = param%d;\n", i + 1);
}
fprintf(outfile, " *gen_opc_ptr++ = INDEX_%s;\n", name);
fprintf(outfile, "}\n\n");
}
fprintf(outfile, " gen_code_ptr += %d;\n", copy_size);
fprintf(outfile, "}\n\n");
}
/* load an elf object file */
int load_elf(const char *filename, FILE *outfile)
int load_elf(const char *filename, FILE *outfile, int do_print_enum)
{
int fd;
Elf32_Ehdr ehdr;
@ -476,23 +516,77 @@ int load_elf(const char *filename, FILE *outfile)
error("unsupported CPU (e_machine=%d)", e_machine);
}
fprintf(outfile, "#include \"gen-%s.h\"\n\n", cpu_name);
if (do_print_enum) {
fprintf(outfile, "DEF(end)\n");
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name, *p;
name = strtab + sym->st_name;
if (strstart(name, OP_PREFIX, &p)) {
fprintf(outfile, "DEF(%s)\n", p);
}
}
} else {
/* generate big code generation switch */
fprintf(outfile,
"int dyngen_code(uint8_t *gen_code_buf,\n"
" const uint16_t *opc_buf, const uint32_t *opparam_buf)\n"
"{\n"
" uint8_t *gen_code_ptr;\n"
" const uint16_t *opc_ptr;\n"
" const uint32_t *opparam_ptr;\n"
" gen_code_ptr = gen_code_buf;\n"
" opc_ptr = opc_buf;\n"
" opparam_ptr = opparam_buf;\n"
" for(;;) {\n"
" switch(*opc_ptr++) {\n"
);
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = strtab + sym->st_name;
if (strstart(name, "op_", NULL) ||
strstart(name, "op1_", NULL) ||
strstart(name, "op2_", NULL) ||
strstart(name, "op3_", NULL)) {
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = strtab + sym->st_name;
if (strstart(name, OP_PREFIX, NULL)) {
#if 0
printf("%4d: %s pos=0x%08x len=%d\n",
i, name, sym->st_value, sym->st_size);
printf("%4d: %s pos=0x%08x len=%d\n",
i, name, sym->st_value, sym->st_size);
#endif
if (sym->st_shndx != (text_sec - shdr))
error("invalid section for opcode (0x%x)", sym->st_shndx);
gen_code(name, sym->st_value, sym->st_size, outfile,
text, relocs, nb_relocs, reloc_sh_type, symtab, strtab);
if (sym->st_shndx != (text_sec - shdr))
error("invalid section for opcode (0x%x)", sym->st_shndx);
gen_code(name, sym->st_value, sym->st_size, outfile,
text, relocs, nb_relocs, reloc_sh_type, symtab, strtab, 1);
}
}
fprintf(outfile,
" default:\n"
" goto the_end;\n"
" }\n"
" }\n"
" the_end:\n"
);
/* generate a return */
switch(e_machine) {
case EM_386:
fprintf(outfile, "*gen_code_ptr++ = 0xc3; /* ret */\n");
break;
default:
error("no return generation for cpu '%s'", cpu_name);
}
fprintf(outfile, "return gen_code_ptr - gen_code_buf;\n");
fprintf(outfile, "}\n\n");
/* generate gen_xxx functions */
/* XXX: suppress the use of these functions to simplify code */
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = strtab + sym->st_name;
if (strstart(name, OP_PREFIX, NULL)) {
if (sym->st_shndx != (text_sec - shdr))
error("invalid section for opcode (0x%x)", sym->st_shndx);
gen_code(name, sym->st_value, sym->st_size, outfile,
text, relocs, nb_relocs, reloc_sh_type, symtab, strtab, 0);
}
}
}
@ -503,20 +597,23 @@ int load_elf(const char *filename, FILE *outfile)
void usage(void)
{
printf("dyngen (c) 2003 Fabrice Bellard\n"
"usage: dyngen [-o outfile] objfile\n"
"Generate a dynamic code generator from an object file\n");
"usage: dyngen [-o outfile] [-c] objfile\n"
"Generate a dynamic code generator from an object file\n"
"-c output enum of operations\n"
);
exit(1);
}
int main(int argc, char **argv)
{
int c;
int c, do_print_enum;
const char *filename, *outfilename;
FILE *outfile;
outfilename = "out.c";
do_print_enum = 0;
for(;;) {
c = getopt(argc, argv, "ho:");
c = getopt(argc, argv, "ho:c");
if (c == -1)
break;
switch(c) {
@ -526,6 +623,9 @@ int main(int argc, char **argv)
case 'o':
outfilename = optarg;
break;
case 'c':
do_print_enum = 1;
break;
}
}
if (optind >= argc)
@ -534,7 +634,7 @@ int main(int argc, char **argv)
outfile = fopen(outfilename, "w");
if (!outfile)
error("could not open '%s'", outfilename);
load_elf(filename, outfile);
load_elf(filename, outfile, do_print_enum);
fclose(outfile);
return 0;
}

View File

@ -19,7 +19,7 @@
*/
#include "exec-i386.h"
#define DEBUG_EXEC
//#define DEBUG_EXEC
#define DEBUG_FLUSH
/* main execution loop */

View File

@ -1,8 +0,0 @@
static inline void gen_start(void)
{
}
static inline void gen_end(void)
{
*gen_code_ptr++ = 0xc3; /* ret */
}

2299
i386-dis.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1000,7 +1000,7 @@ long do_syscall(void *cpu_env, int num, long arg1, long arg2, long arg3,
ret = get_errno(setsid());
break;
case TARGET_NR_sigaction:
#if 1
#if 0
{
ret = 0;
}

View File

@ -177,7 +177,7 @@ void raise_exception(int exception_index)
#undef REG
#undef REGNAME
/* operations */
/* operations with flags */
void OPPROTO op_addl_T0_T1_cc(void)
{
@ -217,11 +217,6 @@ void OPPROTO op_cmpl_T0_T1_cc(void)
CC_DST = T0 - T1;
}
void OPPROTO op_notl_T0(void)
{
T0 = ~T0;
}
void OPPROTO op_negl_T0_cc(void)
{
CC_SRC = 0;
@ -248,6 +243,53 @@ void OPPROTO op_testl_T0_T1_cc(void)
CC_DST = T0 & T1;
}
/* operations without flags */
void OPPROTO op_addl_T0_T1(void)
{
T0 += T1;
}
void OPPROTO op_orl_T0_T1(void)
{
T0 |= T1;
}
void OPPROTO op_andl_T0_T1(void)
{
T0 &= T1;
}
void OPPROTO op_subl_T0_T1(void)
{
T0 -= T1;
}
void OPPROTO op_xorl_T0_T1(void)
{
T0 ^= T1;
}
void OPPROTO op_negl_T0(void)
{
T0 = -T0;
}
void OPPROTO op_incl_T0(void)
{
T0++;
}
void OPPROTO op_decl_T0(void)
{
T0--;
}
void OPPROTO op_notl_T0(void)
{
T0 = ~T0;
}
void OPPROTO op_bswapl_T0(void)
{
T0 = bswap32(T0);

518
opc-i386.h Normal file
View File

@ -0,0 +1,518 @@
DEF(end)
DEF(movl_A0_EAX)
DEF(addl_A0_EAX)
DEF(addl_A0_EAX_s1)
DEF(addl_A0_EAX_s2)
DEF(addl_A0_EAX_s3)
DEF(movl_T0_EAX)
DEF(movl_T1_EAX)
DEF(movh_T0_EAX)
DEF(movh_T1_EAX)
DEF(movl_EAX_T0)
DEF(movl_EAX_T1)
DEF(movl_EAX_A0)
DEF(cmovw_EAX_T1_T0)
DEF(cmovl_EAX_T1_T0)
DEF(movw_EAX_T0)
DEF(movw_EAX_T1)
DEF(movw_EAX_A0)
DEF(movb_EAX_T0)
DEF(movh_EAX_T0)
DEF(movb_EAX_T1)
DEF(movh_EAX_T1)
DEF(movl_A0_ECX)
DEF(addl_A0_ECX)
DEF(addl_A0_ECX_s1)
DEF(addl_A0_ECX_s2)
DEF(addl_A0_ECX_s3)
DEF(movl_T0_ECX)
DEF(movl_T1_ECX)
DEF(movh_T0_ECX)
DEF(movh_T1_ECX)
DEF(movl_ECX_T0)
DEF(movl_ECX_T1)
DEF(movl_ECX_A0)
DEF(cmovw_ECX_T1_T0)
DEF(cmovl_ECX_T1_T0)
DEF(movw_ECX_T0)
DEF(movw_ECX_T1)
DEF(movw_ECX_A0)
DEF(movb_ECX_T0)
DEF(movh_ECX_T0)
DEF(movb_ECX_T1)
DEF(movh_ECX_T1)
DEF(movl_A0_EDX)
DEF(addl_A0_EDX)
DEF(addl_A0_EDX_s1)
DEF(addl_A0_EDX_s2)
DEF(addl_A0_EDX_s3)
DEF(movl_T0_EDX)
DEF(movl_T1_EDX)
DEF(movh_T0_EDX)
DEF(movh_T1_EDX)
DEF(movl_EDX_T0)
DEF(movl_EDX_T1)
DEF(movl_EDX_A0)
DEF(cmovw_EDX_T1_T0)
DEF(cmovl_EDX_T1_T0)
DEF(movw_EDX_T0)
DEF(movw_EDX_T1)
DEF(movw_EDX_A0)
DEF(movb_EDX_T0)
DEF(movh_EDX_T0)
DEF(movb_EDX_T1)
DEF(movh_EDX_T1)
DEF(movl_A0_EBX)
DEF(addl_A0_EBX)
DEF(addl_A0_EBX_s1)
DEF(addl_A0_EBX_s2)
DEF(addl_A0_EBX_s3)
DEF(movl_T0_EBX)
DEF(movl_T1_EBX)
DEF(movh_T0_EBX)
DEF(movh_T1_EBX)
DEF(movl_EBX_T0)
DEF(movl_EBX_T1)
DEF(movl_EBX_A0)
DEF(cmovw_EBX_T1_T0)
DEF(cmovl_EBX_T1_T0)
DEF(movw_EBX_T0)
DEF(movw_EBX_T1)
DEF(movw_EBX_A0)
DEF(movb_EBX_T0)
DEF(movh_EBX_T0)
DEF(movb_EBX_T1)
DEF(movh_EBX_T1)
DEF(movl_A0_ESP)
DEF(addl_A0_ESP)
DEF(addl_A0_ESP_s1)
DEF(addl_A0_ESP_s2)
DEF(addl_A0_ESP_s3)
DEF(movl_T0_ESP)
DEF(movl_T1_ESP)
DEF(movh_T0_ESP)
DEF(movh_T1_ESP)
DEF(movl_ESP_T0)
DEF(movl_ESP_T1)
DEF(movl_ESP_A0)
DEF(cmovw_ESP_T1_T0)
DEF(cmovl_ESP_T1_T0)
DEF(movw_ESP_T0)
DEF(movw_ESP_T1)
DEF(movw_ESP_A0)
DEF(movb_ESP_T0)
DEF(movh_ESP_T0)
DEF(movb_ESP_T1)
DEF(movh_ESP_T1)
DEF(movl_A0_EBP)
DEF(addl_A0_EBP)
DEF(addl_A0_EBP_s1)
DEF(addl_A0_EBP_s2)
DEF(addl_A0_EBP_s3)
DEF(movl_T0_EBP)
DEF(movl_T1_EBP)
DEF(movh_T0_EBP)
DEF(movh_T1_EBP)
DEF(movl_EBP_T0)
DEF(movl_EBP_T1)
DEF(movl_EBP_A0)
DEF(cmovw_EBP_T1_T0)
DEF(cmovl_EBP_T1_T0)
DEF(movw_EBP_T0)
DEF(movw_EBP_T1)
DEF(movw_EBP_A0)
DEF(movb_EBP_T0)
DEF(movh_EBP_T0)
DEF(movb_EBP_T1)
DEF(movh_EBP_T1)
DEF(movl_A0_ESI)
DEF(addl_A0_ESI)
DEF(addl_A0_ESI_s1)
DEF(addl_A0_ESI_s2)
DEF(addl_A0_ESI_s3)
DEF(movl_T0_ESI)
DEF(movl_T1_ESI)
DEF(movh_T0_ESI)
DEF(movh_T1_ESI)
DEF(movl_ESI_T0)
DEF(movl_ESI_T1)
DEF(movl_ESI_A0)
DEF(cmovw_ESI_T1_T0)
DEF(cmovl_ESI_T1_T0)
DEF(movw_ESI_T0)
DEF(movw_ESI_T1)
DEF(movw_ESI_A0)
DEF(movb_ESI_T0)
DEF(movh_ESI_T0)
DEF(movb_ESI_T1)
DEF(movh_ESI_T1)
DEF(movl_A0_EDI)
DEF(addl_A0_EDI)
DEF(addl_A0_EDI_s1)
DEF(addl_A0_EDI_s2)
DEF(addl_A0_EDI_s3)
DEF(movl_T0_EDI)
DEF(movl_T1_EDI)
DEF(movh_T0_EDI)
DEF(movh_T1_EDI)
DEF(movl_EDI_T0)
DEF(movl_EDI_T1)
DEF(movl_EDI_A0)
DEF(cmovw_EDI_T1_T0)
DEF(cmovl_EDI_T1_T0)
DEF(movw_EDI_T0)
DEF(movw_EDI_T1)
DEF(movw_EDI_A0)
DEF(movb_EDI_T0)
DEF(movh_EDI_T0)
DEF(movb_EDI_T1)
DEF(movh_EDI_T1)
DEF(addl_T0_T1_cc)
DEF(orl_T0_T1_cc)
DEF(andl_T0_T1_cc)
DEF(subl_T0_T1_cc)
DEF(xorl_T0_T1_cc)
DEF(cmpl_T0_T1_cc)
DEF(negl_T0_cc)
DEF(incl_T0_cc)
DEF(decl_T0_cc)
DEF(testl_T0_T1_cc)
DEF(addl_T0_T1)
DEF(orl_T0_T1)
DEF(andl_T0_T1)
DEF(subl_T0_T1)
DEF(xorl_T0_T1)
DEF(negl_T0)
DEF(incl_T0)
DEF(decl_T0)
DEF(notl_T0)
DEF(bswapl_T0)
DEF(mulb_AL_T0)
DEF(imulb_AL_T0)
DEF(mulw_AX_T0)
DEF(imulw_AX_T0)
DEF(mull_EAX_T0)
DEF(imull_EAX_T0)
DEF(imulw_T0_T1)
DEF(imull_T0_T1)
DEF(divb_AL_T0)
DEF(idivb_AL_T0)
DEF(divw_AX_T0)
DEF(idivw_AX_T0)
DEF(divl_EAX_T0)
DEF(idivl_EAX_T0)
DEF(movl_T0_im)
DEF(movl_T1_im)
DEF(movl_A0_im)
DEF(addl_A0_im)
DEF(andl_A0_ffff)
DEF(ldub_T0_A0)
DEF(ldsb_T0_A0)
DEF(lduw_T0_A0)
DEF(ldsw_T0_A0)
DEF(ldl_T0_A0)
DEF(ldub_T1_A0)
DEF(ldsb_T1_A0)
DEF(lduw_T1_A0)
DEF(ldsw_T1_A0)
DEF(ldl_T1_A0)
DEF(stb_T0_A0)
DEF(stw_T0_A0)
DEF(stl_T0_A0)
DEF(add_bitw_A0_T1)
DEF(add_bitl_A0_T1)
DEF(jmp_T0)
DEF(jmp_im)
DEF(int_im)
DEF(int3)
DEF(into)
DEF(jb_subb)
DEF(jz_subb)
DEF(jbe_subb)
DEF(js_subb)
DEF(jl_subb)
DEF(jle_subb)
DEF(setb_T0_subb)
DEF(setz_T0_subb)
DEF(setbe_T0_subb)
DEF(sets_T0_subb)
DEF(setl_T0_subb)
DEF(setle_T0_subb)
DEF(rolb_T0_T1_cc)
DEF(rolb_T0_T1)
DEF(rorb_T0_T1_cc)
DEF(rorb_T0_T1)
DEF(rclb_T0_T1_cc)
DEF(rcrb_T0_T1_cc)
DEF(shlb_T0_T1_cc)
DEF(shlb_T0_T1)
DEF(shrb_T0_T1_cc)
DEF(shrb_T0_T1)
DEF(sarb_T0_T1_cc)
DEF(sarb_T0_T1)
DEF(adcb_T0_T1_cc)
DEF(sbbb_T0_T1_cc)
DEF(cmpxchgb_T0_T1_EAX_cc)
DEF(movsb)
DEF(rep_movsb)
DEF(stosb)
DEF(rep_stosb)
DEF(lodsb)
DEF(rep_lodsb)
DEF(scasb)
DEF(repz_scasb)
DEF(repnz_scasb)
DEF(cmpsb)
DEF(repz_cmpsb)
DEF(repnz_cmpsb)
DEF(outsb)
DEF(rep_outsb)
DEF(insb)
DEF(rep_insb)
DEF(outb_T0_T1)
DEF(inb_T0_T1)
DEF(jb_subw)
DEF(jz_subw)
DEF(jbe_subw)
DEF(js_subw)
DEF(jl_subw)
DEF(jle_subw)
DEF(loopnzw)
DEF(loopzw)
DEF(loopw)
DEF(jecxzw)
DEF(setb_T0_subw)
DEF(setz_T0_subw)
DEF(setbe_T0_subw)
DEF(sets_T0_subw)
DEF(setl_T0_subw)
DEF(setle_T0_subw)
DEF(rolw_T0_T1_cc)
DEF(rolw_T0_T1)
DEF(rorw_T0_T1_cc)
DEF(rorw_T0_T1)
DEF(rclw_T0_T1_cc)
DEF(rcrw_T0_T1_cc)
DEF(shlw_T0_T1_cc)
DEF(shlw_T0_T1)
DEF(shrw_T0_T1_cc)
DEF(shrw_T0_T1)
DEF(sarw_T0_T1_cc)
DEF(sarw_T0_T1)
DEF(shldw_T0_T1_im_cc)
DEF(shldw_T0_T1_ECX_cc)
DEF(shrdw_T0_T1_im_cc)
DEF(shrdw_T0_T1_ECX_cc)
DEF(adcw_T0_T1_cc)
DEF(sbbw_T0_T1_cc)
DEF(cmpxchgw_T0_T1_EAX_cc)
DEF(btw_T0_T1_cc)
DEF(btsw_T0_T1_cc)
DEF(btrw_T0_T1_cc)
DEF(btcw_T0_T1_cc)
DEF(bsfw_T0_cc)
DEF(bsrw_T0_cc)
DEF(movsw)
DEF(rep_movsw)
DEF(stosw)
DEF(rep_stosw)
DEF(lodsw)
DEF(rep_lodsw)
DEF(scasw)
DEF(repz_scasw)
DEF(repnz_scasw)
DEF(cmpsw)
DEF(repz_cmpsw)
DEF(repnz_cmpsw)
DEF(outsw)
DEF(rep_outsw)
DEF(insw)
DEF(rep_insw)
DEF(outw_T0_T1)
DEF(inw_T0_T1)
DEF(jb_subl)
DEF(jz_subl)
DEF(jbe_subl)
DEF(js_subl)
DEF(jl_subl)
DEF(jle_subl)
DEF(loopnzl)
DEF(loopzl)
DEF(loopl)
DEF(jecxzl)
DEF(setb_T0_subl)
DEF(setz_T0_subl)
DEF(setbe_T0_subl)
DEF(sets_T0_subl)
DEF(setl_T0_subl)
DEF(setle_T0_subl)
DEF(roll_T0_T1_cc)
DEF(roll_T0_T1)
DEF(rorl_T0_T1_cc)
DEF(rorl_T0_T1)
DEF(rcll_T0_T1_cc)
DEF(rcrl_T0_T1_cc)
DEF(shll_T0_T1_cc)
DEF(shll_T0_T1)
DEF(shrl_T0_T1_cc)
DEF(shrl_T0_T1)
DEF(sarl_T0_T1_cc)
DEF(sarl_T0_T1)
DEF(shldl_T0_T1_im_cc)
DEF(shldl_T0_T1_ECX_cc)
DEF(shrdl_T0_T1_im_cc)
DEF(shrdl_T0_T1_ECX_cc)
DEF(adcl_T0_T1_cc)
DEF(sbbl_T0_T1_cc)
DEF(cmpxchgl_T0_T1_EAX_cc)
DEF(btl_T0_T1_cc)
DEF(btsl_T0_T1_cc)
DEF(btrl_T0_T1_cc)
DEF(btcl_T0_T1_cc)
DEF(bsfl_T0_cc)
DEF(bsrl_T0_cc)
DEF(movsl)
DEF(rep_movsl)
DEF(stosl)
DEF(rep_stosl)
DEF(lodsl)
DEF(rep_lodsl)
DEF(scasl)
DEF(repz_scasl)
DEF(repnz_scasl)
DEF(cmpsl)
DEF(repz_cmpsl)
DEF(repnz_cmpsl)
DEF(outsl)
DEF(rep_outsl)
DEF(insl)
DEF(rep_insl)
DEF(outl_T0_T1)
DEF(inl_T0_T1)
DEF(movsbl_T0_T0)
DEF(movzbl_T0_T0)
DEF(movswl_T0_T0)
DEF(movzwl_T0_T0)
DEF(movswl_EAX_AX)
DEF(movsbw_AX_AL)
DEF(movslq_EDX_EAX)
DEF(movswl_DX_AX)
DEF(pushl_T0)
DEF(pushl_T1)
DEF(popl_T0)
DEF(addl_ESP_im)
DEF(pushal)
DEF(pushaw)
DEF(popal)
DEF(popaw)
DEF(enterl)
DEF(rdtsc)
DEF(aam)
DEF(aad)
DEF(aaa)
DEF(aas)
DEF(daa)
DEF(das)
DEF(movl_seg_T0)
DEF(movl_T0_seg)
DEF(addl_A0_seg)
DEF(jo_cc)
DEF(jb_cc)
DEF(jz_cc)
DEF(jbe_cc)
DEF(js_cc)
DEF(jp_cc)
DEF(jl_cc)
DEF(jle_cc)
DEF(seto_T0_cc)
DEF(setb_T0_cc)
DEF(setz_T0_cc)
DEF(setbe_T0_cc)
DEF(sets_T0_cc)
DEF(setp_T0_cc)
DEF(setl_T0_cc)
DEF(setle_T0_cc)
DEF(xor_T0_1)
DEF(set_cc_op)
DEF(movl_eflags_T0)
DEF(movb_eflags_T0)
DEF(movl_T0_eflags)
DEF(cld)
DEF(std)
DEF(clc)
DEF(stc)
DEF(cmc)
DEF(salc)
DEF(flds_FT0_A0)
DEF(fldl_FT0_A0)
DEF(fild_FT0_A0)
DEF(fildl_FT0_A0)
DEF(fildll_FT0_A0)
DEF(flds_ST0_A0)
DEF(fldl_ST0_A0)
DEF(fldt_ST0_A0)
DEF(fild_ST0_A0)
DEF(fildl_ST0_A0)
DEF(fildll_ST0_A0)
DEF(fsts_ST0_A0)
DEF(fstl_ST0_A0)
DEF(fstt_ST0_A0)
DEF(fist_ST0_A0)
DEF(fistl_ST0_A0)
DEF(fistll_ST0_A0)
DEF(fbld_ST0_A0)
DEF(fbst_ST0_A0)
DEF(fpush)
DEF(fpop)
DEF(fdecstp)
DEF(fincstp)
DEF(fmov_ST0_FT0)
DEF(fmov_FT0_STN)
DEF(fmov_ST0_STN)
DEF(fmov_STN_ST0)
DEF(fxchg_ST0_STN)
DEF(fcom_ST0_FT0)
DEF(fucom_ST0_FT0)
DEF(fadd_ST0_FT0)
DEF(fmul_ST0_FT0)
DEF(fsub_ST0_FT0)
DEF(fsubr_ST0_FT0)
DEF(fdiv_ST0_FT0)
DEF(fdivr_ST0_FT0)
DEF(fadd_STN_ST0)
DEF(fmul_STN_ST0)
DEF(fsub_STN_ST0)
DEF(fsubr_STN_ST0)
DEF(fdiv_STN_ST0)
DEF(fdivr_STN_ST0)
DEF(fchs_ST0)
DEF(fabs_ST0)
DEF(fxam_ST0)
DEF(fld1_ST0)
DEF(fldl2t_ST0)
DEF(fldl2e_ST0)
DEF(fldpi_ST0)
DEF(fldlg2_ST0)
DEF(fldln2_ST0)
DEF(fldz_ST0)
DEF(fldz_FT0)
DEF(f2xm1)
DEF(fyl2x)
DEF(fptan)
DEF(fpatan)
DEF(fxtract)
DEF(fprem1)
DEF(fprem)
DEF(fyl2xp1)
DEF(fsqrt)
DEF(fsincos)
DEF(frndint)
DEF(fscale)
DEF(fsin)
DEF(fcos)
DEF(fnstsw_A0)
DEF(fnstsw_EAX)
DEF(fnstcw_A0)
DEF(fldcw_A0)
DEF(fclex)
DEF(fninit)

View File

@ -385,7 +385,6 @@ void OPPROTO glue(op_setle_T0_sub, SUFFIX)(void)
void OPPROTO glue(glue(op_rol, SUFFIX), _T0_T1_cc)(void)
{
int count, src;
/* XXX: testing */
count = T1 & SHIFT_MASK;
if (count) {
CC_SRC = cc_table[CC_OP].compute_all() & ~(CC_O | CC_C);
@ -399,6 +398,17 @@ void OPPROTO glue(glue(op_rol, SUFFIX), _T0_T1_cc)(void)
FORCE_RET();
}
void OPPROTO glue(glue(op_rol, SUFFIX), _T0_T1)(void)
{
int count;
count = T1 & SHIFT_MASK;
if (count) {
T0 &= DATA_MASK;
T0 = (T0 << count) | (T0 >> (DATA_BITS - count));
}
FORCE_RET();
}
void OPPROTO glue(glue(op_ror, SUFFIX), _T0_T1_cc)(void)
{
int count, src;
@ -415,6 +425,17 @@ void OPPROTO glue(glue(op_ror, SUFFIX), _T0_T1_cc)(void)
FORCE_RET();
}
void OPPROTO glue(glue(op_ror, SUFFIX), _T0_T1)(void)
{
int count;
count = T1 & SHIFT_MASK;
if (count) {
T0 &= DATA_MASK;
T0 = (T0 >> count) | (T0 << (DATA_BITS - count));
}
FORCE_RET();
}
void OPPROTO glue(glue(op_rcl, SUFFIX), _T0_T1_cc)(void)
{
int count, res, eflags;
@ -482,6 +503,14 @@ void OPPROTO glue(glue(op_shl, SUFFIX), _T0_T1_cc)(void)
FORCE_RET();
}
void OPPROTO glue(glue(op_shl, SUFFIX), _T0_T1)(void)
{
int count;
count = T1 & 0x1f;
T0 = T0 << count;
FORCE_RET();
}
void OPPROTO glue(glue(op_shr, SUFFIX), _T0_T1_cc)(void)
{
int count;
@ -496,6 +525,15 @@ void OPPROTO glue(glue(op_shr, SUFFIX), _T0_T1_cc)(void)
FORCE_RET();
}
void OPPROTO glue(glue(op_shr, SUFFIX), _T0_T1)(void)
{
int count;
count = T1 & 0x1f;
T0 &= DATA_MASK;
T0 = T0 >> count;
FORCE_RET();
}
void OPPROTO glue(glue(op_sar, SUFFIX), _T0_T1_cc)(void)
{
int count, src;
@ -510,6 +548,15 @@ void OPPROTO glue(glue(op_sar, SUFFIX), _T0_T1_cc)(void)
FORCE_RET();
}
void OPPROTO glue(glue(op_sar, SUFFIX), _T0_T1)(void)
{
int count, src;
count = T1 & 0x1f;
src = (DATA_STYPE)T0;
T0 = src >> count;
FORCE_RET();
}
#if DATA_BITS == 16
/* XXX: overflow flag might be incorrect in some cases in shldw */
void OPPROTO glue(glue(op_shld, SUFFIX), _T0_T1_im_cc)(void)

View File

@ -38,7 +38,8 @@
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif
static uint8_t *gen_code_ptr;
static uint16_t *gen_opc_ptr;
static uint32_t *gen_opparam_ptr;
int __op_param1, __op_param2, __op_param3;
extern FILE *logfile;
@ -95,6 +96,13 @@ enum {
OP_SAR = 7,
};
enum {
#define DEF(s) INDEX_op_ ## s,
#include "opc-i386.h"
#undef DEF
NB_OPS,
};
#include "op-i386.h"
/* operand size */
@ -1922,7 +1930,7 @@ long disas_insn(DisasContext *s, uint8_t *pc_start)
if (mod == 3)
goto illegal_op;
gen_op_ld_T1_A0[ot]();
op_addl_A0_im(1 << (ot - OT_WORD + 1));
gen_op_addl_A0_im(1 << (ot - OT_WORD + 1));
/* load the segment first to handle exceptions properly */
gen_op_lduw_T0_A0();
gen_movl_seg_T0(s, op);
@ -2842,24 +2850,350 @@ long disas_insn(DisasContext *s, uint8_t *pc_start)
return -1;
}
#define CC_OSZAPC (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C)
#define CC_OSZAP (CC_O | CC_S | CC_Z | CC_A | CC_P)
/* flags read by an operation */
static uint16_t opc_read_flags[NB_OPS] = {
[INDEX_op_aas] = CC_A,
[INDEX_op_aaa] = CC_A,
[INDEX_op_das] = CC_A | CC_C,
[INDEX_op_daa] = CC_A | CC_C,
[INDEX_op_adcb_T0_T1_cc] = CC_C,
[INDEX_op_adcw_T0_T1_cc] = CC_C,
[INDEX_op_adcl_T0_T1_cc] = CC_C,
[INDEX_op_sbbb_T0_T1_cc] = CC_C,
[INDEX_op_sbbw_T0_T1_cc] = CC_C,
[INDEX_op_sbbl_T0_T1_cc] = CC_C,
[INDEX_op_into] = CC_O,
[INDEX_op_jo_cc] = CC_O,
[INDEX_op_jb_cc] = CC_C,
[INDEX_op_jz_cc] = CC_Z,
[INDEX_op_jbe_cc] = CC_Z | CC_C,
[INDEX_op_js_cc] = CC_S,
[INDEX_op_jp_cc] = CC_P,
[INDEX_op_jl_cc] = CC_O | CC_S,
[INDEX_op_jle_cc] = CC_O | CC_S | CC_Z,
[INDEX_op_jb_subb] = CC_C,
[INDEX_op_jb_subw] = CC_C,
[INDEX_op_jb_subl] = CC_C,
[INDEX_op_jz_subb] = CC_Z,
[INDEX_op_jz_subw] = CC_Z,
[INDEX_op_jz_subl] = CC_Z,
[INDEX_op_jbe_subb] = CC_Z | CC_C,
[INDEX_op_jbe_subw] = CC_Z | CC_C,
[INDEX_op_jbe_subl] = CC_Z | CC_C,
[INDEX_op_js_subb] = CC_S,
[INDEX_op_js_subw] = CC_S,
[INDEX_op_js_subl] = CC_S,
[INDEX_op_jl_subb] = CC_O | CC_S,
[INDEX_op_jl_subw] = CC_O | CC_S,
[INDEX_op_jl_subl] = CC_O | CC_S,
[INDEX_op_jle_subb] = CC_O | CC_S | CC_Z,
[INDEX_op_jle_subw] = CC_O | CC_S | CC_Z,
[INDEX_op_jle_subl] = CC_O | CC_S | CC_Z,
[INDEX_op_loopnzw] = CC_Z,
[INDEX_op_loopnzl] = CC_Z,
[INDEX_op_loopzw] = CC_Z,
[INDEX_op_loopzl] = CC_Z,
[INDEX_op_seto_T0_cc] = CC_O,
[INDEX_op_setb_T0_cc] = CC_C,
[INDEX_op_setz_T0_cc] = CC_Z,
[INDEX_op_setbe_T0_cc] = CC_Z | CC_C,
[INDEX_op_sets_T0_cc] = CC_S,
[INDEX_op_setp_T0_cc] = CC_P,
[INDEX_op_setl_T0_cc] = CC_O | CC_S,
[INDEX_op_setle_T0_cc] = CC_O | CC_S | CC_Z,
[INDEX_op_setb_T0_subb] = CC_C,
[INDEX_op_setb_T0_subw] = CC_C,
[INDEX_op_setb_T0_subl] = CC_C,
[INDEX_op_setz_T0_subb] = CC_Z,
[INDEX_op_setz_T0_subw] = CC_Z,
[INDEX_op_setz_T0_subl] = CC_Z,
[INDEX_op_setbe_T0_subb] = CC_Z | CC_C,
[INDEX_op_setbe_T0_subw] = CC_Z | CC_C,
[INDEX_op_setbe_T0_subl] = CC_Z | CC_C,
[INDEX_op_sets_T0_subb] = CC_S,
[INDEX_op_sets_T0_subw] = CC_S,
[INDEX_op_sets_T0_subl] = CC_S,
[INDEX_op_setl_T0_subb] = CC_O | CC_S,
[INDEX_op_setl_T0_subw] = CC_O | CC_S,
[INDEX_op_setl_T0_subl] = CC_O | CC_S,
[INDEX_op_setle_T0_subb] = CC_O | CC_S | CC_Z,
[INDEX_op_setle_T0_subw] = CC_O | CC_S | CC_Z,
[INDEX_op_setle_T0_subl] = CC_O | CC_S | CC_Z,
[INDEX_op_movl_T0_eflags] = CC_OSZAPC,
[INDEX_op_cmc] = CC_C,
[INDEX_op_salc] = CC_C,
[INDEX_op_rclb_T0_T1_cc] = CC_C,
[INDEX_op_rclw_T0_T1_cc] = CC_C,
[INDEX_op_rcll_T0_T1_cc] = CC_C,
[INDEX_op_rcrb_T0_T1_cc] = CC_C,
[INDEX_op_rcrw_T0_T1_cc] = CC_C,
[INDEX_op_rcrl_T0_T1_cc] = CC_C,
};
/* flags written by an operation */
static uint16_t opc_write_flags[NB_OPS] = {
[INDEX_op_addl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_orl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_adcb_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_adcw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_adcl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_sbbb_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_sbbw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_sbbl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_andl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_subl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_xorl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_cmpl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_negl_T0_cc] = CC_OSZAPC,
[INDEX_op_incl_T0_cc] = CC_OSZAP,
[INDEX_op_decl_T0_cc] = CC_OSZAP,
[INDEX_op_testl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_mulb_AL_T0] = CC_OSZAPC,
[INDEX_op_imulb_AL_T0] = CC_OSZAPC,
[INDEX_op_mulw_AX_T0] = CC_OSZAPC,
[INDEX_op_imulw_AX_T0] = CC_OSZAPC,
[INDEX_op_mull_EAX_T0] = CC_OSZAPC,
[INDEX_op_imull_EAX_T0] = CC_OSZAPC,
[INDEX_op_imulw_T0_T1] = CC_OSZAPC,
[INDEX_op_imull_T0_T1] = CC_OSZAPC,
/* bcd */
[INDEX_op_aam] = CC_OSZAPC,
[INDEX_op_aad] = CC_OSZAPC,
[INDEX_op_aas] = CC_OSZAPC,
[INDEX_op_aaa] = CC_OSZAPC,
[INDEX_op_das] = CC_OSZAPC,
[INDEX_op_daa] = CC_OSZAPC,
[INDEX_op_movb_eflags_T0] = CC_S | CC_Z | CC_A | CC_P | CC_C,
[INDEX_op_movl_eflags_T0] = CC_OSZAPC,
[INDEX_op_clc] = CC_C,
[INDEX_op_stc] = CC_C,
[INDEX_op_cmc] = CC_C,
[INDEX_op_rolb_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rolw_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_roll_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rorb_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rorw_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rorl_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rclb_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rclw_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rcll_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rcrb_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rcrw_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_rcrl_T0_T1_cc] = CC_O | CC_C,
[INDEX_op_shlb_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_shlw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_shll_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_shrb_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_shrw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_shrl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_sarb_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_sarw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_sarl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_shldw_T0_T1_ECX_cc] = CC_OSZAPC,
[INDEX_op_shldl_T0_T1_ECX_cc] = CC_OSZAPC,
[INDEX_op_shldw_T0_T1_im_cc] = CC_OSZAPC,
[INDEX_op_shldl_T0_T1_im_cc] = CC_OSZAPC,
[INDEX_op_shrdw_T0_T1_ECX_cc] = CC_OSZAPC,
[INDEX_op_shrdl_T0_T1_ECX_cc] = CC_OSZAPC,
[INDEX_op_shrdw_T0_T1_im_cc] = CC_OSZAPC,
[INDEX_op_shrdl_T0_T1_im_cc] = CC_OSZAPC,
[INDEX_op_btw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btsw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btsl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btrw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btrl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btcw_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_btcl_T0_T1_cc] = CC_OSZAPC,
[INDEX_op_bsfw_T0_cc] = CC_OSZAPC,
[INDEX_op_bsfl_T0_cc] = CC_OSZAPC,
[INDEX_op_bsrw_T0_cc] = CC_OSZAPC,
[INDEX_op_bsrl_T0_cc] = CC_OSZAPC,
[INDEX_op_scasb] = CC_OSZAPC,
[INDEX_op_scasw] = CC_OSZAPC,
[INDEX_op_scasl] = CC_OSZAPC,
[INDEX_op_repz_scasb] = CC_OSZAPC,
[INDEX_op_repz_scasw] = CC_OSZAPC,
[INDEX_op_repz_scasl] = CC_OSZAPC,
[INDEX_op_repnz_scasb] = CC_OSZAPC,
[INDEX_op_repnz_scasw] = CC_OSZAPC,
[INDEX_op_repnz_scasl] = CC_OSZAPC,
[INDEX_op_cmpsb] = CC_OSZAPC,
[INDEX_op_cmpsw] = CC_OSZAPC,
[INDEX_op_cmpsl] = CC_OSZAPC,
[INDEX_op_repz_cmpsb] = CC_OSZAPC,
[INDEX_op_repz_cmpsw] = CC_OSZAPC,
[INDEX_op_repz_cmpsl] = CC_OSZAPC,
[INDEX_op_repnz_cmpsb] = CC_OSZAPC,
[INDEX_op_repnz_cmpsw] = CC_OSZAPC,
[INDEX_op_repnz_cmpsl] = CC_OSZAPC,
[INDEX_op_cmpxchgw_T0_T1_EAX_cc] = CC_OSZAPC,
[INDEX_op_cmpxchgl_T0_T1_EAX_cc] = CC_OSZAPC,
};
/* simpler form of an operation if no flags need to be generated */
static uint16_t opc_simpler[NB_OPS] = {
[INDEX_op_addl_T0_T1_cc] = INDEX_op_addl_T0_T1,
[INDEX_op_orl_T0_T1_cc] = INDEX_op_orl_T0_T1,
[INDEX_op_andl_T0_T1_cc] = INDEX_op_andl_T0_T1,
[INDEX_op_subl_T0_T1_cc] = INDEX_op_subl_T0_T1,
[INDEX_op_xorl_T0_T1_cc] = INDEX_op_xorl_T0_T1,
[INDEX_op_negl_T0_cc] = INDEX_op_negl_T0,
[INDEX_op_incl_T0_cc] = INDEX_op_incl_T0,
[INDEX_op_decl_T0_cc] = INDEX_op_decl_T0,
[INDEX_op_rolb_T0_T1_cc] = INDEX_op_rolb_T0_T1,
[INDEX_op_rolw_T0_T1_cc] = INDEX_op_rolw_T0_T1,
[INDEX_op_roll_T0_T1_cc] = INDEX_op_roll_T0_T1,
[INDEX_op_rorb_T0_T1_cc] = INDEX_op_rorb_T0_T1,
[INDEX_op_rorw_T0_T1_cc] = INDEX_op_rorw_T0_T1,
[INDEX_op_rorl_T0_T1_cc] = INDEX_op_rorl_T0_T1,
[INDEX_op_shlb_T0_T1_cc] = INDEX_op_shlb_T0_T1,
[INDEX_op_shlw_T0_T1_cc] = INDEX_op_shlw_T0_T1,
[INDEX_op_shll_T0_T1_cc] = INDEX_op_shll_T0_T1,
[INDEX_op_shrb_T0_T1_cc] = INDEX_op_shrb_T0_T1,
[INDEX_op_shrw_T0_T1_cc] = INDEX_op_shrw_T0_T1,
[INDEX_op_shrl_T0_T1_cc] = INDEX_op_shrl_T0_T1,
[INDEX_op_sarb_T0_T1_cc] = INDEX_op_sarb_T0_T1,
[INDEX_op_sarw_T0_T1_cc] = INDEX_op_sarw_T0_T1,
[INDEX_op_sarl_T0_T1_cc] = INDEX_op_sarl_T0_T1,
};
static void optimize_flags_init(void)
{
int i;
/* put default values in arrays */
for(i = 0; i < NB_OPS; i++) {
if (opc_simpler[i] == 0)
opc_simpler[i] = i;
}
}
/* CPU flags computation optimization: we move backward thru the
generated code to see which flags are needed. The operation is
modified if suitable */
static void optimize_flags(uint16_t *opc_buf, int opc_buf_len)
{
uint16_t *opc_ptr;
int live_flags, write_flags, op;
opc_ptr = opc_buf + opc_buf_len;
/* live_flags contains the flags needed by the next instructions
in the code. At the end of the bloc, we consider that all the
flags are live. */
live_flags = CC_OSZAPC;
while (opc_ptr > opc_buf) {
op = *--opc_ptr;
/* if none of the flags written by the instruction is used,
then we can try to find a simpler instruction */
write_flags = opc_write_flags[op];
if ((live_flags & write_flags) == 0) {
*opc_ptr = opc_simpler[op];
}
/* compute the live flags before the instruction */
live_flags &= ~write_flags;
live_flags |= opc_read_flags[op];
}
}
#ifdef DEBUG_DISAS
static const char *op_str[] = {
#define DEF(s) #s,
#include "opc-i386.h"
#undef DEF
};
static void dump_ops(const uint16_t *opc_buf)
{
const uint16_t *opc_ptr;
int c;
opc_ptr = opc_buf;
for(;;) {
c = *opc_ptr++;
fprintf(logfile, "0x%04x: %s\n", opc_ptr - opc_buf - 1, op_str[c]);
if (c == INDEX_op_end)
break;
}
}
#endif
/* XXX: make this buffer thread safe */
/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 32
#define OPC_BUF_SIZE 512
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
static uint16_t gen_opc_buf[OPC_BUF_SIZE];
static uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
/* return the next pc */
int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size,
int *gen_code_size_ptr, uint8_t *pc_start,
int flags)
{
DisasContext dc1, *dc = &dc1;
uint8_t *gen_code_end, *pc_ptr;
uint8_t *pc_ptr;
uint16_t *gen_opc_end;
long ret;
#ifdef DEBUG_DISAS
struct disassemble_info disasm_info;
#endif
/* generate intermediate code */
dc->code32 = (flags >> GEN_FLAG_CODE32_SHIFT) & 1;
dc->addseg = (flags >> GEN_FLAG_ADDSEG_SHIFT) & 1;
dc->f_st = (flags >> GEN_FLAG_ST_SHIFT) & 7;
dc->cc_op = CC_OP_DYNAMIC;
gen_code_ptr = gen_code_buf;
gen_code_end = gen_code_buf + max_code_size - 4096;
gen_start();
gen_opc_ptr = gen_opc_buf;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
gen_opparam_ptr = gen_opparam_buf;
dc->is_jmp = 0;
pc_ptr = pc_start;
@ -2871,7 +3205,7 @@ int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size,
abort();
}
pc_ptr = (void *)ret;
} while (!dc->is_jmp && gen_code_ptr < gen_code_end);
} while (!dc->is_jmp && gen_opc_ptr < gen_opc_end);
/* we must store the eflags state if it is not already done */
if (dc->cc_op != CC_OP_DYNAMIC)
gen_op_set_cc_op(dc->cc_op);
@ -2879,9 +3213,9 @@ int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size,
/* we add an additionnal jmp to update the simulated PC */
gen_op_jmp_im(ret);
}
gen_end();
*gen_code_size_ptr = gen_code_ptr - gen_code_buf;
*gen_opc_ptr = INDEX_op_end;
/* optimize flag computations */
#ifdef DEBUG_DISAS
if (loglevel) {
uint8_t *pc;
@ -2898,6 +3232,7 @@ int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size,
#else
disasm_info.endian = BFD_ENDIAN_LITTLE;
#endif
fprintf(logfile, "----------------\n");
fprintf(logfile, "IN:\n");
disasm_info.buffer = pc_start;
disasm_info.buffer_vma = (unsigned long)pc_start;
@ -2911,12 +3246,37 @@ int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size,
}
fprintf(logfile, "\n");
fprintf(logfile, "OP:\n");
dump_ops(gen_opc_buf);
fprintf(logfile, "\n");
}
#endif
/* optimize flag computations */
optimize_flags(gen_opc_buf, gen_opc_ptr - gen_opc_buf);
#ifdef DEBUG_DISAS
if (loglevel) {
fprintf(logfile, "AFTER FLAGS OPT:\n");
dump_ops(gen_opc_buf);
fprintf(logfile, "\n");
}
#endif
/* generate machine code */
*gen_code_size_ptr = dyngen_code(gen_code_buf, gen_opc_buf, gen_opparam_buf);
#ifdef DEBUG_DISAS
if (loglevel) {
uint8_t *pc;
int count;
pc = gen_code_buf;
disasm_info.buffer = pc;
disasm_info.buffer_vma = (unsigned long)pc;
disasm_info.buffer_length = *gen_code_size_ptr;
fprintf(logfile, "OUT: [size=%d]\n", *gen_code_size_ptr);
while (pc < gen_code_ptr) {
while (pc < gen_code_buf + *gen_code_size_ptr) {
fprintf(logfile, "0x%08lx: ", (long)pc);
count = print_insn_i386((unsigned long)pc, &disasm_info);
fprintf(logfile, "\n");
@ -2932,6 +3292,7 @@ CPUX86State *cpu_x86_init(void)
{
CPUX86State *env;
int i;
static int inited;
cpu_x86_tblocks_init();
@ -2946,6 +3307,12 @@ CPUX86State *cpu_x86_init(void)
/* flags setup */
env->cc_op = CC_OP_EFLAGS;
env->df = 1;
/* init various static tables */
if (!inited) {
inited = 1;
optimize_flags_init();
}
return env;
}